cse547, math547 DISCRETE MATHEMATICS Lectures Content Final Infinite Series, Chapter 3 and Chapter 4

Professor Anita Wasilewska

Spring 2014

CHAPTER 2 PART 5: INFINITE SUMS (SERIES)

Here are Definitions, Basic Theorems and Examples you must know

Series
 Definitions, Theorems, Simple Examples

Must Know STATEMENTS- do not need to PROVE the Theorems
Definition
If the limit $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges to S and we write

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=S
$$

otherwise the infinite sum diverges

Definitions, Theorems, Simple Examples

Show

The infinite sum $\quad \sum_{n=1}^{\infty}(-1)^{n}$ diverges

The infinite sum $\quad \sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges to 1

Definitions, Theorems, Simple Examples

Theorem 1

If the infinite sum

$$
\sum_{n=1}^{\infty} a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0
$$

Definition 5

An infinite sum

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}, \text { for } a_{n} \geq 0
$$

is called alternating infinite sum (alternating series)

Definitions, Theorems, Simple Examples

Theorem 6 Comparing the series

Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite sum and $\left\{b_{n}\right\}$ be a sequence such that

$$
0 \leq b_{n} \leq a_{n} \quad \text { for all } n
$$

If the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges
then $\sum_{n=1}^{\infty} b_{n}$ also converges and

$$
\Sigma_{n=1}^{\infty} b_{n} \leq \sum_{n=1}^{\infty} a_{n}
$$

Use Theorem 6 to prove that the series,

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

converges

Definitions, Theorems, Simple Examples

Theorem 7 (D'Alambert's Criterium)
If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges

Theorem 8 (Cauchy's Criterium)
If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges

Definitions, Theorems, Simple Examples

Theorem 9 (Divergence Criteria)
If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$
then the series $\sum_{n=1}^{\infty} a_{n}$ diverges

Prove

The series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ does not react on D'Alambert's
Criterium (Theorem 7)

Definitions, Theorems, Simple Examples

STUDY ALL EXAMPLES from Lecture 10

CHAPTER 3 INTEGER FUNCTIONS

Here is the proofs in course material you need to know for Midterm 2 and Final

Plus the regular Homeworks Problems

PART1: Floors and Ceilings

Prove the following
Fact 3
For any $\quad x, y \in R$

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor \quad \text { when } 0 \leq\{x\}+\{y\}<1
$$

and

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+1 \quad \text { when } \quad 1 \leq\{x\}+\{y\}<2
$$

Fact 5

For any $x \in R, x \geq 0$ the following property holds

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

PART1: Floors and Ceilings

Prove the following properties of characteristic functions
F1 For any predicates $P(k), Q(k)$

$$
[P(k) \cap Q(k)]=[P(k)][Q(k)]
$$

F2 For any predicates $P(k), Q(k)$

$$
[P(k) \cup Q(k)]=[P(k)]+[Q(k)]-[P(k) \cap Q(k)]
$$

PART1: Floors and Ceilings

Prove the Combined Domains Property
Property 4

$$
\sum_{Q(k) \cup R(k)} a_{k}=\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}-\sum_{Q(k) \cap R(k)} a_{k}
$$

where, as before,
$k \in K$ and $K=K_{1} \times K_{2} \cdots \times K_{i}$ for $1 \leq i \leq n$
and the above formula represents single ($\mathrm{i}=1$) and multiple ($i>1$) sums

PART1: Floors and Ceilings

Study all 7 steps of our explanations to BOOK solution I will give you ONE to write in full on the test
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}]][k \mid n][1 \leq n \leq 1000]$
$3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]$
$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
$6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
$7 \mathrm{~W}=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$

PART2: Spectrum Partitions

Prove the following properties

$$
\begin{gathered}
\text { P1 } \sum_{k}[R(k)]=\sum_{R(k)} 1=|R(k)| \\
\text { P2 } \sum_{k, m}[P(m)][Q(k)]=\sum_{Q(k)} \sum_{P(m)} 1=\sum_{Q(k)}|P(m)|
\end{gathered}
$$

where we denote for short

$$
|P(m)|=|\{m \in N: P(m)\}|
$$

Justify that

$$
N(\alpha, n)=\sum_{k>0}\left[k<\frac{n+1}{\alpha}\right]
$$

Write a detailed proof of

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1
$$

Write a detailed proof of

PART2: Spectrum Partitions

Prove the following
Fact P2
If $|A|+|B|=|X|$ and $A \neq \emptyset, B \neq \emptyset$ and $A \cap B=\emptyset$ then the sets A, B form a finite partition of X Spectrum Fact

$$
\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset
$$

Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

PART2: Spectrum Partitions

Prove - use your favorite proof out of the two I have provided

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

PART3: Sums

Write detailed evaluation of

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor
$$

Hint: use

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{0 \leq k<n} \sum_{m \geq 0, m=\lfloor\sqrt{k}\rfloor} m
$$

Chapter 4 Material in the Lecture 12

Theorems, Proofs and Problems

JUSTIFY correctness of the following example and be ready to do similar problems upwards or downwards Represent 19151 in a system with base 12 Example

$$
\begin{gathered}
19151=1595 \cdot 12+11 \\
1595=132 \cdot 12+11 \\
132=11 \cdot 12+0 \\
a_{0}=11, \quad a_{1}=11, \quad a_{2}=0, \quad a_{3}=11
\end{gathered}
$$

So we get

$$
19151=(11,0,11,11)_{12}
$$

Theorems, Proofs and Problems

Write a proof of Step 1 or Step 2 of the Proof of the Correctness of Euclid Algorithm
You can use Lecture OR BOOK formalization and proofs
Use Euclid Algorithms to prove
When a product ac of two natural numbers is divisible by a number b that is relatively prime to a, the factor c must be divisible by b

Use Euclid Algorithms to prove the following
Fact

$$
\operatorname{gcd}(k a, k b)=k \cdot \operatorname{gcd}(a, b)
$$

Theorems, Proofs and Problems

Prove:
Any common multiple of a and b is divisible by Icm (a, b)
Prove the following

$$
\forall_{p, q_{1} q_{2} \ldots q_{n} \in P}\left(p \mid \prod_{k=1}^{n} q_{k} \Rightarrow \exists_{1 \leq i \leq n}\left(p=q_{i}\right)\right)
$$

Write down a formal formulation (in all details) of the Main Factorization Theorem and its General Form

Theorems, Proofs and Problems

Prove that the representation given by Main Factorization Theorem is unique

Explain why and show that $18=<1,2>$

Prove

$$
\begin{array}{lll}
k=\operatorname{gcd}(m, n) & \text { if and only if } & k_{p}=\min \left\{m_{p}, n_{p}\right\} \\
k=\operatorname{lcd}(m, n) & \text { if and only if } & k_{p}=\max \left\{m_{p}, n_{p}\right\}
\end{array}
$$

Let

$$
m=2^{0} \cdot 3^{3} \cdot 5^{2} \cdot 7^{0} \quad n=2^{0} \cdot 3^{1} \cdot 5^{0} \cdot 7^{3}
$$

Evaluate $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$ and $\mathrm{k}=\operatorname{lcd}(\mathrm{m}, \mathrm{n})$

Exercises

1. Use Facts 6-8 to prove

Theorem 5
For any $a, b \in Z^{+}$such that $\operatorname{Icm}(a, b)$ and $\operatorname{gcd}(a, b)$ exist

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b
$$

2. Use Theorem 5 and the BOOK version of Euclid Algorithm to express lcm(n mod m, m) when nmodm $\neq 0$ This is Ch4 Problem 2
