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CHAPTER 2
PART 5: INFINITE SUMS (SERIES)

Here are Definitions, Basic Theorems and Examples you
must know



Series
Definitions, Theorems, Simple Examples

Must Know STATEMENTS- do not need to PROVE the
Theorems
Definition
If the limit limn→∞Sn exists and is finite, i.e.

lim
n→∞

Sn = S,

then we say that the infinite sum Σ∞n=1 an converges to S
and we write

Σ∞n=1 an = lim
n→∞

Σn
k=1 ak = S,

otherwise the infinite sum diverges



Definitions, Theorems, Simple Examples

Show
The infinite sum Σ∞n=1 (−1)n diverges

The infinite sum Σ∞n=0
1

(k+1)(k+2) converges to 1



Definitions, Theorems, Simple Examples

Theorem 1
If the infinite sum

Σ∞n=1an converges, then lim
n→∞

an = 0

Definition 5
An infinite sum

Σ∞n=1(−1)n+1an, for an ≥ 0

is called alternating infinite sum (alternating series)



Definitions, Theorems, Simple Examples

Theorem 6 Comparing the series
Let Σ∞n=1an be an infinite sum and {bn} be a sequence
such that

0≤ bn ≤ an for all n

If the infinite sum Σ∞n=1an converges
then Σ∞n=1bn also converges and

Σ∞n=1bn ≤ Σ∞n=1an

Use Theorem 6 to prove that the series,

Σ∞n=1
1

(n + 1)2

converges



Definitions, Theorems, Simple Examples

Theorem 7 (D’Alambert’s Criterium)

If an ≥ 0 and lim
n→∞

an+1

an
< 1

then the series
∞

∑
n=1

an converges

Theorem 8 (Cauchy’s Criterium)
If an ≥ 0 and lim

n→∞
n√an < 1

then the series
∞

∑
n=1

an converges



Definitions, Theorems, Simple Examples

Theorem 9 (Divergence Criteria)

If an ≥ 0 and lim
n→∞

an+1

an
> 1 or limn→∞

n
√

an > 1

then the series
∞

∑
n=1

an diverges

Prove

The series
∞

∑
n=1

1
(n + 1)2 does not react on D’Alambert’s

Criterium (Theorem 7)



Definitions, Theorems, Simple Examples

STUDY ALL EXAMPLES from Lecture 10



CHAPTER 3
INTEGER FUNCTIONS

Here is the proofs in course material you need to know for
Midterm 2 and Final
Plus the regular Homeworks Problems



PART1: Floors and Ceilings

Prove the following
Fact 3
For any x ,y ∈ R

bx + yc= bxc+ byc when 0≤ {x}+{y}< 1

and

bx + yc= bxc+ byc+ 1 when 1≤ {x}+{y}< 2

Fact 5
For any x ∈ R, x ≥ 0 the following property holds⌊√

bxc
⌋

=
⌊√

x
⌋



PART1: Floors and Ceilings

Prove the following properties of characteristic functions
F1 For any predicates P(k), Q(k)

[P(k)∩Q(k)] = [P(k)][Q(k)]

F2 For any predicates P(k), Q(k)

[P(k)∪Q(k)] = [P(k)] + [Q(k)] − [P(k)∩Q(k)]



PART1: Floors and Ceilings

Prove the Combined Domains Property
Property 4

∑
Q(k)∪R(k)

ak = ∑
Q(k)

ak + ∑
R(k)

ak − ∑
Q(k)∩R(k)

ak

where, as before,
k ∈ K and K = K1×K2 · · ·×Ki for 1≤ i ≤ n
and the above formula represents single ( i =1) and
multiple (i > 1) sums



PART1: Floors and Ceilings

Study all 7 steps of our explanations to BOOK solution
I will give you ONE to write in full on the test

1 W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
2 W = ∑

k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]

3 W = ∑
k ,n,m

[
k3 ≤ n < (k + 1)3

]
[n = km] [1≤ n ≤ 1000]

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k + 1)3

]
[1≤ k < 10]

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k + 1)3

k

)]
[1≤ k < 10]

6 W = 1 + ∑
1≤k<10

(
dk2 + 3k + 3 +

1
k
e−dk2e

)
7 W = 1 + ∑

1≤k<10
(3k + 4) = 1 +

7 + 31
2

9 = 172



PART2: Spectrum Partitions

Prove the following properties

P1 ∑
k

[R(k)] = ∑
R(k)

1 =| R(k) |

P2 ∑
k ,m

[P(m)] [Q(k)] = ∑
Q(k)

∑
P(m)

1 = ∑
Q(k)
| P(m) |

where we denote for short

| P(m) | = | {m ∈ N : P(m) } |
Justify that

N(α,n) = ∑
k>0

[
k <

n + 1
α

]
Write a detailed proof of

N(α,n) =

⌈
n + 1

α

⌉
−1

Write a detailed proof of
Finite Fact

|An|+ |Bn|= n for any n ∈ N−{0}



PART2: Spectrum Partitions

Prove the following
Fact P2
If |A|+ |B|= |X | and A , ∅, B , ∅ and A∩B = ∅
then the sets A,B form a finite partition of X
Spectrum Fact

Spec(
√

2)∩Spec(2 +
√

2) = ∅

Finite Spectrum Partition Theorem
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}



PART2: Spectrum Partitions

Prove - use your favorite proof out of the two I have
provided
Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2 +

√
2) , ∅

2. Spec(
√

2)∩Spec(2 +
√

2) = ∅
3. Spec(

√
2)∪Spec(2 +

√
2) = N−{0}



PART3: Sums

Write detailed evaluation of

∑
0≤k<n

b
√

kc

Hint: use

∑
0≤k<n

b
√

kc= ∑
0≤k<n

∑
m≥0, m=b

√
kc

m



Chapter 4 Material in the Lecture 12



Theorems, Proofs and Problems

JUSTIFY correctness of the following example and be
ready to do similar problems upwards or downwards
Represent 19151 in a system with base 12
Example

19151 = 1595 ·12 + 11

1595 = 132 ·12 + 11

132 = 11 ·12 + 0

a0 = 11, a1 = 11, a2 = 0, a3 = 11

So we get
19151 = (11,0,11,11)12



Theorems, Proofs and Problems

Write a proof of Step 1 or Step 2 of the Proof of the
Correctness of Euclid Algorithm
You can use Lecture OR BOOK formalization and proofs
Use Euclid Algorithms to prove
When a product ac of two natural numbers is divisible by
a number b that is relatively prime to a, the factor c
must be divisible by b

Use Euclid Algorithms to prove the following
Fact

gcd(ka,kb) = k ·gcd(a,b)



Theorems, Proofs and Problems

Prove:
Any common multiple of a and b is divisible by lcm(a,b)
Prove the following

∀p,q1q2...qn∈P (p |
n

∏
k=1

qk ⇒ ∃1≤i≤n (p = qi ) )

Write down a formal formulation (in all details ) of the
Main Factorization Theorem and its General Form



Theorems, Proofs and Problems

Prove that the representation given by Main Factorization
Theorem is unique

Explain why and show that 18 =< 1,2 >

Prove

k = gcd(m,n) if and only if kp = min{mp,np}

k = lcd(m,n) if and only if kp = max{mp,np}

Let
m = 20 ·33 ·52 ·70 n = 20 ·31 ·50 ·73

Evaluate gcd( m, n) and k = lcd( m, n)



Exercises

1. Use Facts 6-8 to prove
Theorem 5
For any a,b ∈ Z+ such that lcm(a,b) and gcd(a, b) exist

lcm(a,b) ·gcd(a,b) = ab

2. Use Theorem 5 and the BOOK version of Euclid
Algorithm to express lcm(n mod m, m) when nmodm , 0
This is Ch4 Problem 2


