cse547/ams547 Practice Final Problems Spring 2017

QUESTION 1

Part1 Prove that

$$
\sum_{k=2}^{n} \frac{(-1)^{k}}{2 k-1}=-\sum_{k=1}^{n-1} \frac{(-1)^{k}}{2 k+1}
$$

Part 2 Use partial fractions and Part 1 result (must use it!) to evaluate the sum

$$
S=\sum_{k=1}^{n} \frac{(-1)^{k} k}{\left(4 k^{2}-1\right)}
$$

QUESTION 2 Give a direct proof from proper properties (use the list) of the following.
For all $x \in R, x>0$

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

QUESTION 3

1. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ does not react on D'Alambert's Criterium
2. Prove that the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges.

QUESTION 4 Solve the recurrence: for $n>0$)

$$
a_{0}=1, \quad a_{n}=a_{n-1}+\left\lfloor\sqrt{a_{n-1}}\right\rfloor, \quad \text { for } n>0
$$

Hint assume first that $a_{n}=m^{2}$ for certain $m \in Z$ and find formulas for $a_{n+2 k+1}$ and $a_{n+2 k+2}$.

QUESTION 5 Prove the following.

1. Let $m, n, k \in Z+-\{0\}$.

IF $k \mid m n$ and $k \perp m$ (it means k, m are relatively prime), THEN $k \mid n$.
2. When a number is relatively prime to each of several numbers, it is relatively prime to their product.

QUESTION 6

Write a proof of the following:
$\operatorname{spec}(\sqrt{2})$ and $\operatorname{spec}(2+\sqrt{2})$ are disjoint sets.

QUESTION 7

Find the sum of all multiples of x in the closed interval $[\alpha \ldots \beta]$, when $x>0$.
Justify methods used in each step of your calculation.

QUESTION 8

Denote by $N(\alpha, n)$ the number of elements in the $S \operatorname{pec}(\alpha)$ that are $\leq n$, i.e.

$$
N(\alpha, n)=|\{m \in S \operatorname{pec}(\alpha): \quad m \leq n\}| .
$$

Write a detailed proof of

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1 .
$$

No credit without each step explanations.
QUESTION 9 Show that the nth element of the sequence:

$1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \ldots .$.

is $\left\lfloor\sqrt{2 n}+\frac{1}{2}\right\rfloor$.
Hint: Let $\mathrm{P}(\mathrm{x})$ represent the position of the last occurrence of x in the sequence.
Use the fact that $P(x)=\frac{x(x+1)}{2}$.
Let the nth element be m. You need to find m.

QUESTION 10 Prove that
$\binom{x}{m}\binom{m}{k}=\binom{x}{k}\binom{x-k}{m-k}$
holds for all $m, k \in Z$ and $x \in R$. Consider all cases and Polynomial argument. No credit without all cases and pol. argument!

QUESTION 11 Prove the Hexagon property $(n, k \in N)$

$$
\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n+1}{k+1}\binom{n}{k-1}
$$

