CSE541 Midterm $1 \quad$ Spring 2011 100 points

NAME

ID:

QUESTION 1 (10pts)

1. Use Dedekind theorem to prove that the set R of real numbers is infinite.
2. Find a function f that is $1-1$ and maps R ONTO $R-\{1,8,10\}$.

QUESTION 2 (20pts)
Here are some definitions; some of them are known to you and put as a reminder.

Definition 1 By a m-valued semantics S_{m} for a propositional language $\mathcal{L}=\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ we understand any definition of of connectives $\neg, \cap, \cup, \Rightarrow$ as operations on a set $V_{m}=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of logical values.
We assume that $v_{1} \leq v_{2} \leq \ldots \leq v_{m}$, i.e. V_{m} is totally ordered by a certain relation \leq with v_{1}, v_{m} being smallest and greatest elements, respectively. We denote $v_{1}=F, v_{m}=T$ and call them (total) False and Truth, respectively.

Definition 2 Let $V A R$ be a set of propositional variables of \mathcal{L} and let S_{m} be any m-valued semantics for \mathcal{L}. A truth assignment $v: V A R \longrightarrow V_{m}$ is called a S_{m} model for a formula A of \mathcal{L} iff $v(A)=T$ and logical value $v(A)$ is evaluated accordingly to the semantics S_{m}. We denote is symbolically as

$$
v \models=_{S_{m}} A .
$$

Any v such that v is not a S_{m} model for a formula A is called a countermodel for A.

Definition 3 A formula A of \mathcal{L} is called a S_{m} tautology iff $v={ }_{S_{m}} A$, for all v. We denote it by $\models_{S_{m}} A$, and $\models A$ for classical semantics tautologies.
Definition 4 A proof system S is complete with respect to a semantics S_{m} iff for any formula A, the following holds:
A is provable in S iff A is S_{m} tautology.
Q2 Part one (15pts)
Let S_{3} be a 3 -valued semantics for $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ defined as follows. $V_{3}=\{F, U, T\}$, for $F \leq U \leq T$ and

U	F	U	T
F	F	U	T
U	U	U	U
T	T	U	T

\neg	F	U	T
	T	F	U

$$
a \cup b=\min \{a, b\}, \quad a \Rightarrow b=\neg a \cup b, \text { for any } a, b \in V_{3} .
$$

Consider the following classical tautologies:

$$
A_{1}=(A \cup \neg A), \quad A_{2}=(A \Rightarrow(B \Rightarrow A))
$$

(a) Find S_{3} counter-models for A_{1}, A_{2}, if exist. Use shorthand notation.
(b) Define a 2-valued semantics S_{2} for \mathcal{L}, such that none of A_{1}, A_{2} is a S_{2} tautology. Verify your results. Use shorthand notation.
(c) Define a 3 -valued semantics C_{3} for \mathcal{L}, such that both A_{1}, and A_{2} are a C_{3} tautologies. Verify your results. Use shorthand notation.

Q2 Part Two (5pts)

Let $S=(\mathcal{L}, \mathbf{A 1}, \mathbf{A} 2, \mathbf{A} 3, M P)$ be a proof system with axioms:
A1 $(A \Rightarrow(B \Rightarrow A))$,
A2 $((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))$,
A3 $\quad((\neg B \Rightarrow \neg A) \Rightarrow((\neg B \Rightarrow A) \Rightarrow B))$,
The system S is complete with respect to classical semantics.
Verify whether S is complete with respect to 3 -valued semantics S_{3}, as defined at the beginning of this question.

QUESTION 3 (15pts)

Let S be from QUESTION 2, PART 2.
The following Lemma holds in the system S.
LEMMA For any $A, B, C \in \mathcal{F}$,
(a) $\quad(A \Rightarrow B),(B \Rightarrow C) \vdash_{H}(A \Rightarrow C)$,
(b) $\quad(A \Rightarrow(B \Rightarrow C)) \vdash_{H}(B \Rightarrow(A \Rightarrow C))$.

Complete the proof sequence (in S)

$$
B_{1}, \ldots, B_{9}
$$

by providing comments how each step of the proof was obtained.
$B_{1}=(A \Rightarrow B)$
$B_{2}=(\neg \neg A \Rightarrow A)$
Already PROVED
$B_{3}=(\neg \neg A \Rightarrow B)$
$B_{4}=(B \Rightarrow \neg \neg B)$
Already PROVED
$B_{5}=(\neg \neg A \Rightarrow \neg \neg B)$
$B_{6}=((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow(\neg B \Rightarrow \neg A))$
Already PROVED
$B_{7} \quad(\neg B \Rightarrow \neg A)$
$B_{8} \quad(A \Rightarrow B) \vdash(\neg B \Rightarrow \neg A)$
$B_{9}=((A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A))$

QUESTION 4 (35pts)
Consider any proof system S,

$$
S=\left(\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, A X,(M P) \frac{A,(A \Rightarrow B)}{B}\right)
$$

that is complete under classical classical semantics.
Definition 1 Let $X \subseteq F$ be any subset of the set F of formulas of the language $\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}$ of S.
We define a set $C n(X)$ of all consequences of the set X as follows

$$
C n(X)=\left\{A \in F: X \vdash_{S} A\right\}
$$

i.e. $C n(X)$ is the set of all formulas that can be proved in S from the set $(A X \cup X)$. The following theorem holds for S.

Part 1 (5pts)
(i) Prove that for any subsets X, Y of the set F of formulas the following monotonicity property holds.
If $X \subseteq Y$, then $C n(X) \subseteq C n(Y)$
(ii) Prove that for any $X \subseteq F$, the set \mathbf{T} of all propositional classical tautologies is a subset of $C n(X)$, i.e.

$$
\mathbf{T} \subseteq C n(X)
$$

Part two (15pts) Prove that for any $A, B \in F, X \subseteq F$,

$$
(A \cap B) \in C n(X) \text { iff } A \in C n(X) \text { and } B \in C n(X)
$$

Hint: Use the Monotonicity and Completeness of S i.e. the fact that any tautology you might need is provable in S.

Part Three: (15pts) Prove that for any $A, B \in F$,

$$
C n(\{A, B\})=C n(\{(A \cap B)\})
$$

Hint: Use Deduction Theorem and Completeness of S.

QUESTION 5 (20pts) Given a tautology A, and the set V_{A} of all truth assignment restricted to A, the Proof 1 of the Completeness Theorem for the system S defines a method of efficiently combining $v \in V_{A}$ to construct a proof of A in S.
Let consider the following tautology $A=A(a, b)$

$$
A=((a \Rightarrow b) \Rightarrow(\neg b \Rightarrow \neg a))
$$

Write down all steps of the construction of the proof of A as described in the Proof 1 with justification why they are correct.

