Homework 1, Problem 1

1. Problem Description: Write details of pages 12-13, the discussion of cyclic properties of $J(n)$ and the false guess that $J(n)=\frac{n}{2} . J(n)$ is the index of survivor in the Josephus Problem.
2. Already Known: The recurrence in the Problem is: $J(1)=1$; $J(2 n)=2 J(n)-1$, for $n \geq 1$ $J(2 n+1)=2 J(n)+1$, for $n \geq 1$ and the solution to the recurrence is: $J\left(2^{m}+I\right)=2 I+1$, for $m \geq 0$ and $0 \leq I<2^{m}$
3. Goal: Explore some generalizations of the recurrence in Josephus Problem and uncover the structure that underlies all such problems.

Introducing the Binary Representation

1. The table of small input values:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

2. It is obvious that the powers of 2 played and important role in our solution, so let's look at the binary representations of n and $J(n)$.
3. Suppose n 's binary representation is $n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}$ which is equal to the equation, $n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2^{1}+b_{0}$
Here, all the b_{i} 's are either 0 or 1 and the bit b_{m} must be 1 .

Compute $J(n)$ from n under Binary Representation(1)

1. According to the solution of the recurrence, we denote n with the equation:
$n=2^{m}+l$,
therefore, we have:
$n=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$,
note that the difference between the expressions of n lies in the leading bit, where b_{m} is changed to 1 .
2. $I=n-2^{m}$, therefore, we can change the 1 in the leading bit of the binary representation of n to 0 and denote I as follows: $I=\left(0 b_{m-1} b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
3. Now let's consider the right hand side of the solution equation $J\left(2^{m}+I\right)=2 I+1$, obviously, we need to denote $2 I$.

Compute $J(n)$ from n under Binary Representation(2)

1. Now let's see how to denote 21 . In the binary representation, to multiply a number by 2 , we only need to do a left shift 1 bit operation, therefore, we can denote $2 /$ as follows: $2 I=\left(b_{m-1} b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$
2. It is obvious to get the representation of $2 I+1$:
$2 I+1=\left(b_{m-1} b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$
3. The only digit that is in
$n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
but not in $2 l+1$ is b_{m}. Also the only digit that is in $2 l+1$ but not in n is 1 . But notice that $b_{m}=1!!!$ Therefore, $2 l+1=\left(b_{m-1} b_{m-1} \ldots b_{1} b_{0} b_{m}\right)_{2}$

Compute $J(n)$ from n under Binary Representation(3)

1. The relation between n, m and l is:

$$
J(n)=J\left(2^{m}+l\right)=2 I+1, \text { for } m \geq 0 \text { and } 0 \leq I<2^{m} .
$$

2. Here is the binary representation of n and $J(n)=2 I+1$
$n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
and,
$2 l+1=J(n)=\left(b_{m-1} b_{m-1} \ldots b_{1} b_{0} b_{m}\right)_{2}$
3. We proved that
$J\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(b_{m-1} b_{m-1} \ldots b_{1} b_{0} b_{m}\right)_{2}$
4. Conclusion: We can get $J(n)$ from n by doing a 1-bit cyclic shift left.
5. Example: if $n=200=(11001000)_{2}$, then $J(n)=J\left((10010001)_{2}\right)=128+16+1=145$, which means that the people with index 145 will be the only survivor.

Why we can not expect to end up with n again?

1. If we start with n and apply the J function to n itself for $(m+1)$ times, since n is an $(m+1)$-bit bumber, we may expect to end up with n again. i.e. $J(J(\ldots J(n) \ldots))=n$
2. This is actually impossible, since when 0 is shifted to the leading bit, it disappears.
3. Example: $n=100=(1100100)_{2}$, we have $J\left((1100100)_{2}\right)=(1001001)_{2}$, but then $J\left((1001001)_{2}\right)=(0010011)_{2}=(10011)_{2}$ where the process breaks down.
4. Actually $J(n)$ must always be $\leq n$ by definition, since $J(n)$ is the survivor's number, hence the only case that we can get back up to n by continuing to iterate is when $J(n)=n$. If $J(n)<n$, we are not able to do that.

The Result of the Iteration of J

1. Repeated application of J produces a sequence of decreasing values that eventually reach a fixed point, which is a pattern of all 1 's with a value of $2^{k}-1$, where k is the number of 1 bits in the binary representation of n.
2. Why? Since during the iteration, the 0 's will be continuously thrown away when they are at the leading bit until all the 0's are deleted. What remains is the string composed of 1 's, where no matter how many times we do the 1-bit cyclic shifting, the value will not change any more. This value is the fixed point.
3. Example:
$J(J(\ldots J(100) \ldots))=J\left(J\left(\ldots J\left((1100100)_{2}\right) \ldots\right)\right)=2^{3}-1=7$
Here, the k for $100 \mathrm{k}_{100}=3$.
$J\left(J\left(\ldots J\left((101101101101011)_{2}\right) \ldots\right)\right)=2^{10}-1=1023$
Here, the k for $(101101101101011)_{2}$ is 10 .

When Is Our Guess $J(n)=\frac{n}{2}$ true? (1)

1. The Guess: $J(n)=\frac{n}{2}$ when n is even.
2. From the table, we know that the guess is obviously false. But, when $n=2$ and $n=10$, the guess is true.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16													
$J(n)$	1	1	3	1	3	5	7	1	3	5	7	9	11	13
15	15	1												

3. Now, we are interested in determining exactly when it is true.

And we already know these equations:
$J(n)=J\left(2^{m}+I\right)=2 I+1, J(n)=\frac{n}{2}$ (Our Guess)
and, $n=2^{m}+l$.

When Is Our Guess $J(n)=\frac{n}{2}$ true? (2)

1. From the 3 equations we have, it is easy to get:

$$
J(n)=2 I+1=\frac{n}{2}=\frac{\left(2^{m}+I\right)}{2} \Longrightarrow I=\frac{1}{3}\left(2^{m}-2\right)
$$

2. All right, here we get to know that I must be less than 2^{m} and greater than or equal to 0 when $m>0$. When $m=0$, it is obvious that $\frac{n}{2}$ is not an integer. So we ignore this case.
3. Now, the only requirement for our guess $J(n)=\frac{n}{2}$ to be true is that I should be an integer. For a specific m, if I is an integer by the equation $I=\frac{1}{3}\left(2^{m}-2\right)$, then our guess is true.
4. So what we need to do now is to find out when $\left(2^{m}-2\right)$ is a multiple of 3 .

when is $\left(2^{m}-2\right)$ a multiple of 3?(1)

1. First of all, look at the table below in which there is the value of $\left(2^{m}-2\right)$ for the first 9 integers.

m	1	2	3	4	5	6	7	8	9
$\left(2^{m}-2\right)$	0^{*}	2	6^{*}	14	30^{*}	62	126^{*}	254	510^{*}

Note that all the $\left(2^{m}-2\right)$'s with a $*$ can be divided exactly by 3. The corresponding m 's are $1,3,5,7$ and 9 .
2. Conjecture: $\left(2^{m}-2\right)$ is a multiple of 3 when m is odd, but not when m is even.

when is $\left(2^{m}-2\right)$ a multiple of 3?(2)

1. Prove the conjecture by mathematical induction. In the base case, when $m=1,0$ is a multiple of 3 ; when $m=2,2$ is not a multiple of 3 . Therefore, the base case is true.
2. Assume that when $m=k$, the conjecture is true: If k is odd, $\left(2^{k}-2\right)$ is a multiple of 3 ; otherwise, $\left(2^{k}-2\right)$ is not.
3. Now, we prove the case when $m=k+2$ (not $m=k+1$ since we need to keep the parity of the induction variable k). $\left(2^{(k+2)}-2\right)=4 \times 2^{k}-2=4 \times\left(2^{k}-2\right)+6$. We know that 6 is a multiple of 3 , so we only need to care about whether $4 \times\left(2^{k}-2\right)$ is a multiple of 3 or not. We can prove that it is true directly from our induction assumption.
Since 4 is not a muptiple of 3 , we only consider $\left(2^{k}-2\right)$. When k and $k+2$ are both odd, $\left(2^{k}-2\right)$ is a multiple of 3 . Otherwise not.
4. Till now, we proved that our conjecture is true.

When Is Our Guess $J(n)=\frac{n}{2}$ true? (3)

1. When m is odd, $\left(2^{m}-2\right)$ is a multiple of 3 . When m is even, $\left(2^{m}-2\right)$ is a not a multiple of 3 .
2. For each m which is odd, we have a corresponding I which makes our guess $J(n)=\frac{n}{2}$ true. Therefore, there are infinitely many solutions to the equation $J(n)=\frac{n}{2}$.
3. Here in the table are some examples:

m	I	$n=2^{m}+1$	$J(n)=2 I+1=\frac{n}{2}$	n (binary)
1	0	2	1	10
3	2	10	5	1010
5	10	42	21	101010
7	42	170	85	10101010
9	170	682	341	1010101010

When Is Our Guess $J(n)=\frac{n}{2}$ true? (4)

1. In the table, notice the pattern in the rightmost column. These are the binary numbers for which cyclic shifting produces the same result as ordinary shifting one place right.
2. Example: $(101010)_{2} \Rightarrow_{\text {leftcyclicshifting }}(10101)_{2}$ and $(101010)_{2} \Rightarrow{ }_{\text {ordinaryshifting1digitright }}(10101)_{2}$
3. Left Cyclic Shifting: Compute the $J(n)$ value for an given n.
4. Ordinary 1 Digit Right Shifting: Compute the value of $\frac{n}{2}$ when the last digit of n is " 0 ".
5. Our guess is $J(n)=\frac{n}{2}$, so we need to make sure that the Left Cyclic Shifting produces the same result as the Ordinary 1 Digit Right Shifting.
6. We can conclude that when $n=(1010 \ldots 1010)_{2}$, our guess $J(n)=\frac{n}{2}$ is true.

Thank you!

Shang Yang
syang@cs.sunysb.edu 02/14/2008

