CSE547 SOME EXERCISES on SETS SOLUTIONS

FINITE and INFINITE SETS

Definition 1

A set A is FINITE iff there is a natural number $n \in N$ and there is a $1-1$ function f that maps the set $\{1,2, \ldots n\}$ onto A.

Definition 2

A set A is INFINITE iff it is NOT FINITE.

QUESTION 1

Use the above definitions to prove the following
FACT $1 A$ set A is INFINITE if and only if it contains a countably infinite subset, i.e. one can define a $1-1$ sequence $\left\{a_{n}\right\}_{n \in N}$ of some elements of A

SOLUTION

S1. Proof of Implication
If A is infinite, then we can define a 1-1 sequence of elements of A
Let A be infinite. We define a sequence $a_{1}, \ldots, a_{n}, \ldots \ldots$ as follows.

1. Observe that $A \neq \emptyset$, because if $A=\emptyset$, A would be finite. Contradiction. So there is an element of $a \in A$. We define

$$
a_{1}=a
$$

2. Consider a set $A-\left\{a_{a}\right\}=A_{1} . A_{1} \neq \emptyset$ because if $A=\emptyset$, then $A-\left\{a_{1}\right\}=\emptyset$ and A is Finite. Contradiction. So there is an element $a_{2} \in A-\left\{a_{1}\right\}$ and $a_{1} \neq a_{2}$.
We defined

$$
\begin{gathered}
a_{1}, a_{2} \\
a_{1,2}, \ldots, a_{n} \text { for } a_{1} \neq a_{2} \neq \ldots \neq a_{n}
\end{gathered}
$$

Assume that we defined a set $A_{n}=A-\left\{a_{1}, \ldots, a_{n}\right\}$.
The set $A_{n} \neq \emptyset$ because if $A-\left\{a_{1}, \ldots, a_{n}\right\}=\emptyset$, then A is finite.Contradiction.
So there is an element

$$
a_{n+1} \in A-\left\{a_{1}, \ldots, a_{n}\right\}
$$

and $a_{n+1} \neq a_{n} \neq \cdots \neq a_{1}$
By mathematical induction, we have defined a 1-1 sequence

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

elements of A.
2. Implication \leftarrow

If A contain a 1-1 sequence, then A is infinite.
Assume A is not infinite; i.e A is finite. Every subset of finite set is finite, so we can't have a 1-1 infinite sequence of elements of A. Contradiction.

QUESTION 2 Use the above definitions and FACT 1 from QUESTION 1the following characterization of infinite sets.

Dedekind Theorem A set A is INFINITE iff there is a set proper subset B of the set A such that $|A|=|B|$.
SOLUTION Part1. If A is infinite, then there is $B \varsubsetneqq A$ and

$$
f: A \xrightarrow[\text { onto }]{1-1} B
$$

A is infinite, by Q1, we have a $1-1$ sequence

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

of elements A.
We take $B=A-\left\{a_{1}\right\}, B \varsubsetneqq A$ and we define a function

$$
f: A \xrightarrow[\text { onto }]{\frac{1-1}{\longrightarrow}} B
$$

as follows

$$
\begin{gathered}
f\left(a_{1}\right)=a_{2} \\
f\left(a_{2}\right)=a_{3} \\
\vdots \\
f\left(a_{n}\right)=a_{n+1} \\
f(a)=a, \text { for all other } a \in A
\end{gathered}
$$

obviously, f is $1-1$, onto
Observe: we have other choises of B!.
Part 2. Assume that we have $B \varsubsetneqq A$ are

$$
f: A \xrightarrow[\text { onto }]{1-1} B
$$

We use Q1 to show that A is infinite; i.e we construct an 1-1 sequence $a_{1} \ldots a_{n}$ of elements of A_{n} as follows.
$B \nsubseteq A$,so $A-B \neq \emptyset$ and we have $b \in A-B$. This is our first element of the sequence.
Observe: $f: A \xrightarrow[\text { onto }]{1-1} B$, so $f(b) \in B$ and $b \in A-B$, hence $f(b) \neq b$ and $f(b)$ is our second element of the
sequence. sequence.
We have now,
$b, f(b) \quad f(b) \neq b, b \in A-B, f(b) \in B$
Take new,
$f f(b)$.As f is 1-1 and $f(b) \neq b$, we get $f f(b) \neq f(b) \neq b, f f(b) \in B$ and the sequence $b, f(b), f f(b)$ is 1-1.

We create $f f(b)=f^{2}(b)$
We continue the construction by mathematical induction.
Assume that we have constructed a 1-1 sequence

$$
\left.b, f(b), f^{(} b\right), f^{3}(b), \ldots, f^{n}(b)
$$

Observe that $f f^{n}(b)=f^{n+1}(b) \neq f^{n}(b)$ as f is 1-1.
By mathematical induction, we have that $\left\{f^{n}(b)\right\}_{n \in N}$ is a 1-1 sequence of elements of A and hence A is infinite.

QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following
Theorem For any infinite set A and its finite subset $B,|A|=|A-B|$.
SOLUTION A is infinite, then by Q1 there is a $1-1$ sequence:

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

of elements of A.
Let $|B|=k$. We choose k 1-1 sequences $\left\{c_{n}^{k}\right\}_{n \in N}$ of the sequence $\left\{a_{n}\right\}_{n \in N}$, such that $c_{n}^{j} \neq c_{n}^{i}$ for all $j \neq i, 1 \leq i, j \leq k$ and all $n \in N$.
Let $B=\left\{b_{1}, \ldots, b_{k}\right\}$. We construct a function $f: A \xrightarrow[\text { onto }]{1-1} A-\left\{b_{1}, \ldots, b_{k}\right\}$ as follows

$$
\begin{array}{cc}
f\left(b_{1}\right)=c_{1}^{1}, & f\left(c_{1}^{1}\right)=c_{2}^{1}, \ldots, f\left(c_{n}^{1}\right)=c_{n+1}^{1} \\
f\left(b_{2}\right)=c_{1}^{2}, & f\left(c_{1}^{2}\right)=c_{2}^{2}, \ldots, f\left(c_{n}^{2}\right)=c_{n+1}^{2} \\
\vdots \\
f\left(b_{k}\right)=c_{1}^{k}, & f\left(c_{1}^{k}\right)=c_{2}^{k}, \ldots, f\left(c_{n}^{k}\right)=c_{n+1}^{k} \\
f(a)=a \text { all } a \in A-B
\end{array}
$$

As all sequences $\left\{C_{n}^{m}\right\}_{n \in N, m=1, \ldots, k}$ are 1-1, and different, the function f is 1-1 and obviously ONTO $A-B$.

QUESTION 4 Use DEDEKIND THEOREM to prove that the set N of natural numbers is infinite.
SOLUTION We use Dedekind theorem i.e we must define $f: N \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} B \nsubseteq N$. There are many such function
for example $f(n)=n+1 . f: N \xrightarrow[\text { onto }]{1-1} N-\{0\}$
One can also use Q1 and define any 1-1 sequences in N .

QUESTION 5 Use DEDEKIND THEOREM to prove that the set R of real numbers is infinite.
SOLUTION We use Dedekind theorem

$$
\begin{gathered}
f(x)=2^{x} \quad x \in R \\
f: R \xrightarrow[\text { onto }]{1-1} R^{+}
\end{gathered}
$$

One can also use Q1 and define any 1-1 sequences in R.

QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval $[a, b], a<b$ of real numbers is infinite and that $|[a, b]|=|(a, b)|$.

SOLUTION1 Use construction in the proof of Q3.
$f:[a, b] \xrightarrow[\text { onto }]{1-1}[a, b]-\{a, b\}=(a, b)$
This is the soution I had in mine!

SOLUTION2 Use Q3 $(a, b)=[a, b]-B, B$:finite

QUESTION 7 Prove, using the above definitions 3 and 4 that for any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$ the following formulas hold:

$$
\begin{gathered}
1 . \mathcal{N} \leq \mathcal{N} \\
\text { 2.If } \mathcal{N} \leq \mathcal{M} \text { and } \mathcal{M} \leq \mathcal{K}, \text { then } \mathcal{N} \leq \mathcal{K}
\end{gathered}
$$

SOLUTION 1. $\mathcal{N} \leq \mathcal{N}$ means that for any set $A,|A| \leq|A|$
$f(a)=a$ establishes $f: A \xrightarrow{1-1} A$
2. $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$.

We have $|A|=\mathcal{N},|b|=\mathcal{M},|C|=\mathcal{K}$ and $f: A \xrightarrow{1-1} B$ and $g: B \xrightarrow{1-1} C$, then we have to construct $h: A \xrightarrow{1-1} C$.
h is a composition of f and g. i.e $h(a)=g(f(a))$, all $a \in A$

QUESTION 8 Prove, for any sets A, B, C the following holds.

Fact 2

$$
\text { If } C \subseteq B \subseteq A \text { and }|A|=|C|, \text { then }|A|=|B|=|C| .
$$

To prove $|A|=|B|$ you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3

SOLUTION 1. A, B, C are finite and $|A|=|C|$, and $C \subseteq B \subseteq A$,so $A=B=C$, and have $|A|=|B|=|C|$
2. A, B, C are infinite sets, we have $|A|=|C|$ i.e we have $f: A \xrightarrow[\text { onto }]{1-1} C$

We want to construct a function

$$
g: A \xrightarrow[\text { onto }]{1-1} B, \text { where } A \subseteq B \subseteq C
$$

Take $A-B$. We assume that $A-B \neq \emptyset$, if not, $A=B$, and $|A|=|C|$ given $|A|=|B|=|C|$.
We consider case $C \subset B \subset A$. Take any $a \in(A-B)$, as $f: A \xrightarrow[\text { onto }]{1-1} C, f(a) \in C, f$ is 1-1 so $f f(a) \neq f(a)$
\ldots in general $f^{n}(a) \neq f^{n+1}(a)$ and we have a sequence for any $a \in A-B$
$f(a), f^{2}(a), \ldots, f^{n}(a) \ldots$ of elements of C.
We construct a function $g: A \xrightarrow[\text { onto }]{1-1} B$

$$
\begin{gathered}
g(a)=f(a) \\
g(f(a))=f^{2}(a) \\
\left.g\left(f^{2}(a)\right)=f^{3}(a)\right) \\
\vdots \\
g\left(f^{n}(a)\right)=f^{n+1}(a) \\
g(x)=x \quad \text { for all other } x \in A
\end{gathered}
$$

QUESTION 9 Prove the following

Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$$
\mathcal{N} \leq \mathcal{M} \text { and } \mathcal{M} \leq \mathcal{N} \text { then } \mathcal{N}=\mathcal{M}
$$

1. Prove first the case when the sets A, B are disjoint.
2. Generalize the construction for 1 . to the not-disjoint case.
