cse547/ams547 ONE QUESTION Quiz 1 Spring 2017 (25 points)

NAME

ID:
ams/cs

Given Recursive Formula RF:

$$
\begin{array}{ll}
f(i)=\alpha_{i}, & i=1, \cdots, d-1 \\
f(d n+j)=c f(n)+\beta_{j}, & n \geq 1,0 \leq j<d
\end{array}
$$

We proved the following closed formula CF:

$$
f\left(\left(b_{m}, b_{m-1}, \cdots, b_{1}, b_{0}\right)_{d}\right)=\left(\alpha_{b_{m}}, \beta_{b_{m-1}}, \cdots, \beta_{b_{1}}, \beta_{b_{0}}\right)_{c}
$$

where $\beta_{b_{j}}$ are defined by

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} ; \quad j=0, \ldots, m-1\right.
$$

QUESTION Part 1: 5pts

Given Recursive Formula RF:
$f(1)=34, f(2)=5$,
$f(3 n)=10 f(n)+76, f(3 n+1)=10 f(n)-2, f(3 n+2)=10 f(n)+8$
Evaluate $f(19)$. Write proper formula- do not need to evaluate numbers!

Part 2: 20pts

Use the repertoire method to solve the general four-parameter recurrence RF:
$f(1)=\alpha$,
$f(2 n)=3 f(n)+\gamma n+\beta_{0}, \quad f(2 n+1)=3 f(n)+\gamma n+\beta_{1}$
Solve means to FIND a system of equations needed to evaluate the closed formula CF:

$$
f(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n) .
$$

To do so follow the steps below
Step 1. Use the proper form of the closed formula solution from Part 1
Step 2. $A(n)=3^{k}, n=2^{k}+\ell, 0 \leq \ell<2^{k}, n \in N-\{0\}$
Step 3. Use repertoire function $f(n)=1$, for all $n \in N-\{0\}$
Step 4. Use repertoire function $f(n)=n$, for all $n \in N-\{0\}$
Step 5. write your system of equations. Do not solve it.
Write carefully your solution on pages provides. Indicate which STEP are you solving.

Solution

Step 1:

Solution Space

Solution Space

