CSE541 Midterm 1 Spring 2011 100 points

NAME

ID:

QUESTION 1 (10pts)

1. Use Dedekind theorem to prove that the set R of real numbers is infinite.

2. Find a function f that is 1 - 1 and maps R ONTO $R - \{1, 8, 10\}$.

QUESTION 2 (20pts)

Here are some definitions; some of them are known to you and put as a reminder.

Definition 1 By a **m-valued semantics** S_m for a propositional language $\mathcal{L} = \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ we understand any definition of of connectives $\neg, \cap, \cup, \Rightarrow$ as operations on a set $V_m = \{v_1, v_2, ... v_m\}$ of logical values. We assume that $v_1 \leq v_2 \leq ... \leq v_m$, i.e. V_m is totally ordered by a certain relation \leq with v_1, v_m being smallest and greatest elements, respectively. We denote $v_1 = F$, $v_m = T$ and call them (total) False and Truth, respectively. **Definition 2** Let VAR be a set of propositional variables of \mathcal{L} and let S_m be any m-valued semantics for \mathcal{L} . A truth assignment $v : VAR \longrightarrow V_m$ is called **a** S_m **model** for a formula A of \mathcal{L} iff v(A) = T and logical value v(A) is evaluated accordingly to the semantics S_m . We denote is symbolically as

 $v \models_{S_m} A.$

Any v such that v is not a S_m model for a formula A is called a countermodel for A.

- **Definition 3** A formula A of \mathcal{L} is called a S_m tautology iff $v \models_{S_m} A$, for all v. We denote it by $\models_{S_m} A$, and $\models A$ for classical semantics tautologies.
- **Definition 4** A proof system S is **complete** with respect to a semantics S_m iff for any formula A, the following holds:

A is provable in S iff A is S_m tautology.

Q2 Part one (15pts)

Let S_3 be a 3-valued semantics for $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ defined as follows. $V_3 = \{F, U, T\}$, for $F \leq U \leq T$ and

U	F	U	Т
F	F	U	Т
U	U	U	U
Т	Т	U	Т
	\mathbf{F}	U	Т
	Т	F	U

 $a \cup b = min\{a, b\}, a \Rightarrow b = \neg a \cup b$, for any $a, b \in V_3$.

Consider the following classical tautologies:

$$A_1 = (A \cup \neg A), \quad A_2 = (A \Rightarrow (B \Rightarrow A)).$$

(a) Find S_3 counter-models for A_1 , A_2 , if exist. Use shorthand notation.

(b) Define a 2-valued semantics S_2 for \mathcal{L} , such that **none of** A_1, A_2 is a S_2 tautology. Verify your results. Use shorthand notation.

(c) Define a 3-valued semantics C_3 for \mathcal{L} , such that both A_1 , and A_2 are a C_3 tautologies. Verify your results. Use shorthand notation.

Q2 Part Two (5pts)

Let $S = (\mathcal{L}, \mathbf{A1}, \mathbf{A2}, \mathbf{A3}, MP)$ be a proof system with axioms:

- A1 $(A \Rightarrow (B \Rightarrow A)),$
- A2 $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$
- A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$

The system S is complete with respect to classical semantics.

Verify whether S is complete with respect to 3-valued semantics S_3 , as defined at the beginning of this question.

QUESTION 3 (15pts)

Let S be from QUESTION 2, PART 2. The following Lemma holds in the system S.

LEMMA For any $A, B, C \in \mathcal{F}$,

- (a) $(A \Rightarrow B), (B \Rightarrow C) \vdash_H (A \Rightarrow C),$
- (b) $(A \Rightarrow (B \Rightarrow C)) \vdash_H (B \Rightarrow (A \Rightarrow C)).$

Complete the proof sequence (in S)

$$B_1, ..., B_9$$

by providing comments how each step of the proof was obtained.

 $B_1 = (A \Rightarrow B)$

 $B_2 = (\neg \neg A \Rightarrow A)$ Already PROVED

$$B_3 = (\neg \neg A \Rightarrow B)$$

 $B_4 = (B \Rightarrow \neg \neg B)$ Already PROVED

$$B_5 = (\neg \neg A \Rightarrow \neg \neg B)$$

$$B_{6} = ((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))$$

Already PROVED
$$B_{7} \quad (\neg B \Rightarrow \neg A)$$

$$B_8 \quad (A \Rightarrow B) \vdash (\neg B \Rightarrow \neg A)$$

$$B_9 = ((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$$

QUESTION 4 (35pts)

Consider any proof system S,

$$S = (\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}, AX, (MP)\frac{A, (A \Rightarrow B)}{B})$$

that is **complete** under classical classical semantics.

Definition 1 Let $X \subseteq F$ be any subset of the set F of formulas of the language $\mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}$ of S.

We define a set Cn(X) of all **consequences** of the set X as follows

$$Cn(X) = \{A \in F : X \vdash_S A\},\$$

i.e. Cn(X) is the set of all formulas that can be proved in S from the set $(AX \cup X)$. The following theorem holds for S.

Part 1 (5pts)

(i) Prove that for any subsets X, Y of the set F of formulas the following **monotonicity property** holds.

If $X \subseteq Y$, then $Cn(X) \subseteq Cn(Y)$

(ii) Prove that for any $X \subseteq F$, the set **T** of all propositional classical tautologies is a subset of Cn(X), i.e.

 $\mathbf{T} \subseteq Cn(X).$

Part two (15pts) Prove that for any $A, B \in F, X \subseteq F$,

 $(A \cap B) \in Cn(X)$ iff $A \in Cn(X)$ and $B \in Cn(X)$

Hint: Use the Monotonicity and Completeness of S i.e. the fact that any tautology you might need is provable in S.

Part Three: (15pts) Prove that for any $A, B \in F$,

$$Cn(\{A,B\}) = Cn(\{(A \cap B)\})$$

Hint: Use Deduction Theorem and Completeness of S.

QUESTION 5 (20pts) Given a tautology A, and the set V_A of all truth assignment restricted to A, the Proof 1 of the Completeness Theorem for the system S defines a method of efficiently combining $v \in V_A$ to construct a proof of A in S.

Let consider the following tautology A = A(a, b)

$$A = ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a))$$

Write down all steps of the construction of the proof of A as described in the Proof 1 with justification why they are correct.