cse547 Midterm 1 SOLUTIONS Fall 2023 (60pts + 10extra)

QUESTION 1 (10pts)

Given a Recursive Formula RF:

$$
f(1)=\alpha ; \quad f(2 n+j)=2 f(n)+\beta_{j}, \quad \text { where } \quad \beta_{j} \in Z, \quad j=0,1, \quad n \geq 1
$$

Given $k=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$. We want to evaluate: $f(k)=f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)$

1. (5pts) Prove that dealing with "normal" binary representation we do not need to consider cases of $\mathbf{k} \in \mathbf{o d d}$ or $\mathbf{k} \in \mathbf{e v e n}$ when using the recursive formula RF. Consider cases: $k=2 n=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$ and $k=2 n+1=$ $\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$ and evaluate n in both cases.

Solution

The binary representation of $\mathbf{k}=\mathbf{2 n}$ is given as:

$$
\begin{aligned}
& 2 n=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2} \\
& 2 n=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1}+b_{0}
\end{aligned}
$$

We get $b_{m}=1$ and $b_{0}=0$
Hence,

$$
\begin{aligned}
& n=2^{m-1} b_{m}+\ldots+b_{1} \\
& \mathbf{n}=\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{\mathbf{1}}\right)_{\mathbf{2}}
\end{aligned}
$$

The binary representation of $\mathbf{k}=\mathbf{2 n} \mathbf{+ 1}$ is given as:

$$
\begin{aligned}
& 2 n+1=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2} \\
& 2 n+1=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1}+b_{0} \\
& b_{0}=1, b_{m}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& n=2^{m-1} b_{m}+\ldots+b_{1} \\
& \mathbf{n}=\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{\mathbf{1}}\right)_{\mathbf{2}}
\end{aligned}
$$

2. (5pts)

We define a relaxed binary representation as $\quad \mathbf{2}^{\mathbf{m}} \alpha+\mathbf{2}^{\mathbf{m}-\mathbf{1}} \beta_{\mathbf{b}_{\mathbf{m}-1}}+\ldots+\beta_{\mathbf{b}_{\mathbf{0}}}=\left(\alpha, \beta_{\mathbf{b}_{\mathrm{m}-1}}, \ldots \beta_{\mathbf{b}_{\mathbf{0}}}\right)_{\mathbf{2}}$, where $\beta_{b_{k}}$ are defined as follows

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} \quad j=0, \ldots, m-1\right.
$$

The closed formula $\mathbf{C F}$ for $\mathbf{R F}$ is $\quad f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(\alpha, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{2}$.
Evaluate $f(19)$ for original Josephus, i.e. for $\alpha=1, \beta_{0}=-1, \beta_{1}=1$

Solution

$$
\begin{aligned}
& 19=16+2+1=2^{4}+2^{1}+2^{0}=(10011)_{2} \\
& f(19)=f\left((10011)_{2}\right)=(1-1-111)_{2}=7
\end{aligned}
$$

QUESTION 2 (10pts)

Any recurrence of the type $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$ for $n \geq 1$ and T_{0} given by an initial condition has a $\mathbf{C F}$ formula

$$
T_{n}=\frac{1}{a_{n} s_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

where the summation factor s_{k} is given by $s_{n}=s_{1} \frac{a_{1} a_{2} \ldots . . a_{n-1}}{b_{2} b_{3} b_{4} \ldots b_{n}}$, and s_{1} is a constant
Use the $\mathbf{C F}$ formula and the summation factor to solve the recurrence

$$
\begin{gathered}
T_{0}=5 \\
2 T_{n}=n T_{n-1}+3 n!\text { for } n>0
\end{gathered}
$$

Solution

We use $\quad s_{n}=s_{1} \frac{a_{1} a_{2} \ldots . . a_{n-1}}{b_{2} b_{3} b_{4} \ldots b_{n}}$ for $a_{n}=2$ and $b_{n}=\mathrm{n}$ and get $s_{n}=s_{1} \frac{a_{n-1} \ldots a_{1}}{b_{n} \ldots b_{2}}=\frac{2 \cdot 2 \ldots 2 \cdot 2}{n(n-1) \ldots 2 \cdot 1}=\frac{2^{n-1}}{n!} \quad$ and $s_{1}=1$

We have that $T_{0}=5, c_{n}=3 \mathrm{n}!, b_{n}=\mathrm{n}$, and we can substitute in the closed formula for T_{n}

$$
\begin{aligned}
& T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{n!}{2^{n}}\left(5+3 \sum_{k=1}^{n} 2^{k-1}\right) \\
& T_{n}=\frac{n!}{2^{n}}\left(5+3 \sum_{k=1}^{n} 2^{k-1}\right) \\
& T_{n}=\frac{n!}{2^{n}}\left(5+3 \sum_{1 \leq k \leq n} 2^{k-1}\right) \\
& T_{n}=\frac{n!}{2^{n}}\left(5+3 \sum_{0 \leq k-1 \leq n-1} 2^{k-1}\right) \\
& T_{n}=\frac{n!}{2^{n}}\left(5+3 \sum_{r=0}^{n-1} 2^{r}\right), \text { where we set } \mathrm{r}=\mathrm{k}-1
\end{aligned}
$$

We know that that $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$, for $x \neq 1$, so in our case

$$
\begin{aligned}
& T_{n}=\frac{n!}{2^{n}}\left(5+3 \sum_{r=0}^{n-1} 2^{r}\right) \\
& =\frac{n!}{2^{n}}\left(5+3 \frac{2^{(n-1)+1}-1}{2-1}\right) \\
& =\frac{n!}{2^{n}}\left(2+3 \cdot 2^{n}\right) \\
& =\mathrm{n}!\left(2^{(1-n)}+3\right)
\end{aligned}
$$

QUESTION 3 (15pts)

Use the Perturbation Method to evaluate a closed formula for the following (assuming that $n \geq 0$).

$$
S_{n}=\sum_{k=0}^{n}(-1)^{n-k}
$$

Hint Split the S_{n} first on the first term, then on the last term, and combine the results

Solution

Split off the first term

$$
\begin{aligned}
S_{n+1} & =\sum_{k=0}^{n+1}(-1)^{n+1-k} \\
& =(-1)^{n+1-0}+\sum_{k=1}^{n+1}(-1)^{n+1-k} \\
& =(-1)^{n+1}+\sum_{k+1=1}^{n+1}(-1)^{n+1-(k+1)} \\
& =(-1)^{n+1}+\sum_{k=0}^{n}(-1)^{n-k} \\
& =(-1)^{n+1}+S_{n}
\end{aligned}
$$

Split off the last term

$$
\begin{aligned}
S_{n+1} & =\sum_{k=0}^{n+1}(-1)^{n+1-k} \\
& =\sum_{k=0}^{n}(-1)^{n+1-k}+(-1)^{n+1-(n+1)} \\
& =\sum_{k=0}^{n}(-1)^{n+1-k}+1=\sum_{k=0}^{n}(-1)^{n-k}(-1)^{1}+1 \\
& =-\sum_{k=0}^{n}(-1)^{n-k}+1 \\
& =-S_{n}+1
\end{aligned}
$$

From the above two equations we evaluate

$$
\begin{aligned}
(-1)^{n+1}+S_{n} & =-S_{n}+1 \\
S_{n} & =\frac{1}{2}\left(1-(-1)^{n+1}\right) \\
S_{n} & =\frac{1}{2}\left(1+(-1)^{n}\right)
\end{aligned}
$$

QUESTION 4 (25pts) + (10extra)
Use repertoire method to evaluate a closed form formula CF

$$
R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)+\delta D(n)
$$

for the general form of the recurrence RF

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right)
\end{aligned}
$$

Use functions: $R(n)=1, R(n)=(-1)^{n}, R(n)=(-1)^{n} n, R(n)=(-1)^{n} n^{2}$, for all $n \in N$

1. (15pts) Find the equations $\mathbf{E 1}-\mathbf{E} 3$ for $A(n), B(n), C(n)$ of the closed form formula $\mathbf{C F}$ and evaluate all their components.
The fourth equation $\mathbf{E 4}$ for $D(n)$ is: $\quad D(n)=\frac{(-1)^{n} n^{2}+2 C(n)-B(n)}{2}$
The fourth equation $\mathbf{E 4}$ evaluated on $D(n)$ is $\quad D(n)=\frac{n(n+1)(-1)^{n}}{2}$

Solution

We take the repertoire function $R_{n}=1$ for all $n \in N$ and plug it in to RF

$$
\begin{aligned}
& 1=\alpha \\
& 1=1+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& 0=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& 0=\beta+\gamma n+\delta n^{2}
\end{aligned}
$$

This holds for all $n \in N$ if and only if $\alpha=1, \beta=0, \gamma=0, \delta=0$.
Our first equation E1 is :

$$
A(n)=1
$$

We take the repertoire function $R_{n}=(-1)^{n}$ for all $n \in N$ and plug it in to RF

$$
\begin{gathered}
(-1)^{0}=\alpha \\
1=\alpha \\
(-1)^{n}=(-1)^{n-1}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
2(-1)^{n}=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
2=\beta+\gamma n+\delta n^{2} \\
0=(\beta-2)+\gamma n+\delta n^{2}
\end{gathered}
$$

This holds for all $n \in N$ if and only if $\alpha=1, \beta=2, \gamma=0, \delta=0$.
We take the repertoire function $R_{n}=(-1)^{n}$ for all $n \in N$ and found $\alpha=1, \beta=2, \gamma=0, \delta=0$ and plug it in to CF.

$$
(-1)^{n}=A(n)+2 B(n)
$$

The second equation E2 is

$$
B(n)=\frac{(-1)^{n}-A(n)}{2}
$$

Use E1 and solve it on B(n)

$$
\begin{aligned}
2 B(n) & =(-1)^{n}-1 \\
B(n) & =\frac{(-1)^{n}-1}{2}
\end{aligned}
$$

The second equation $\mathbf{E} 2$ solved on $\mathrm{B}(\mathrm{n})$ is

$$
B(n)=\frac{(-1)^{n}-1}{2}
$$

Third equation E3
We take the repertoire function $R_{n}=(-1)^{n} n$ for all $n \in N$ and plug it in to RF

$$
\left.\begin{array}{rl}
(-1)^{0} \cdot 0=\alpha \\
0=\alpha
\end{array}\right] \begin{aligned}
&(-1)^{n} n=(-1)^{n-1}(n-1)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&(-1)^{n} n=(-1)^{n}(-1)(n-1)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&(-1)^{n} n=(-1)^{n}(1-n)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&(n+n-1)(-1)^{n}=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&(2 n-1)=\left(\beta+\gamma n+\delta n^{2}\right) \\
& 0=(\beta+1)+(\gamma-2) n+\delta n^{2}
\end{aligned}
$$

This holds for all $n \in N$ if and only if $\alpha=0, \beta=-1, \gamma=2, \delta=0$.
We take the repertoire function $R_{n}=(-1)^{n} n$ for all $n \in N$ and plug it in to CF with $\alpha=0, \beta=-1, \gamma=2, \delta=0$. We evaluate

$$
\begin{aligned}
(-1)^{n} n & =-B(n)+2 C(n) \\
2 C(n) & =(-1)^{n} n+B(n)
\end{aligned}
$$

The third equation E3 is

$$
C(n)=\frac{(-1)^{n} n+B(n)}{2}
$$

We evaluate C(n) using E2

$$
\begin{aligned}
& 2 C(n)=(-1)^{n} n+\frac{(-1)^{n}-1}{2} \\
& 4 C(n)=2 n(-1)^{n}+(-1)^{n}-1
\end{aligned}
$$

The third equation $\mathbf{E 3}$ solved on $C(n)$ is

$$
C(n)=\frac{(2 n+1)(-1)^{n}-1}{4}
$$

Thus putting the derived values for $\mathrm{A}(\mathrm{n}), \mathrm{B}(\mathrm{n}), \mathrm{C}(\mathrm{n})$ and $\mathrm{D}(\mathrm{n})$ in the $\mathbf{C F}$ for R_{n}, we get,

$$
R_{n}=\alpha+\beta \frac{(-1)^{n}-1}{2}+\gamma \frac{\left((-1)^{n}(2 n+1)-1\right)}{4}+\delta \frac{\left((-1)^{n}\left(n+n^{2}\right)\right)}{2}
$$

2. (10pts) Use the closed formula $\mathbf{C F}$ for the general form of the recurrence $\mathbf{R F}$ to evaluate

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k} k^{2}
$$

Solution

The recurrence form of the summation $S_{n}=\sum_{k=0}^{n}(-1)^{k} k^{2}$ is

$$
\begin{aligned}
& \mathbf{R} \\
& S_{0}=0 \\
& S_{n}=S_{n-1}+(-1)^{n} n^{2}
\end{aligned}
$$

Observe that it s a particular form of of the recurrence

RF

$R_{0}=\alpha$
$R_{n}=R_{n-1}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right)$
and its closed formula $\mathbf{C F} \quad R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)+\delta D(n) \quad$ for $\alpha=0, \beta=0, \gamma=0, \delta=1$
Hence the closed formula for our sum is

$$
\begin{aligned}
& S_{n}=D(n) \\
& S_{n}=\frac{n(n+1)(-1)^{n}}{2}
\end{aligned}
$$

3. (10pts) Extra Credit

Prove and evaluate the Equation 4 for $D(n)$

Solution

We take the repertoire function $R_{n}=(-1)^{n} n^{2}$ and plug it in to RF

$$
\begin{aligned}
&(-1)^{0} 0^{2}=\alpha \\
& 0=\alpha \\
&(-1)^{n} n^{2}=(-1)^{n-1}(n-1)^{2}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&(-1)^{n} n^{2}=(-1)^{-1}(-1)^{n}(n-1)^{2}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&\left(n^{2}+(n-1)^{2}\right)=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&\left(n^{2}+n^{2}-2 n+1\right)(-1)^{n}=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
&\left(2 n^{2}-2 n+1\right)(-1)^{n}=(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& 2 n^{2}-2 n+1= \beta+\gamma n+\delta n^{2} \\
& 0=(\beta-1)+(\gamma+2) n+(\delta-2) n^{2}
\end{aligned}
$$

This will give $\alpha=0, \beta=1, \gamma=-2, \delta=2$. So our fourth equation $\mathbf{E 4}$ is :

$$
\begin{aligned}
(-1)^{n} n^{2} & =B(n)-2 C(n)+2 D(n) \\
D(n) & =\frac{(-1)^{n} n^{2}+2 C(n)-B(n)}{2}
\end{aligned}
$$

We evaluate the fourth equation on $D(n)$

$$
\begin{aligned}
(-1)^{n} n^{2} & =B(n)-2 C(n)+2 D(n) \\
2 n^{2}(-1)^{n} & =(-1)^{n}-1-\left((2 n+1)(-1)^{n}-1\right)+4 D(n) \\
4 D(n) & =2 n^{2}(-1)^{n}-(-1)^{n}+1+(2 n+1)(-1)^{n}-1 \\
4 D(n) & =2 n^{2}(-1)^{n}-(-1)^{n}+(2 n+1)(-1)^{n} \\
4 D(n) & =\left(2 n^{2}+2 n-1+1\right)(-1)^{n} \\
4 D(n) & =\left(2 n^{2}+2 n\right)(-1)^{n}
\end{aligned}
$$

The fourth equation E4 evaluated on $D(n)$ is

$$
D(n)=\frac{n(n+1)(-1)^{n}}{2}
$$

