CSE541 EXERCISE 4

QUESTION 1 Use the fact that $v: V A R \longrightarrow\{F, \perp, T\}$ be such that $v^{*}((a \cap b) \Rightarrow \neg b)=\perp$
under \mathbf{L} semantics to evaluate $v^{*}(((b \Rightarrow \neg a) \Rightarrow(a \Rightarrow \neg b)) \cup(a \Rightarrow b))$. Use shorthand notation.
L semantics is defined as follows.

Ł Negation

\neg	F	\perp	T
	T	\perp	F

£ Disjunction

\cup	F	\perp	T
F	F	\perp	T
\perp	\perp	\perp	T
T	T	T	T

£ Conjunction

Ł-Implication

\Rightarrow	F	\perp	T
F	T	T	T
\perp	\perp	T	T
T	F	\perp	T

QUESTION 2 Prove using proper logical equivalences (list them at each step) that

$$
\neg((A \Rightarrow \neg B) \cup(B \Rightarrow \neg A)) \equiv(A \cap B)
$$

QUESTION 3 We define an EQUIVALENCE of LANGUAGES as follows:
Given two languages:
$\mathcal{L}_{1}=\mathcal{L}_{C O N_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{C O N_{2}}$, for $C O N_{1} \neq C O N_{2}$.
We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.
C1: For every formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that

$$
A \equiv B
$$

C2: \quad For every formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that

$$
C \equiv D
$$

Prove that $\quad \mathcal{L}_{\{\neg, \cap, \Rightarrow\}} \equiv \mathcal{L}_{\{\uparrow\}}$.

