Proof of Partition Theorem

Spec($\sqrt{2}$) and Spec(2 + $\sqrt{2}$) Form a Partition of N-{0} = Z+

Method : Prove General Theorem of which our theorem is a particular case

SPECTRUM PARTITION THEOREM

Let α , $\beta > 0$, α , $\beta \in \mathbb{R}$ -Q

Be such that $1/\alpha + 1/\beta = 1$

Then the sets

A = {
$$|\alpha n|$$
 : n = 1,2,3,....} = spec(α)
A = { $|\beta n|$: n = 1,2,3,....} = spec(β)

Form a Partition of Z+ = N - {0}

i.e. A≠φ, B≠φ A∩B = φ AUB = Z+

Proof of Partition Theorem (Special Case)

 $α = \sqrt{2}, β = 2 + \sqrt{2}$

We get :

Spec($\sqrt{2}$) and Spec(2 + $\sqrt{2}$) Form a Partition of N-{0} = Z+

Proof

- **1.** The $[\alpha] \in A, [\beta] \in B$ **2.** $A \cap B = \phi$
- **Proof by contradiction**
- Suppose that $A \cap B \neq \phi$ i.e.
- i.e. There is k \in Z+ such that k \in A, k \in B
- Iff there are i, $j \in Z$ + such that $\lfloor \alpha i \rfloor = k \quad \lfloor \beta j \rfloor = k \quad i.e.$

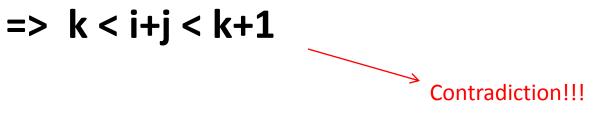
 $k \le \alpha i < k+1$ $k \le \beta j < k+1$

But α , $\beta \in R-Q$,

So αi, βj cant be integers, so ≤ cant hold, so we get k < αi < k+1 k < βj < k+1 k/α < i < (k+1) /α k/β < j < (k+1) /β

On adding them

$k/\alpha + k/\beta < i + j < (k+1)/\alpha + (k+1)/\beta$ $k(1/\alpha + 1/\beta) < i + j < (k+1)(1/\alpha + 1/\beta)$ We know that $1/\alpha + 1/\beta = 1$



i,j,k € Z+

No integer between k, k+1!

We proved $A \cap B = \phi$

Now we want to prove that AUB = Z+ Assume AUB $\neq Z$ +

i.e. Exists k ∈ Z+, such that k ∉ AUB
i.e. k ∉ A and k ∉ B

k \notin A iff for all x \in Z+k $\neq \lfloor \alpha n \rfloor$ -----1k \notin B iff for all x \in Z+k $\neq \lfloor \beta n \rfloor$ -----2

This means that there exist i_0 , j_0 such that $[\alpha i_0] < k$ and $[\alpha (i_0+1)] > k$ and same holds for β

i.e.

(1a) $\alpha i_0 < k \& \alpha (i_0+1) > k+1$ (2a) $\beta i_0 < k \& \beta (i_0+1) > k+1$ (These cant be = k+1 as $\beta, \alpha \in \mathbb{R}$ -Q and k+1 $\in \mathbb{Z}$ +) $\lfloor \beta i_0 \rfloor < k$ and $\beta (i_0+1) \rfloor > k$

1a when rewritten

- $\alpha < k/i_0 \& \alpha > (k+1)/(i_0+1)$
- $=> 1/\alpha > i_0/k \& 1/\alpha < (i_0+1)/(k+1)$
- Or $i_0/k < 1/\alpha < (i_0+1)/(k+1) || || v for \beta we get$ $<math>j_0/k < 1/\beta < (j_0+1)/(k+1)$

Adding the above two equations and using $1/\alpha + 1/\beta = 1$ We get

$$(i_0+j_0)/k < 1 < (i_0+j_0+2)/(k+1) $\Rightarrow (i_0+j_0)/k < 1 \text{ and } 1 < (i_0+j_0+2)/(k+1) $\Rightarrow i_0+j_0 < k \text{ and } k < i_0+j_0+1 \Rightarrow i_0+j_0 < k < i_0+j_0+1$ k, i_0,j_0 $\in Z+$$$$

Contradiction: n < k < n+1