
Homework 1, Problem 1

1. Problem Description: Write details of pages 12-13, the
discussion of cyclic properties of J(n) and the false guess that
J(n) = n

2 . J(n) is the index of survivor in the Josephus
Problem.

2. Already Known: The recurrence in the Problem is:
J(1) = 1;
J(2n) = 2J(n) − 1, for n ≥ 1
J(2n + 1) = 2J(n) + 1, for n ≥ 1
and the solution to the recurrence is:
J(2m + l) = 2l + 1, for m ≥ 0 and 0 ≤ l < 2m

3. Goal: Explore some generalizations of the recurrence in
Josephus Problem and uncover the structure that underlies all
such problems.



Introducing the Binary Representation

1. The table of small input values:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

2. It is obvious that the powers of 2 played and important role in
our solution, so let’s look at the binary representations of n
and J(n).

3. Suppose n’s binary representation is n = (bmbm−1...b1b0)2
which is equal to the equation,
n = bm2m + bm−12

m−1 + ... + b12
1 + b0

Here, all the bi ’s are either 0 or 1 and the bit bm must be 1.



Compute J(n) from n under Binary Representation(1)

1. According to the solution of the recurrence, we denote n with
the equation:
n = 2m + l ,
therefore, we have:
n = (1bm−1...b1b0)2,
note that the difference between the expressions of n lies in
the leading bit, where bm is changed to 1.

2. l = n − 2m, therefore, we can change the 1 in the leading bit
of the binary representation of n to 0 and denote l as follows:
l = (0bm−1bm−1...b1b0)2

3. Now let’s consider the right hand side of the solution equation
J(2m + l) = 2l + 1, obviously, we need to denote 2l .



Compute J(n) from n under Binary Representation(2)

1. Now let’s see how to denote 2l . In the binary representation,
to multiply a number by 2, we only need to do a left shift 1
bit operation, therefore, we can denote 2l as follows:
2l = (bm−1bm−1...b1b00)2

2. It is obvious to get the representation of 2l + 1:
2l + 1 = (bm−1bm−1...b1b01)2

3. The only digit that is in
n = (bmbm−1...b1b0)2
but not in 2l + 1 is bm. Also the only digit that is in 2l + 1
but not in n is 1. But notice that bm = 1!!! Therefore,
2l + 1 = (bm−1bm−1...b1b0bm)2



Compute J(n) from n under Binary Representation(3)

1. The relation between n, m and l is:
J(n) = J(2m + l) = 2l + 1, for m ≥ 0 and 0 ≤ l < 2m.

2. Here is the binary representation of n and J(n) = 2l + 1
n = (bmbm−1...b1b0)2
and,
2l + 1 = J(n) = (bm−1bm−1...b1b0bm)2

3. We proved that
J((bmbm−1...b1b0)2) = (bm−1bm−1...b1b0bm)2

4. Conclusion: We can get J(n) from n by doing a 1-bit cyclic
shift left.

5. Example: if n = 200 = (11001000)2, then
J(n) = J((10010001)2) = 128 + 16 + 1 = 145, which means
that the people with index 145 will be the only survivor.



Why we can not expect to end up with n again?

1. If we start with n and apply the J function to n itself for
(m + 1) times, since n is an (m + 1)-bit bumber, we may
expect to end up with n again. i.e. J(J(...J(n)...)) = n

2. This is actually impossible, since when 0 is shifted to the
leading bit, it disappears.

3. Example: n = 100 = (1100100)2, we have
J((1100100)2) = (1001001)2, but then
J((1001001)2) = (0010011)2 = (10011)2
where the process breaks down.

4. Actually J(n) must always be ≤ n by definition, since J(n) is
the survivor’s number, hence the only case that we can get
back up to n by continuing to iterate is when J(n) = n. If
J(n) < n, we are not able to do that.



The Result of the Iteration of J

1. Repeated application of J produces a sequence of decreasing
values that eventually reach a fixed point, which is a pattern
of all 1’s with a value of 2k − 1, where k is the number of 1
bits in the binary representation of n.

2. Why? Since during the iteration, the 0’s will be continuously
thrown away when they are at the leading bit until all the 0’s
are deleted. What remains is the string composed of 1’s,
where no matter how many times we do the 1-bit cyclic
shifting, the value will not change any more. This value is the
fixed point.

3. Example:
J(J(...J(100)...)) = J(J(...J((1100100)2)...)) = 23 − 1 = 7
Here, the k for 100 k100 = 3.
J(J(...J((101101101101011)2)...)) = 210 − 1 = 1023
Here, the k for (101101101101011)2 is 10.



When Is Our Guess J(n) = n
2 true?(1)

1. The Guess: J(n) = n
2 when n is even.

2. From the table, we know that the guess is obviously false.
But, when n = 2 and n = 10, the guess is true.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

3. Now, we are interested in determining exactly when it is true.
And we already know these equations:
J(n) = J(2m + l) = 2l + 1, J(n) = n

2 (Our Guess)
and, n = 2m + l .



When Is Our Guess J(n) = n
2 true?(2)

1. From the 3 equations we have, it is easy to get:
J(n) = 2l + 1 = n

2 = (2m+l)
2 =⇒l = 1

3(2m − 2)

2. All right, here we get to know that l must be less than 2m and
greater than or equal to 0 when m > 0. When m = 0, it is
obvious that n

2 is not an integer. So we ignore this case.

3. Now, the only requirement for our guess J(n) = n
2 to be true

is that l should be an integer. For a specific m, if l is an
integer by the equation l = 1

3(2m − 2), then our guess is true.

4. So what we need to do now is to find out when (2m − 2) is a
multiple of 3.



when is (2m − 2) a multiple of 3?(1)

1. First of all, look at the table below in which there is the value
of (2m − 2) for the first 9 integers.

m 1 2 3 4 5 6 7 8 9

(2m − 2) 0∗ 2 6∗ 14 30∗ 62 126∗ 254 510∗

Note that all the (2m − 2)’s with a ∗ can be divided exactly by
3. The corresponding m’s are 1, 3, 5, 7 and 9.

2. Conjecture: (2m − 2) is a multiple of 3 when m is odd, but
not when m is even.



when is (2m − 2) a multiple of 3?(2)

1. Prove the conjecture by mathematical induction. In the base
case, when m = 1, 0 is a multiple of 3; when m = 2, 2 is not
a multiple of 3. Therefore, the base case is true.

2. Assume that when m = k, the conjecture is true: If k is odd,
(2k − 2) is a multiple of 3; otherwise, (2k − 2) is not.

3. Now, we prove the case when m = k + 2 (not m = k + 1
since we need to keep the parity of the induction variable k).
(2(k+2) − 2) = 4 × 2k − 2 = 4 × (2k − 2) + 6.
We know that 6 is a multiple of 3, so we only need to care
about whether 4 × (2k − 2) is a multiple of 3 or not. We can
prove that it is true directly from our induction assumption.
Since 4 is not a muptiple of 3, we only consider (2k − 2).
When k and k + 2 are both odd, (2k − 2) is a multiple of 3.
Otherwise not.

4. Till now, we proved that our conjecture is true.



When Is Our Guess J(n) = n
2 true?(3)

1. When m is odd, (2m − 2) is a multiple of 3. When m is even,
(2m − 2) is a not a multiple of 3.

2. For each m which is odd, we have a corresponding l which
makes our guess J(n) = n

2 true. Therefore, there are infinitely
many solutions to the equation J(n) = n

2 .

3. Here in the table are some examples:

m l n = 2m + 1 J(n) = 2l + 1 = n
2 n(binary)

1 0 2 1 10

3 2 10 5 1010

5 10 42 21 101010

7 42 170 85 10101010

9 170 682 341 1010101010



When Is Our Guess J(n) = n
2 true?(4)

1. In the table, notice the pattern in the rightmost column.
These are the binary numbers for which cyclic shifting
produces the same result as ordinary shifting one place right.

2. Example: (101010)2 ⇒leftcyclicshifting (10101)2 and
(101010)2 ⇒ordinaryshifting1digitright (10101)2

3. Left Cyclic Shifting: Compute the J(n) value for an given n.

4. Ordinary 1 Digit Right Shifting: Compute the value of n
2 when

the last digit of n is ”0”.

5. Our guess is J(n) = n
2 , so we need to make sure that the Left

Cyclic Shifting produces the same result as the Ordinary 1
Digit Right Shifting.

6. We can conclude that when n = (1010...1010)2, our guess
J(n) = n

2 is true.



Thank you!

Shang Yang
syang@cs.sunysb.edu
02/14/2008


	ch1p1

