cse547/ams547 Midterm Spring 2017 (100pts)

NAME

ID:
ams/cs

There are $\mathbf{4}$ Questions, each question is 25pts
Read carefully all of them and write solutions on next pages in spaces provided
Useful Formulas and Theorems sheet is attached

QUESTION 1 Use repertoire method to evaluate a closed formula for

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k} k^{2}
$$

Part 1 Generalize the Problem to a 4 parameter recurrence and write the standard general form of closed form formula for it.

Part 2 1. Use functions: $R(n)=1, R(n)=(-1)^{n}, R(n)=(-1)^{n} n, R(n)=(-1)^{n} n^{2}$, for all $n \in N$ to evaluate all components of the closed form formula.
2. Evaluate S_{n} as a particular case of the general formula.

QUESTION 2 Evaluate the sum

$$
S_{n}=\sum_{k=0}^{n} k 5^{k}
$$

by using the following 3 methods : perturbation method, multiple sum, summation by parts Write down, in each case, which method are you using.

QUESTION 3

Part 1 Use summation by parts to evaluate $\sum_{k=0}^{n-1} \frac{H_{k}}{(k+1)(k+2)}$
Part 2 Evaluate

$$
\sum_{0 \leq k<n} k^{\underline{m}} H_{k}
$$

QUESTION 4 Prove that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0, \text { forc }>0
$$

QUESTION 1 Use repertoire method to evaluate a closed formula for

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k} k^{2}
$$

PART 1 Generalize the Problem to a 4 parameter recurrence and write the standard general form of closed form formula for it.

The recurrence form of the summation is : $S_{0}=, \quad S_{n}=$

4 parameter recurrence is :

General form of CLOSED Formula is :

PART 2 1. Use functions: $R(n)=1, R(n)=(-1)^{n}, R(n)=(-1)^{n} n, R(n)=(-1)^{n} n^{2}$, for all $n \in N$ to evaluate all components of the closed form formula.
2. Evaluate S_{n} as a particular case of the general formula.

Solution space

Solution space

QUESTION 2 Evaluate the $\operatorname{sum} S_{n}=\sum_{k=0}^{n} k 5^{k}$ by using the following 3 methods : perturbation method, multiple sum, summation by parts. Write down, in each case, which method are you using.

Solution space

QUESTION 3

Part 1 Use summation by parts to evaluate $\sum_{k=0}^{n-1} \frac{H_{k}}{(k+1)(k+2)}$

Part 2 Evaluate

$$
\sum_{0 \leq k<n} k^{\underline{m}} H_{k}
$$

QUESTION 4

Prove that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0, \text { for }>0
$$

1 Useful Formulas

$$
\begin{gathered}
x^{\underline{m}}=\overbrace{x(x-1) \ldots(x-m+1)}^{\mathrm{m} \text { factors }}, \quad \text { integer } m \geq 0 \\
x^{\bar{m}}=\overbrace{x(x+1) \ldots(x+m-1)}^{\mathrm{m} \text { factors }}, \quad \text { integer } m \geq 0 \\
x^{\underline{-m}}=\frac{1}{(x+1)(x+2) \ldots(x+m)}, \quad \text { for } m>0 \\
x^{\underline{m+n}}=x^{\underline{\underline{m}}(x-m)^{n}, \quad \quad \text { integers } m \text { and } n} \\
\mathrm{D} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \quad \Delta f(x)=f(x+1)-f(x) \\
\\
\mathrm{D}\left(x^{m}\right)=m x^{m-1}, \quad \Delta\left(x^{\underline{m}}\right)=m x^{\frac{m-1}{}}
\end{gathered}
$$

$$
\text { We define a shift operator: } \quad E v(x)=v(x+1)
$$

$$
\text { We proved } \Delta(u v)=u \Delta v+E v \Delta u
$$

Summation by parts

$$
\sum u \delta v=u v-\sum E v \delta u
$$

USEFUL THEOREMS

THEOREM 1

If the infinite sum

$$
\Sigma_{n=1}^{\infty} a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0
$$

THEOREM 2 (D'Alambert's Criterium)

Any series with all its terms being positive real numbers, i.e.

$$
\Sigma_{n=1}^{\infty} a_{n}, \text { for } a_{n} \geq 0, a_{n} \in R
$$

converges if the following condition holds:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}<1
$$

