cse547, math547 DISCRETE MATHEMATICS Short Review for Final

Professor Anita Wasilewska

Spring 2017

CHAPTER 2 PART 5: INFINITE SUMS (SERIES)

Infinite Series D

Must Know STATEMENTS- do not need to PROVE the Theorems

Definition

If the limit $\lim_{n\to\infty} S_n$ exists and is finite, i.e.

$$\lim_{n\to\infty} S_n = S,$$

then we say that the infinite sum $\sum_{n=1}^{\infty} a_n$ converges to S and we write

$$\sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} \sum_{k=1}^{n} a_k = S,$$

otherwise the infinite sum diverges

Show

The infinite sum $\sum_{n=1}^{\infty} (-1)^n$ diverges

The infinite sum $\sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges to 1

Example

The infinite sum $\sum_{n=0}^{\infty} (-1)^n$ diverges

Proof

We use the Perturbation Method

$$S_n + a_{n+1} = a_0 + \sum_{k=0}^n a_{k+1}$$

to eveluate

$$S_n = \sum_{k=0}^n (-1)^k = \frac{1 + (-1)^n}{2} = \frac{1}{2} + \frac{(-1)^n}{2}$$

and we prove that

$$\lim_{n\to\infty} \left(\frac{1}{2} + \frac{(-1)^n}{2}\right)$$
 does not exist

Example

The **infinite sum**

$$\sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$$
 converges to 1; i.e.

$$\sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)} = 1$$

Proof: first we evaluate $S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)}$ as follows

$$S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)} = \sum_{k=0}^n k^{-2} = \sum_{k=0}^{n+1} k^{-2} \delta k$$
$$= -\frac{1}{k+1} \Big|_0^{n+1} = -\frac{1}{n+2} + 1$$

and

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} -\frac{1}{n+2} + 1 = 1$$

Theorem

Theorem

If the infinite sum $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$ Observe that this is equivalent to

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges

The **reverse** statement

If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges is not always true. The **infinite harmonic sum** $H = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges to ∞

even if $\lim_{n\to\infty} \frac{1}{n} = 0$

Theorem

If
$$a_n \ge 0$$
 and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$

then the series $\sum_{n=1}^{\infty} a_n$ converges

If
$$a_n \ge 0$$
 and $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$

then the series
$$\sum_{n=1}^{\infty} a_n$$
 converges

Theorems

Theorem (Divergence Criteria)

If
$$a_n \ge 0$$
 and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$ or $\lim_{n \to \infty} \sqrt[n]{a_n} > 1$

then the series
$$\sum_{n=1}^{\infty} a_n$$
 diverges

Convergence/Divergence

Remark

It can happen that for a certain infinite sum $\sum_{n=0}^{\infty} a_n$

$$\sum_{n=1}^{\infty} a_n$$

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1=\lim_{n\to\infty}\sqrt[n]{a_n}$$

In this case our Divergence Criteria do not decide whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react on the criteria

There are other, stronger criteria for convergence and divergence

Example

The Harmonic series $H = \sum_{n=1}^{\infty} \frac{1}{n}$ does not react on

D'Alambert's Criterium

Proof: Consider

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})} = 1$$

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ we say, that the **Harmonic series**

$$H = \sum_{n=1}^{\infty} \frac{1}{n}$$

does not react on D'Alambert's criterium

Example

The series
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$
 does not react on

D'Alambert's Criterium (

Proof:

Consider, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2}{(n+2)^2}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 4n + 1} = \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{1 + \frac{4}{n} + \frac{4}{n^2}} = 1$$

Since, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ we say, that the series

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

does not react on D'Alambert's criterium

Example 1

$$\sum_{n=1}^{\infty} \frac{c^n}{n!}$$
 converges for $c > 0$

HINT: Use D' Alembert

Proof:

$$\frac{a_{n+1}}{a_n} = \frac{c^{n+1}}{c^n} \frac{n!}{(n+1)!}$$
$$= \frac{c}{n+1}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{c}{n+1}$$
$$= 0 < 1$$

By D'Alembert's Criterium

$$\sum_{n=1}^{\infty} \frac{c^n}{n!}$$
 converges

Example

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 converges

Proof:

$$a_{n} = \frac{n!}{n^{n}}$$

$$a_{n+1} = \frac{n!(n+1)}{(n+1)^{n+1}}$$

$$\frac{a_{n}+1}{a_{n}} = \frac{n!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}$$

$$= (n+1) \cdot \frac{n^{n}}{(n+1)^{n+1}}$$

$$\frac{(n+1)^{n+1}}{a_n} = (n+1)^n (n+1)$$

$$\frac{a_n+1}{a_n} = \frac{(n+1) n^n}{(n+1)^n (n+1)}$$

$$= (\frac{n}{n+1})^n$$

$$= \frac{1}{(1+\frac{1}{n})^n}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$
$$= \frac{1}{e} < 1$$

By D'Alembert's Criterium the series,

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 converges

Exercise

Exercise

Prove that

$$\lim_{n\to\infty}\frac{c^n}{n!} = 0 \qquad \qquad \text{for } c>0$$

Solution:

We have proved in **Example**

$$\sum_{n=1}^{\infty} \frac{c^n}{n!}$$
 converges for $c > 0$

Exercise

Theorem says:

IF
$$\sum_{n=1}^{\infty} a_n$$
 converges THEN $\lim_{n\to\infty} a_n = 0$

Hence by Example and Theorem we have proved that

$$\lim_{n\to\infty}\frac{c^n}{n!} = 0 \text{ for } c>0$$

Observe that we have also proved that n! grows faster than c^n

CHAPTER 2: Some Problems

JESTION

Part1 Prove that

$$\sum_{k=2}^{n} \frac{(-1)^k}{2k-1} = -\sum_{k=1}^{n-1} \frac{(-1)^k}{2k+1}$$

Part 2 Use partial fractions and Part 1 result (must use it!) to evaluate the sum

$$S = \sum_{k=1}^{n} \frac{(-1)^{k} k}{(4k^{2} - 1)}$$

ESTION Show that the nth element of the sequence:

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, \dots$$

is
$$\lfloor \sqrt{2n} + \frac{1}{2} \rfloor$$
.

Hint: Let P(x) represent the position of the last occurrence of x in the sequence.

Use the fact that
$$P(x) = \frac{x(x+1)}{2}$$
.

Let the nth element be m. You need to find m.

CHAPTER 3 INTEGER FUNCTIONS

Here is the **proofs** in course material you need to know for **Final**

Plus the regular Homeworks Problems

PART1: Floors and Ceilings

Prove the following

Fact 3

For any $x, y \in R$

$$\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$$
 when $0 \le \{x\} + \{y\} < 1$

and

$$\lfloor x+y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$$
 when $1 \le \{x\} + \{y\} < 2$

Fact 5

For any $x \in \mathbb{R}$, $x \ge 0$ the following property holds

$$\left| \sqrt{\lfloor x \rfloor} \right| = \lfloor \sqrt{x} \rfloor$$

PART1: Floors and Ceilings

Prove the Combined Domains Property **Property 4**

$$\sum_{Q(k)\cup R(k)} a_k = \sum_{Q(k)} a_k + \sum_{R(k)} a_k - \sum_{Q(k)\cap R(k)} a_k$$

where, as before,

 $k \in K$ and $K = K_1 \times K_2 \cdots \times K_i$ for $1 \le i \le n$ and the above formula represents single (i = 1) and multiple (i > 1) sums

Spectrum

Definition

For any $\alpha \in R$ we define a SPECTRUM of α as

$$Spec(\alpha) = \{ \lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor \cdots \}$$

$$Spec(\sqrt{2}) = \{1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, \dots\}$$

$$Spec(2+\sqrt{2}) == \{3,6,10,13,17,20,\cdots\}$$

Spectrum Partition Theorem

Spectrum Partition Theorem

- **1.** $Spec(\sqrt{2}) \neq \emptyset$ and $Spec(2 + \sqrt{2}) \neq \emptyset$
- **2.** $Spec(\sqrt{2}) \cap Spec(2+\sqrt{2}) = \emptyset$
- 3. $Spec(\sqrt{2}) \cup Spec(2+\sqrt{2}) = N \{0\}$

Finite Partition Theorem

First, we define certain **finite subsets** A_n , B_n of $Spec(\sqrt{2})$ and $Spec(2+\sqrt{2})$, respectively **Definition**

$$A_n = \{ m \in Spec(\sqrt{2}) : m \le n \}$$
 $B_n = \{ m \in Spec(2 + \sqrt{2}) \mid m \le n \}$

Remember

 A_n and B_n are subsets of $\{1,2,\ldots n\}$ for $n \in \mathbb{N} - \{0\}$

Finite Partition Theorem

Given sets

$$A_n = \{ m \in Spec(\sqrt{2}) : m \le n \}$$

$$B_n = \{ m \in Spec(2 + \sqrt{2}) : m \le n \}$$

Finite Spectrum Partition Theorem

- **1.** $A_n \neq \emptyset$ and $B_n \neq \emptyset$
- **2.** $A_n \cap B_n = \emptyset$
- **3.** $A_n \cup B_n = \{1, 2, \dots n\}$

Counting Elements

Before trying to prove the **Finite Fact** we first look for a closed formula to count the number of elements in subsets of a finite size of any spectrum

Given a spectrum $Spec(\alpha)$

Denote by $N(\alpha, n)$ the number of elements in the $Spec(\alpha)$ that are $\leq n$, i.e.

$$N(\alpha, n) = |\{m \in Spec(\alpha) : m \le n\}|$$

Spectrum Partitions

1. Justify that

$$N(\alpha, n) = \sum_{k>0} \left[k < \frac{n+1}{\alpha} \right]$$

2. Write a detailed proof of

$$N(\alpha, n) = \left\lceil \frac{n+1}{\alpha} \right\rceil - 1$$

3. Write a detailed proof of Finite Fact

$$|A_n| + |B_n| = n$$
 for any $n \in N - \{0\}$

Spectrum Partitions

Finite Spectrum Partition Theorem

- **1.** $A_n \neq \emptyset$ and $B_n \neq \emptyset$
- **2.** $A_n \cap B_n = \emptyset$
- **3.** $A_n \cup B_n = \{1, 2, \dots n\}$

Spectrum Partitions

Prove - use your favorite proof out of the two I have provided

Spectrum Partition Theorem

1.
$$Spec(\sqrt{2}) \neq \emptyset$$
 and $Spec(2 + \sqrt{2}) \neq \emptyset$

2.
$$Spec(\sqrt{2}) \cap Spec(2+\sqrt{2}) = \emptyset$$

3.
$$Spec(\sqrt{2}) \cup Spec(2+\sqrt{2}) = N - \{0\}$$

Generalization

General Spectrum Partition Theorem

Let $\alpha > 0$, $\beta > 0$, α , $\beta \in R - Q$ be such that

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1$$

Then the sets

$$A = \{ \lfloor n\alpha \rfloor : n \in N - \{0\} \} = Spec(\alpha)$$

$$B = \{ \lfloor n\beta \rfloor : n \in N - \{0\} \} = Spec(\beta)$$

form a **partition** of $Z^+ = N - \{0\}$, i.e.

- **1.** $A \neq \emptyset$ and $B \neq \emptyset$
- **2.** $A \cap B = \emptyset$
- 3. $A \cup B = Z^+$

PART3: Sums

Write detailed evaluation of

$$\sum_{0 \le k < n} \lfloor \sqrt{k} \rfloor$$

Hint: use

$$\sum_{0 \le k < n} \lfloor \sqrt{k} \rfloor = \sum_{0 \le k < n} \sum_{m \ge 0, m = \lfloor \sqrt{k} \rfloor} m$$

Chapter 4 Material in the Lecture 12

Theorems, Proofs and Problems

JUSTIFY correctness of the following example and be ready to do similar problems upwards or downwards

Represent 19151 in a system with base 12

Example

$$19151 = 1595 \cdot 12 + 11$$

$$1595 = 132 \cdot 12 + 11$$

$$132 = 11 \cdot 12 + 0$$

$$a_0 = 11, \quad a_1 = 11, \quad a_2 = 0, \quad a_3 = 11$$

So we get

$$19151 = (11, 0, 11, 11)_{12}$$

Write a proof of Step 1 or Step 2 of the Proof of the Correctness of Euclid Algorithm

You can use Lecture OR BOOK formalization and proofs

Use Euclid Algorithms to prove

When a product ac of two natural numbers is divisible by a number b that is **relatively prime** to a, the factor c must be divisible by b

Use Euclid Algorithms to prove the following Fact

$$gcd(ka, kb) = k \cdot gcd(a, b)$$

Prove:

Any common multiple of a and b is **divisible** by lcm(a,b)**Prove** the following

$$\forall_{p,q_1q_2...q_n\in P} (p \mid \prod_{k=1}^n q_k \Rightarrow \exists_{1\leq i\leq n} (p=q_i))$$

Write down a formal formulation (in all details) of the Main Factorization Theorem and its General Form

Prove that the representation given by Main Factorization Theorem is unique

Explain why and show that 18 = <1,2>

Prove

$$k = gcd(m, n)$$
 if and only if $k_p = min\{m_p, n_p\}$

$$k = lcd(m, n)$$
 if and only if $k_p = max\{m_p, n_p\}$

Let

$$m = 2^0 \cdot 3^3 \cdot 5^2 \cdot 7^0$$
 $n = 2^0 \cdot 3^1 \cdot 5^0 \cdot 7^3$

Evaluate gcd(m, n) and k = lcd(m, n)

Exercises

Prove

Theorem

For any $a, b \in Z^+$ such that lcm(a,b) and gcd(a, b) exist

$$lcm(a,b) \cdot gcd(a,b) = ab$$

Study Homework PROBLEMS

QUESTION: Prove that

$$\binom{x}{m}\binom{m}{k} = \binom{x}{k}\binom{x-k}{m-k}$$

holds for all $m, k \in \mathbb{Z}$ and $x \in \mathbb{R}$.

Consider all cases and Polynomial argument

QUESTION Prove the Hexagon property $(n, k \in N)$

$$\begin{pmatrix} n-1 \\ k-1 \end{pmatrix} \begin{pmatrix} n \\ k+1 \end{pmatrix} \begin{pmatrix} n+1 \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k \end{pmatrix} \begin{pmatrix} n+1 \\ k+1 \end{pmatrix} \begin{pmatrix} n \\ k-1 \end{pmatrix}$$

QUESTION Evaluate

$$\sum_{k} \binom{n}{k}^{3} (-1)^{k}$$

Hint use the formula

$$\sum_{k} {a+b \choose a+k} {b+c \choose b+k} {c+a \choose c+k} (-1)^{k} = \frac{(a+b+c)!}{a!b!c!}$$