cse547, math547 DISCRETE MATHEMATICS Short Review for Final

Professor Anita Wasilewska

Spring 2017

CHAPTER 2
PART 5: INFINITE SUMS (SERIES)

Infinite Series

D

Must Know STATEMENTS- do not need to PROVE the Theorems
Definition
If the limit $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges to S and we write

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=S
$$

otherwise the infinite sum diverges

Example

Show

The infinite sum $\quad \sum_{n=1}^{\infty}(-1)^{n}$ diverges

The infinite sum $\quad \sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges to 1

Example

Example

The infinite sum $\quad \sum_{n=0}^{\infty}(-1)^{n}$ diverges

Proof

We use the Perturbation Method

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

to eveluate

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k}=\frac{1+(-1)^{n}}{2}=\frac{1}{2}+\frac{(-1)^{n}}{2}
$$

and we prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{(-1)^{n}}{2}\right) \quad \text { does not exist }
$$

Example

Example

The infinite sum $\quad \sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges to 1 ; i.e.

$$
\Sigma_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}=1
$$

Proof: first we evaluate $S_{n}=\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)}$ as follows

$$
\begin{gathered}
S_{n}=\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)}=\sum_{k=0}^{n} k \frac{-2}{}=\sum_{k=0}^{n+1} k \frac{-2}{} \delta k \\
=-\left.\frac{1}{k+1}\right|_{0} ^{n+1}=-\frac{1}{n+2}+1
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}-\frac{1}{n+2}+1=1
$$

Theorem

Theorem

If the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$
Observe that this is equivalent to
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ diverges
The reverse statement
If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges is not always true The infinite harmonic sum $H=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to ∞ even if $\lim _{n \rightarrow \infty} \frac{1}{n}=0$

Theorem

Theorem (D'Alambert's Criterium)
If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges

Theorem (Cauchy's Criterium)
If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges

Theorems

Theorem (Divergence Criteria)

If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$
then the series $\sum_{n=1}^{\infty} a_{n}$ diverges

Convergence/Divergence

Remark
It can happen that for a certain infinite sum $\sum_{n=1}^{\infty} a_{n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

In this case our Divergence Criteria do not decide whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react on the criteria

There are other, stronger criteria for convergence and divergence

Examples

Example

The Harmonic series $H=\sum_{n=1}^{\infty} \frac{1}{n}$ does not react on
D'Alambert's Criterium
Proof: Consider
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=1$
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$ we say, that the Harmonic series

$$
H=\sum_{n=1}^{\infty} \frac{1}{n}
$$

does not react on D'Alambert's criterium

Examples

Example

The series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ does not react on
D'Alambert's Criterium (

Proof:

Consider, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+2)^{2}} \\
=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+4 n+1}=\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{1+\frac{4}{n}+\frac{4}{n^{2}}}=1
\end{array}
$$

Since, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$ we say, that the series

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

does not react on D'Alambert's criterium

Example 1

Example 1

$\sum_{n=1}^{\infty} \frac{c^{n}}{n!}$ converges for $c>0$

> HINT : Use D'Alembert

Proof:

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{c^{n+1}}{c^{n}} \frac{n!}{(n+1)!} \\
& =\frac{c}{n+1}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{c}{n+1} \\
& =0<1
\end{aligned}
$$

By D'Alembert's Criterium

$$
\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \quad \text { converges }
$$

Example

Example

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \text { converges }
$$

Proof:

$$
\begin{aligned}
a_{n} & =\frac{n!}{n^{n}} \\
a_{n+1} & =\frac{n!(n+1)}{(n+1)^{n+1}} \\
\frac{a_{n}+1}{a_{n}} & =\frac{n!n^{(n+1)}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} \\
& =(n+1) \cdot \frac{n^{n}}{(n+1)^{n+1}}
\end{aligned}
$$

Example

$$
\begin{aligned}
(n+1)^{n+1} & =(n+1)^{n}(n+1) \\
\frac{a_{n}+1}{a_{n}} & =\frac{(n+1) n^{n}}{(n+1)^{n}(n+1)} \\
& =\left(\frac{n}{n+1}\right)^{n} \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \\
& =\frac{1}{e}<1
\end{aligned}
$$

By D'Alembert's Criterium the series,

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}}
$$

converges

Exercise

Exercise

Prove that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0 \quad \text { for } c>0
$$

Solution:

We have proved in Example

$$
\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \text { converges for } c>0
$$

Exercise

Theorem says:

$$
\text { IF } \sum_{n=1}^{\infty} a_{n} \text { converges THEN } \lim _{n \rightarrow \infty} a_{n}=0
$$

Hence by Example and Theorem we have proved that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0 \text { for } c>0
$$

Observe that we have also proved that n ! grows faster than c^{n}

CHAPTER 2: Some Problems

JESTION

Part1 Prove that

$$
\sum_{k=2}^{n} \frac{(-1)^{k}}{2 k-1}=-\sum_{k=1}^{n-1} \frac{(-1)^{k}}{2 k+1}
$$

Part 2 Use partial fractions and Part 1 result (must use it!) to evaluate the sum

$$
S=\sum_{k=1}^{n} \frac{(-1)^{k} k}{\left(4 k^{2}-1\right)}
$$

ESTION Show that the nth element of the sequence:

$$
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \ldots \ldots
$$

is $\left\lfloor\sqrt{2 n}+\frac{1}{2}\right\rfloor$.
Hint: Let $P(x)$ represent the position of the last occurrence of x in the sequence.
Use the fact that $P(x)=\frac{x(x+1)}{2}$.
Let the nth element be m. You need to find m.

CHAPTER 3 INTEGER FUNCTIONS

Here is the proofs in course material you need to know for Final

Plus the regular Homeworks Problems

PART1: Floors and Ceilings

Prove the following

Fact 3

For any $\quad x, y \in R$

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor \quad \text { when } \quad 0 \leq\{x\}+\{y\}<1
$$

and

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+1 \quad \text { when } \quad 1 \leq\{x\}+\{y\}<2
$$

Fact 5

For any $x \in R, x \geq 0$ the following property holds

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

PART1: Floors and Ceilings

Prove the Combined Domains Property
Property 4

$$
\sum_{Q(k) \cup R(k)} a_{k}=\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}-\sum_{Q(k) \cap R(k)} a_{k}
$$

where, as before,
$k \in K$ and $K=K_{1} \times K_{2} \cdots \times K_{i}$ for $1 \leq i \leq n$
and the above formula represents single ($\mathrm{i}=1$) and multiple ($i>1$) sums

Spectrum

Definition

For any $\alpha \in R$ we define a SPECTRUM of α as

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor \cdots\}
$$

$$
\operatorname{Spec}(\sqrt{2})=\{1,2,4,5,7,8,9,11,12,14,15,16, \cdots\}
$$

$$
\operatorname{Spec}(2+\sqrt{2})==\{3,6,10,13,17,20, \cdots\}
$$

Spectrum Partition Theorem

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

Finite Partition Theorem

First, we define certain finite subsets A_{n}, B_{n} of $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$, respectively
Definition

$$
\begin{aligned}
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): \quad m \leq n\} \\
& B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}) \quad m \leq n\}
\end{aligned}
$$

Remember

A_{n} and B_{n} are subsets of $\{1,2, \ldots n\}$ for $n \in N-\{0\}$

Finite Partition Theorem

Given sets

$$
\begin{aligned}
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\} \\
& B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): m \leq n\}
\end{aligned}
$$

Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

Counting Elements

Before trying to prove the Finite Fact we first look for a closed formula to count the number of elements in subsets of a finite size of any spectrum
Given a spectrum $\operatorname{Spec}(\alpha)$
Denote by $N(\alpha, n)$ the number of elements in the $\operatorname{Spec}(\alpha)$ that are $\leq n$, i.e.

$$
N(\alpha, n)=|\{m \in \operatorname{Spec}(\alpha): \quad m \leq n\}|
$$

Spectrum Partitions

1. Justify that

$$
N(\alpha, n)=\sum_{k>0}\left[k<\frac{n+1}{\alpha}\right]
$$

2. Write a detailed proof of

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1
$$

3. Write a detailed proof of Finite Fact

$$
\left|A_{n}\right|+\left|B_{n}\right|=n \quad \text { for any } n \in N-\{0\}
$$

Spectrum Partitions

Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

Spectrum Partitions

Prove - use your favorite proof out of the two I have provided

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

Generalization

General Spectrum Partition Theorem

Let $\alpha>0, \beta>0, \alpha, \beta \in R-Q$ be such that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

Then the sets

$$
\begin{array}{ll}
A=\{\lfloor n \alpha\rfloor: & n \in N-\{0\}\}=\operatorname{Spec}(\alpha) \\
B=\{\lfloor n \beta\rfloor: & n \in N-\{0\}\}=\operatorname{Spec}(\beta)
\end{array}
$$

form a partition of $Z^{+}=N-\{0\}$, i.e.

1. $A \neq \emptyset$ and $B \neq \emptyset$
2. $A \cap B=\emptyset$
3. $A \cup B=Z^{+}$

PART3: Sums

Write detailed evaluation of

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor
$$

Hint: use

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{0 \leq k<n} \sum_{m \geq 0, m=\lfloor\sqrt{k}\rfloor} m
$$

Chapter 4 Material in the Lecture 12

Theorems, Proofs and Problems

JUSTIFY correctness of the following example and be ready to do similar problems upwards or downwards Represent 19151 in a system with base 12 Example

$$
\begin{gathered}
19151=1595 \cdot 12+11 \\
1595=132 \cdot 12+11 \\
132=11 \cdot 12+0 \\
a_{0}=11, \quad a_{1}=11, \quad a_{2}=0, \quad a_{3}=11
\end{gathered}
$$

So we get

$$
19151=(11,0,11,11)_{12}
$$

Chapter 4

Write a proof of Step 1 or Step 2 of the Proof of the Correctness of Euclid Algorithm
You can use Lecture OR BOOK formalization and proofs
Use Euclid Algorithms to prove
When a product ac of two natural numbers is divisible by a number b that is relatively prime to a, the factor c must be divisible by b

Use Euclid Algorithms to prove the following
Fact

$$
\operatorname{gcd}(k a, k b)=k \cdot \operatorname{gcd}(a, b)
$$

Chapter 4

Prove:

Any common multiple of a and b is divisible by Icm(a,b)
Prove the following

$$
\forall_{p, q_{1} q_{2} \ldots q_{n} \in P}\left(p \mid \prod_{k=1}^{n} q_{k} \Rightarrow \exists_{1 \leq i \leq n}\left(p=q_{i}\right)\right)
$$

Write down a formal formulation (in all details) of the Main Factorization Theorem and its General Form

Chapter 4

Prove that the representation given by Main Factorization Theorem is unique

Explain why and show that $18=<1,2>$

Prove

$$
\begin{array}{lll}
k=\operatorname{gcd}(m, n) & \text { if and only if } & k_{p}=\min \left\{m_{p}, n_{p}\right\} \\
k=\operatorname{lcd}(m, n) & \text { if and only if } & k_{p}=\max \left\{m_{p}, n_{p}\right\}
\end{array}
$$

Let

$$
m=2^{0} \cdot 3^{3} \cdot 5^{2} \cdot 7^{0} \quad n=2^{0} \cdot 3^{1} \cdot 5^{0} \cdot 7^{3}
$$

Evaluate $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$ and $\mathrm{k}=\operatorname{lcd}(\mathrm{m}, \mathrm{n})$

Exercises

Prove

Theorem
For any $a, b \in Z^{+}$such that $\operatorname{Icm}(a, b)$ and $\operatorname{gcd}(a, b)$ exist

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b
$$

Chapter 5

Study Homework PROBLEMS

QUESTION: Prove that

$$
\binom{x}{m}\binom{m}{k}=\binom{x}{k}\binom{x-k}{m-k}
$$

holds for all $m, k \in Z$ and $x \in R$.
Consider all cases and Polynomial argument QUESTION Prove the Hexagon property $(n, k \in N)$
$\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n+1}{k+1}\left(\begin{array}{c}n \\ k-1\end{array}\right.$

Chapter 5

QUESTION Evaluate

$$
\sum_{k}\binom{n}{k}^{3}(-1)^{k}
$$

Hint use the formula

$$
\sum_{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}(-1)^{k}=\frac{(a+b+c)!}{a!b!c!}
$$

