cse547 Midterm 1 SOLUTIONS Fall 2023 (60pts + 10extra)

QUESTION 1 (10pts)

Given a Recursive Formula RF:

$$f(1) = \alpha$$
; $f(2n + j) = 2f(n) + \beta_j$, where $\beta_j \in \mathbb{Z}$, $j = 0, 1$, $n \ge 1$

Given $k = (b_m, b_{m-1}, ...b_1, b_0)_2$. We want to evaluate: $f(k) = f((b_m, b_{m-1}, ...b_1, b_0)_2)$

1. (5pts) **Prove** that dealing with "normal" **binary representation** we do not need to consider cases of $\mathbf{k} \in \mathbf{odd}$ or $\mathbf{k} \in \mathbf{even}$ when using the recursive formula **RF**. Consider cases: $k = 2n = (b_m, b_{m-1}, ...b_1, b_0)_2$ and $k = 2n + 1 = (b_m, b_{m-1}, ...b_1, b_0)_2$ and evaluate n in both cases.

Solution

The binary representation of k=2n is given as:

$$2n = (b_m, b_{m-1}, ...b_1, b_0)_2$$

$$2n = 2^m b_m + 2^{m-1} b_{m-1} + \dots + 2b_1 + b_0$$

We get $b_m = 1$ and $b_0 = 0$

Hence,

$$n = 2^{m-1}b_m + \dots + b_1$$

$$n = (b_m, b_{m-1}, ...b_1)_2$$

The binary representation of k=2n+1 is given as:

$$2n + 1 = (b_m, b_{m-1}, ...b_1, b_0)_2$$

$$2n + 1 = 2^m b_m + 2^{m-1} b_{m-1} + \dots + 2b_1 + b_0$$

$$b_0 = 1, b_m = 1$$

Hence,

$$n = 2^{m-1}b_m + ... + b_1$$

$$n = (b_m, b_{m-1}, ...b_1)_2$$

2. (5pts)

We **define** a **relaxed binary** representation as $2^{\mathbf{m}}\alpha + 2^{\mathbf{m}-1}\beta_{\mathbf{b}_{\mathbf{m}-1}} + ... + \beta_{\mathbf{b}_0} = (\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, ... \beta_{\mathbf{b}_0})_2$, where β_{b_k} are defined as follows

$$\beta_{b_j} = \begin{cases} \beta_0 & b_j = 0 \\ \beta_1 & b_j = 1 \end{cases} \qquad j = 0, ..., m - 1$$

The closed formula **CF** for **RF** is $f((b_m, b_{m-1}, ...b_1, b_0)_2) = (\alpha, \beta_{b_{m-1}}, ...\beta_{b_0})_2$.

Evaluate f(19) for original Josephus, i.e. for $\alpha = 1$, $\beta_0 = -1$, $\beta_1 = 1$

Solution

$$19 = 16 + 2 + 1 = 2^4 + 2^1 + 2^0 = (10011)_2$$

$$f(19) = f((10011)_2) = (1 - 1 - 111)_2 = 7$$

QUESTION 2 (10pts)

Any recurrence of the type $a_nT_n = b_nT_{n-1} + c_n$ for $n \ge 1$ and T_0 given by an initial condition has a **CF** formula

$$T_n = \frac{1}{a_n s_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k)$$

where the summation factor s_k is given by $s_n = s_1 \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 b_4 \dots b_n}$, and s_1 is a constant

Use the CF formula and the summation factor to solve the recurrence

$$T_0 = 5$$

$$2T_n = nT_{n-1} + 3n!$$
 for $n > 0$

Solution

We use $s_n = s_1 \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 b_4 \dots b_n}$ for $a_n = 2$ and $b_n = n$ and get $s_n = s_1 \frac{a_{n-1} \dots a_1}{b_n \dots b_2} = \frac{2 \cdot 2 \dots 2 \cdot 2}{n(n-1) \dots 2 \cdot 1} = \frac{2^{n-1}}{n!}$ and $s_1 = 1$

We have that $T_0 = 5$, $c_n = 3$ n!, $b_n = n$, and we can substitute in the closed formula for T_n

$$T_n = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k) = \frac{n!}{2^n} (5 + 3 \sum_{k=1}^n 2^{k-1})$$

$$T_n = \frac{n!}{2^n} (5 + 3 \sum_{k=1}^n 2^{k-1})$$

$$T_n = \frac{n!}{2n} (5 + 3 \sum_{1 \le k \le n} 2^{k-1})$$

$$T_n = \frac{n!}{2^n} (5 + 3 \sum_{0 \le k-1 \le n-1} 2^{k-1})$$

$$T_n = \frac{n!}{2^n} (5 + 3 \sum_{r=0}^{n-1} 2^r)$$
, where we set $r = k - 1$

We know that that $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$, for $x \neq 1$, so in our case

$$T_n = \frac{n!}{2^n} (5 + 3 \sum_{r=0}^{n-1} 2^r)$$

$$= \frac{n!}{2^n} (5 + 3 \frac{2^{(n-1)+1}-1}{2-1})$$

$$= \frac{n!}{2^n}(2+3\cdot 2^n)$$

$$= n! (2^{(1-n)} + 3)$$

QUESTION 3 (15pts)

Use the Perturbation Method to evaluate a closed formula for the following (assuming that $n \ge 0$).

$$S_n = \sum_{k=0}^n (-1)^{n-k}$$

Hint Split the S_n first on the first term, then on the last term, and combine the results

Solution

Split off the first term

$$S_{n+1} = \sum_{k=0}^{n+1} (-1)^{n+1-k}$$

$$= (-1)^{n+1-0} + \sum_{k=1}^{n+1} (-1)^{n+1-k}$$

$$= (-1)^{n+1} + \sum_{k+1=1}^{n+1} (-1)^{n+1-(k+1)}$$

$$= (-1)^{n+1} + \sum_{k=0}^{n} (-1)^{n-k}$$

$$= (-1)^{n+1} + S_n$$

Split off the last term

$$S_{n+1} = \sum_{k=0}^{n+1} (-1)^{n+1-k}$$

$$= \sum_{k=0}^{n} (-1)^{n+1-k} + (-1)^{n+1-(n+1)}$$

$$= \sum_{k=0}^{n} (-1)^{n+1-k} + 1 = \sum_{k=0}^{n} (-1)^{n-k} (-1)^{1} + 1$$

$$= -\sum_{k=0}^{n} (-1)^{n-k} + 1$$

$$= -S_{n} + 1$$

From the above two equations we evaluate

$$(-1)^{n+1} + S_n = -S_n + 1$$

$$S_n = \frac{1}{2}(1 - (-1)^{n+1})$$

$$S_n = \frac{1}{2}(1 + (-1)^n)$$

QUESTION 4 (25pts) + (10extra)

Use **repertoire method** to evaluate a closed form formula **CF**

$$R_n = \alpha A(n) + \beta B(n) + \gamma C(n) + \delta D(n)$$

for the general form of the recurrence RF

$$R_0 = \alpha$$

 $R_n = R_{n-1} + (-1)^n (\beta + \gamma n + \delta n^2)$

Use functions: R(n) = 1, $R(n) = (-1)^n$, $R(n) = (-1)^n n$, $R(n) = (-1)^n n^2$, for all $n \in N$

1. (15pts) Find the equations E1 - E3 for A(n), B(n), C(n) of the closed form formula CF and evaluate all their components.

The fourth equation **E4** for D(n) is: $D(n) = \frac{(-1)^n n^2 + 2C(n) - B(n)}{2}$

The fourth equation **E4** evaluated on D(n) is $D(n) = \frac{n(n+1)(-1)^n}{2}$

Solution

We take the repertoire function $R_n = 1$ for all $n \in N$ and plug it in to RF

$$1 = \alpha$$

$$1 = 1 + (-1)^n (\beta + \gamma n + \delta n^2)$$

$$0 = (-1)^n (\beta + \gamma n + \delta n^2)$$

$$0 = \beta + \gamma n + \delta n^2$$

This holds for all $n \in N$ if and only if $\alpha = 1, \beta = 0, \gamma = 0, \delta = 0$.

Our first equation E1 is:

$$A(n) = 1$$

We take the repertoire function $R_n = (-1)^n$ for all $n \in N$ and plug it in to RF

$$(-1)^0 = \alpha$$
$$1 = \alpha$$

$$(-1)^{n} = (-1)^{n-1} + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$2(-1)^{n} = (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$2 = \beta + \gamma n + \delta n^{2}$$

$$0 = (\beta - 2) + \gamma n + \delta n^{2}$$

This holds for all $n \in N$ if and only if $\alpha = 1, \beta = 2, \gamma = 0, \delta = 0$.

We take the repertoire function $R_n = (-1)^n$ for all $n \in N$ and found $\alpha = 1, \beta = 2, \gamma = 0, \delta = 0$ and plug it in to CF.

$$(-1)^n = A(n) + 2B(n)$$

The second equation E2 is

$$B(n) = \frac{(-1)^n - A(n)}{2}$$

Use E1 and solve it on B(n)

$$2B(n) = (-1)^{n} - 1$$
$$B(n) = \frac{(-1)^{n} - 1}{2}$$

The **second equation E2** solved on B(n) is

$$B(n) = \frac{(-1)^n - 1}{2}$$

Third equation E3

We take the repertoire function $R_n = (-1)^n n$ for all $n \in N$ and plug it in to RF

$$(-1)^0 \cdot 0 = \alpha$$
$$0 = \alpha$$

$$(-1)^{n}n = (-1)^{n-1}(n-1) + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(-1)^{n}n = (-1)^{n}(-1)(n-1) + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(-1)^{n}n = (-1)^{n}(1-n) + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(n+n-1)(-1)^{n} = (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(2n-1) = (\beta + \gamma n + \delta n^{2})$$

$$0 = (\beta + 1) + (\gamma - 2)n + \delta n^{2}$$

This holds for all $n \in N$ if and only if $\alpha = 0, \beta = -1, \gamma = 2, \delta = 0$.

We take the repertoire function $R_n = (-1)^n n$ for all $n \in N$ and plug it in to CF with $\alpha = 0, \beta = -1, \gamma = 2, \delta = 0$. We evaluate

$$(-1)^n n = -B(n) + 2C(n)$$
$$2C(n) = (-1)^n n + B(n)$$

The third equation E3 is

$$C(n) = \frac{(-1)^n n + B(n)}{2}$$

We evaluate C(n) using **E2**

$$2C(n) = (-1)^{n}n + \frac{(-1)^{n} - 1}{2}$$
$$4C(n) = 2n(-1)^{n} + (-1)^{n} - 1$$

The **third equation E3** solved on C(n) is

$$C(n) = \frac{(2n+1)(-1)^n - 1}{4}$$

Thus putting the derived values for A(n), B(n), C(n) and D(n) in the CF for R_n , we get,

$$R_n = \alpha + \beta \frac{(-1)^n - 1}{2} + \gamma \frac{((-1)^n (2n+1) - 1)}{4} + \delta \frac{((-1)^n (n+n^2))}{2}$$

2. (10pts) Use the closed formula CF for the general form of the recurrence RF to evaluate

$$S_n = \sum_{k=0}^n (-1)^k k^2$$

Solution

The recurrence form of the summation $S_n = \sum_{k=0}^{n} (-1)^k k^2$ is

R

$$S_0 = 0$$

$$S_n = S_{n-1} + (-1)^n n^2$$

Observe that it s a particular form of of the recurrence

RF

$$R_0 = \alpha$$

$$R_n = R_{n-1} + (-1)^n (\beta + \gamma n + \delta n^2)$$

and its closed formula CF $R_n = \alpha A(n) + \beta B(n) + \gamma C(n) + \delta D(n)$ for $\alpha = 0, \beta = 0, \gamma = 0, \delta = 1$

Hence the closed formula for our sum is

$$S_n = D(n)$$

$$S_n = \frac{n(n+1)(-1)^n}{2}$$

3. (10pts) Extra Credit

Prove and evaluate the **Equation 4** for D(n)

Solution

We take the repertoire function $R_n = (-1)^n n^2$ and plug it in to RF

$$0 = \alpha$$

$$(-1)^{n}n^{2} = (-1)^{n-1}(n-1)^{2} + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(-1)^{n}n^{2} = (-1)^{-1}(-1)^{n}(n-1)^{2} + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(n^{2} + (n-1)^{2}) = (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(n^{2} + n^{2} - 2n + 1)(-1)^{n} = (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$(2n^{2} - 2n + 1)(-1)^{n} = (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

$$2n^{2} - 2n + 1 = \beta + \gamma n + \delta n^{2}$$

 $(-1)^0 0^2 = \alpha$

$$0 = (\beta - 1) + (\gamma + 2)n + (\delta - 2)n^2$$

This will give $\alpha = 0, \beta = 1, \gamma = -2, \delta = 2$. So our **fourth equation E4** is :

$$(-1)^n n^2 = B(n) - 2C(n) + 2D(n)$$
$$D(n) = \frac{(-1)^n n^2 + 2C(n) - B(n)}{2}$$

We evaluate the fourth equation on D(n)

$$(-1)^{n}n^{2} = B(n) - 2C(n) + 2D(n)$$

$$2n^{2}(-1)^{n} = (-1)^{n} - 1 - ((2n+1)(-1)^{n} - 1) + 4D(n)$$

$$4D(n) = 2n^{2}(-1)^{n} - (-1)^{n} + 1 + (2n+1)(-1)^{n} - 1$$

$$4D(n) = 2n^{2}(-1)^{n} - (-1)^{n} + (2n+1)(-1)^{n}$$

$$4D(n) = (2n^{2} + 2n - 1 + 1)(-1)^{n}$$

$$4D(n) = (2n^{2} + 2n)(-1)^{n}$$

The **fourth equation E4** evaluated on D(n) is

$$D(n) = \frac{n(n+1)(-1)^n}{2}$$