FINITE and INFINITE SETS

Definition 1

A set A is FINITE iff there is a natural number $n \in N$ and there is a 1-1 function f that maps the set $\{1, 2, ...n\}$ onto A.

Definition 2

A set A is INFINITE iff it is NOT FINITE.

QUESTION 1

Use the above definitions to prove the following

FACT 1 A set A is INFINITE if and only if it contains a countably infinite subset, i.e. one can define a 1-1 sequence $\{a_n\}_{n\in N}$ of some elements of A

SOLUTION

S1. Proof of Implication

If A is infinite, then we can define a 1-1 sequence of elements of A

Let A be infinite. We define a sequence a_1, \ldots, a_n, \ldots as follows.

1. Observe that $A \neq \emptyset$, because if $A = \emptyset$, A would be finite. Contradiction. So there is an element of $a \in A$. We define

 $a_1 = a$

2. Consider a set $A - \{a_a\} = A_1$. $A_1 \neq \emptyset$ because if $A = \emptyset$, then $A - \{a_1\} = \emptyset$ and A is Finite. Contradiction. So there is an element $a_2 \in A - \{a_1\}$ and $a_1 \neq a_2$. We defined

$$a_1, a_2$$

 $a_{1,2}, \dots, a_n$ for $a_1 \neq a_2 \neq \dots \neq a_n$

Assume that we defined a set $A_n = A - \{a_1, \ldots, a_n\}$.

The set $A_n \neq \emptyset$ because if $A - \{a_1, \ldots, a_n\} = \emptyset$, then A is finite. Contradiction. So there is an element

$$a_{n+1} \in A - \{a_1, \ldots, a_n\}$$

and $a_{n+1} \neq a_n \neq \cdots \neq a_1$

By mathematical induction, we have defined a 1-1 sequence

 $a_1, a_2, \ldots, a_n, \ldots$

elements of A.

2. Implication \leftarrow

If A contain a 1-1 sequence, then A is infinite.

Assume A is not infinite; i.e A is finite. Every subset of finite set is finite, so we can't have a 1-1 infinite sequence of elements of A. Contradiction.

QUESTION 2 Use the above definitions and FACT 1 from QUESTION 1the following characterization of infinite sets.

Dedekind Theorem A set A is INFINITE iff there is a set proper subset B of the set A such that |A| = |B|.

SOLUTION Part1. If A is infinite, then there is $B \subsetneq A$ and

$$f: A \xrightarrow[onto]{1-1} B$$

A is infinite, by Q1, we have a 1-1 sequence

$$a_1, a_2, \ldots, a_n, \ldots$$

of elements A. We take $B = A - \{a_1\}, B \subsetneq A$ and we define a function

$$f: A \xrightarrow[onto]{1-1} B$$

as follows

$$f(a_1) = a_2$$

$$f(a_2) = a_3$$

$$\vdots$$

$$f(a_n) = a_{n+1}$$

$$f(a) = a, \text{ for all other } a \in A$$

obviously, f is 1-1,onto

Observe: we have other choises of B!.

Part 2. Assume that we have $B \subsetneq A$ are

$$f: A \xrightarrow[onto]{1-1} B$$

We use Q1 to show that A is infinite; i.e we construct an 1-1 sequence $a_1 \dots a_n$ of elements of A_n as follows.

 $B \subsetneq A$, so $A - B \neq \emptyset$ and we have $b \in A - B$. This is our first element of the sequence. Observe: $f : A \xrightarrow[onto]{1-1}{onto} B$, so $f(b) \in B$ and $b \in A - B$, hence $f(b) \neq b$ and f(b) is our second element of the sequence. We have now, $b, f(b) = f(b) \neq b, b \in A - B, f(b) \in B$ Take new,

ff(b). As f is 1-1 and $f(b) \neq b$, we get $ff(b) \neq f(b) \neq b$, $ff(b) \in B$ and the sequence b, f(b), ff(b) is 1-1.

We create $ff(b) = f^2(b)$

We continue the construction by mathematical induction. Assume that we have constructed a 1-1 sequence

$$b, f(b), f(b), f^{3}(b), \dots, f^{n}(b)$$

Observe that $ff^n(b) = f^{n+1}(b) \neq f^n(b)$ as f is 1-1.

By mathematical induction, we have that $\{f^n(b)\}_{n \in N}$ is a 1-1 sequence of elements of A and hence A is infinite.

QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following

Theorem For any infinite set A and its finite subset B, |A| = |A - B|.

SOLUTION A is infinite, then by Q1 there is a 1-1 sequence:

$$a_1, a_2, \ldots, a_n, \ldots$$

of elements of A.

Let |B| = k. We choose k 1-1 sequences $\{c_n^k\}_{n \in N}$ of the sequence $\{a_n\}_{n \in N}$, such that $c_n^j \neq c_n^i$ for all $j \neq i, 1 \leq i, j \leq k$ and all $n \in N$.

Let $B = \{b_1, \dots, b_k\}$. We construct a function $f : A \xrightarrow{1-1}_{onto} A - \{b_1, \dots, b_k\}$ as follows

$$f(b_1) = c_1^1, \qquad f(c_1^1) = c_2^1, \dots, f(c_n^1) = c_{n+1}^1$$

$$f(b_2) = c_1^2, \qquad f(c_1^2) = c_2^2, \dots, f(c_n^2) = c_{n+1}^2$$

$$\vdots$$

$$f(b_k) = c_1^k, \qquad f(c_1^k) = c_2^k, \dots, f(c_n^k) = c_{n+1}^k$$

$$f(a) = a \text{ all } a \in A - B$$

As all sequences $\{C_n^m\}_{n \in N, m=1,...,k}$ are 1-1, and different, the function f is 1-1 and obviously ONTO A-B.

QUESTION 4 Use DEDEKIND THEOREM to prove that the set N of natural numbers is infinite.

SOLUTION We use Dedekind theorem i.e we must define $f: N \xrightarrow{1-1}_{onto} B \subsetneq N$. There are many such function for example $f(n) = n + 1.f: N \xrightarrow{1-1}_{onto} N - \{0\}$ One can also use Q1 and define any 1-1 sequences in N.

QUESTION 5 Use DEDEKIND THEOREM to prove that the set R of real numbers is infinite.

 ${\bf SOLUTION}\,$ We use Dedekind theorem

$$f(x) = 2^x \qquad x \in R$$
$$f: R \xrightarrow{1-1}_{onto} R^+$$

One can also use Q1 and define any 1-1 sequences in R.

QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval [a, b], a < b of real numbers is infinite and that |[a, b]| = |(a, b)|.

SOLUTION1 Use construction in the proof of Q3.

 $f: [a,b] \xrightarrow[onto]{1-1} [a,b] - \{a,b\} = (a,b)$

This is the soution I had in mine!

SOLUTION2 Use Q3 (a, b) = [a, b] - B, B:finite

QUESTION 7 Prove, using the above definitions 3 and 4 that for any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$ the following formulas hold:

 $1.\mathcal{N} \leq \mathcal{N}$

2. If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$.

SOLUTION 1. $\mathcal{N} \leq \mathcal{N}$ means that for any set $A, |A| \leq |A|$

 $\begin{array}{l} f(a)=a \text{ establishes } f:A \xrightarrow{1-1} A\\ 2. \ \mathcal{N} \leq \mathcal{M} \ and \ \mathcal{M} \leq \mathcal{K}, \ then \ \mathcal{N} \leq \mathcal{K}.\\ \text{We have } |A| = \mathcal{N}, |b| = \mathcal{M}, |C| = \mathcal{K} \text{ and } f:A \xrightarrow{1-1} B \text{ and } g:B \xrightarrow{1-1} C, \text{then we have to construct}\\ h:A \xrightarrow{1-1} C.\\ h \text{ is a composition of } f \text{ and } g. \text{ i.e } h(a) = g(f(a)), \text{ all } a \in A \end{array}$

QUESTION 8 Prove, for any sets A, B, C the following holds.

Fact 2

If
$$C \subseteq B \subseteq A$$
 and $|A| = |C|$, then $|A| = |B| = |C|$.

- To prove |A| = |B| you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3
- **SOLUTION** 1. *A*, *B*, *C* are finite and |A| = |C|, and $C \subseteq B \subseteq A$, so A = B = C, and have |A| = |B| = |C|2.*A*, *B*, *C* are infinite sets, we have |A| = |C| i.e we have $f : A \xrightarrow[onto]{onto} C$ We want to construct a function

$$g: A \xrightarrow{1-1}{onto} B$$
, where $A \subseteq B \subseteq C$

Take A - B. We assume that $A - B \neq \emptyset$, if not, A = B, and |A| = |C| given |A| = |B| = |C|. We consider case $C \subset B \subset A$. Take any $a \in (A - B)$, as $f : A \xrightarrow[onto]{1-1}{onto} C$, $f(a) \in C$, f is 1-1 so $ff(a) \neq f(a)$ \dots in general $f^n(a) \neq f^{n+1}(a)$ and we have a sequence for any $a \in A - B$ $f(a), f^2(a), \dots, f^n(a) \dots$ of elements of C. We construct a function $g : A \xrightarrow[onto]{1-1}{onto} B$

$$g(a) = f(a)$$

$$g(f(a)) = f^{2}(a)$$

$$g(f^{2}(a)) = f^{3}(a))$$

$$\vdots$$

$$g(f^{n}(a)) = f^{n+1}(a)$$

$$g(x) = x \quad \text{for all other } x \in A$$

QUESTION 9 Prove the following

Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$$\mathcal{N} \leq \mathcal{M} \text{ and } \mathcal{M} \leq \mathcal{N} \text{ then} \mathcal{N} = \mathcal{M}.$$

- **1.** Prove first the case when the sets A, B are disjoint.
- **2.** Generalize the construction for 1. to the not-disjoint case.