CSE541 Take Home MIDTERM 2 due April 26 in class Spring 2011 100pts

NAME

ID:

Each QUESTION except EXTRA Credit Questions is 20pts

PART ONE

Remark: read Lecture Notes 1 for intuitive introduction to Predicate Logic Languages. You don't need a more formal definition or any extra material to solve the problems below. All what is needed is defined in the definitions provided below.

Definitions

- Let \mathcal{L} denote a language of classical logic, propositional, or predicate, with full set of propositional connectives with the set \mathcal{F} of formulas.
- **Definition 1** For any $A \in \mathcal{F}$ we write $M \models A$ to denote that M is a model for A.

If \mathcal{L} is a propositional language, M is called a propositional model, if \mathcal{L} is a predicate (logic) language, M is called a predicate model.

- **Example 1** Let A be a propositional formula $((a \cup \neg b) \Rightarrow b)$. A model M is any truth assignment $v: VAR \longrightarrow \{T, F\}$, such that v(a) = F, v(b) = T. Observe that the v is not the only model for A.
- **Example 2** Let A be a predicate logic formula formula $\exists x P(x, c)$. where P is a two arguments predicate symbol representing any two argument relation, c is a symbol for a constant. P(x, c) is an atomic formula. The structure M = (N, >, 0) is a model for A because when we interpret predicate symbol P as > and a constant symbol c as $0 \in N$ we obtain a true statement $\exists x(x > 0)$ about natural numbers.

The same structure M is not a model for a formula $\forall x P(x, c)$, as $\forall x(x > 0)$ is a false statement about natural numbers.

Observe that under classical semantics the structure M = (N, >, 0) is a model for a formula $(\forall x P(x, c) \Rightarrow \exists x P(x, c))$, but not for a formula $(\exists x P(x, c) \Rightarrow \forall x P(x, c))$.

Propositional Structure M is any truth assignment $v: VAR \longrightarrow \{T, F\}$.

Formal Definition of $M \models A$ for propositional structure M = v is exactly what we have defined from the beginning of the course i.e.

 $v \models A$ iff $v^*(A) = T$.

- **Predicate Structure** M is a structure $M = (U, R_1, ..., R_k, x_1, ..., x_n)$, where $X \neq \emptyset$ is called a UNIVERSE of the structure, $R_1, ..., R_k$ are certain RELA-TIONS defined on X (they correspond to the predicates in your formulas) and $x_1, ..., x_n$ special elements of the Universe that correspond to to constants from the language.
- **Remark** The relationship predicate formula structure is the "inverse translation" to the one between mathematical statements and logic formulas explained in Lecture Notes 1.
- **Informal Definition** of $M \models A$ for predicate structure M.
- **Structure** $M = (U, R_1, ..., R_k, x_1, ..., x_n)$ is **a model** for a formula A iff the translation of A into a concrete statement about the Universe U of the structure M is **a TRUE statement** about this Universe.
- **Definition 2** A formula $A \in F$ is a classical tautology, what we write $\models A$ if and only if all structures M are models for A, i.e. $M \models A$, for all M.
- **Definition 3** M is a model for a set (finite or infinite) $\mathcal{G} \subseteq \mathcal{F}$ of formulas of \mathcal{L} if and only if $M \models B$ for all $B \in \mathcal{G}$. We denote it by $M \models \mathcal{G}$.
- **Definition** 4 A set \mathcal{G} of formulas is called **consistent** if and only if **it has a model**, i.e. there is M, such that $M \models \mathcal{G}$.

Otherwise \mathcal{G} is called **inconsistent**.

- **Remark** Definition 4 provides a **SEMANTIC** notion of consistency/inconsistency. In the proof 2 of the Completeness Theorem we have introduced and used a SYNTACTIC notion, i.e. we used the notion of a proof to define it.
- **Definition 5** A formula A is called **independent** from a set of formulas \mathcal{G} if and only of there are M_1, M_2 such that

 $M_1 \models \mathcal{G} \cup \{A\}$ and $M_2 \models \mathcal{G} \cup \{\neg A\},\$

i.e. when when both $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are consistent.

Definition 6 We say that the set \mathcal{G} semantically entails a formula A if and only if for any M,

 $M \models \mathcal{G}$ implies that $M \models A$.

We denote it by $\mathcal{G} \models A$.

QUESTION 1

(a) Given a set

$$S = \{((a \cap b) \Rightarrow b), \ (a \cup b), \neg a\}.$$

- 1. Show that S is **consistent**.
- **2.** Show that a formula $A = (\neg a \cap b)$ is **not independent** of *S*.
- 3. Find an infinite number of formulas that are independent of S.
- 4. Give an example of an infinite consistent set S (propositional language).

QUESTION 2 (10 extra credit)

Given a set S of formulas:

$$S = \{ \forall x ((R(x,y) \cap R(y,z)) \Rightarrow R(x,z)), \ \forall x R(x,x) \}.$$

Remember: R(x, y) is a two argument predicate representing a binary relation.

- 1. Show that S is consistent.
- **2.** Show that a formula $A = \forall x (R(x, y) \Rightarrow R(y, x))$ is **independent** of *S*.

QUESTION 3

1. Show that if $S = \emptyset$, then for any formula A of \mathcal{F} of propositional or predicate language,

$$S \models A$$
 implies that $\models A$.

- **2.** Show that there is $S \neq \emptyset$, such that for any A, such that $\models A, S \models A$.
- **3.** Show that if $S \subseteq \mathcal{F}$ is **inconsistent** then $\{A : S \models A\} = \mathcal{F}$.

PART 2

QUESTION 4

Consider a system **RS1** obtained from **RS** by changing the sequence Γ' into Γ in all of the rules of inference of **RS**.

- 1. Explain why the system **RS1** is sound. You can use the Soundness of the system **RS**.
- **2.**Construct**TWO**decomposition trees of

$$(\neg(\neg a \Rightarrow (a \cap \neg b)) \Rightarrow (\neg a \cap (\neg a \cup \neg b)))$$

2. If there is a tree constructed that is not a proof, construct the counter-model determined by that tree. Justify that it is a counter-model.

QUESTION 5

- 1. Define shortly, in your own words, for any A, the decomposition tree \mathbf{T}_A in **RS1** as defined in QUESTION 3. Justify why your definition is correct. Show that in **RS1** decomposition tree may not be unique.
- 2. Prove the **Completeness Theorem** for **RS1** (do not need to prove sound-ness).
- **QUESTION 6 (EXTRA 10pts)** Write a procedure $TREE_A$ that for any formula A of **RS1** it produces its UNIQUE decomposition tree and prove **COMPLETENESS** of this procedure.

QUESTION 7

- 1. Let **GL** be the Gentzen style proof system defined in chapter 11.
- 1. Prove, by constructing a proper decomposition trees that

$$\not\vdash_{\mathbf{GL}}((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$$

2 Use the above to prove, without use of the Completeness Theorem that

$$\not\models ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$$