Discrete Mathematics

Chapter 1, Problem 18,19

Zixuan Wang Chunxiao Hou Liang Cheng
Department of Computer Science and Engineering SUNY at Stony Brook
February 19, 2008

Problem

Problem 18

Show that the following set of n bent lines defines Z_{n} regions, where Z_{n} is defined in (1.7): The jth bent line, for $i \leqslant j \leqslant n$, has its zig at $\left(n^{2 j}, 0\right)$ and goes up through the points $\left(n^{2 j}-n^{j}, 1\right)$ and $\left(n^{2 j}-n^{j}-n^{-n}, 1\right)$.

Analysis

How can we derive $Z_{n}=2 n^{2}-n+1$?

Example 1

Analysis

A bent line is like two straight lines except that regions merge when the "two" lines don't extend past their intersection point. To obtain Z_{n}, one requirement is that: each ray should intersect with all other rays. So the situation is similar to $2 n$ lines arrangement, but we lose only two regions per line.

Close formula of Z_{n}

$$
\begin{align*}
Z_{n} & =L_{2 n}-2 n=2 n(2 n+1) / 2+1-2 n \\
& =2 n^{2}-n+1 \tag{1}
\end{align*}
$$

Solution

This is the situation when $n=2$.

Example 2

Solution

We should prove

Every ray intersects with other rays at distinct points.
The slopes of the j th two rays are $-1 / n^{j}$ and $-1 /\left[n^{j}+n^{-n}\right]$ respectively. Similarly, the slopes of the k th two rays are $-1 / n^{k}$ and $-1 /\left[n^{k}+n^{-n}\right]$ respectively.

Solution

The j th bent line can be expressed as follows $(1 \leqslant j \leqslant n)$:

$$
\left\{\begin{array}{l}
y=-\frac{1}{n^{j}}\left(x-n^{2 j}\right) \tag{2}\\
y=-\frac{1}{n^{j}+n^{-n}}\left(x-n^{2 j}\right)
\end{array}\right.
$$

The k th bent line can be expressed in similar way $(1 \leqslant k \leqslant n)$:

$$
\left\{\begin{array}{l}
y=-\frac{1}{n^{k}}\left(x-n^{2 k}\right) \tag{3}\\
y=-\frac{1}{n^{k}+n^{-n}}\left(x-n^{2 k}\right)
\end{array}\right.
$$

Solution

Suppose $k<j$, by solving equation 2 and 3, we can get the x coordinates of the intersection points, which are:
(1) $-n^{j+k}$
(2) $\left(n^{2 j+k}+n^{2 j-n}-n^{2 k+j}\right) /\left(n^{k}+n^{-n}-n^{j}\right)$
(3) $\left(n^{2 k+j}+n^{2 k-n}-n^{2 j+k}\right) /\left(n^{j}+n^{-n}-n^{k}\right)$
(4) $-n^{j+k}-n^{k-n}-n^{j-n}$

We can simplify the formula in the following way:

$$
\begin{aligned}
\frac{n^{2 j+k}+n^{2 j-n}-n^{2 k+j}}{n^{k}+n^{-n}-n^{j}} & =n^{2 j}+\frac{n^{3 j}-n^{2 k+j}}{n^{k}+n^{-n}-n^{j}} \\
& >n^{2 j}+\frac{n^{3 j}-n^{2 k+j}}{n^{k}-n^{j}} \\
& =n^{2 j}+\frac{n^{j}\left(n^{j}+n^{k}\right)\left(n^{j}-n^{k}\right)}{n^{k}-n^{j}} \\
& =-n^{j+k}
\end{aligned}
$$

Solution

$$
\begin{align*}
\frac{n^{2 j+k}+n^{2 j-n}-n^{2 k+j}}{n^{k}+n^{-n}-n^{j}} & <\frac{n^{j+k}\left(n^{j}-n^{k}\right)}{n^{k}+n^{-n}-n^{j}} \\
& <\frac{n^{j+k}\left(n^{j-1}-n^{k-1}\right)}{n^{k}+n^{-n}-n^{j}} \tag{5}\\
& <\frac{n^{2 j+k-1}-n^{j+2 k-1}-n^{j+k-n-1}}{n^{k}+n^{-n}-n^{j}} \\
& =-n^{j+k-1}
\end{align*}
$$

Solution

So, we have

$$
\begin{gather*}
-n^{j+k} \tag{6}\\
-n^{j+k}<\frac{n^{2 j+k}+n^{2 j-n}-n^{2 k+j}}{n^{k}+n^{-n}-n^{j}}<-n^{j+k-1} \tag{7}\\
-n^{j+k+1}<\frac{n^{2 k+j}+n^{2 k-n}-n^{2 j+k}}{n^{j}+n^{-n}-n^{k}}<-n^{j+k} \tag{8}\\
-n^{j+k}-n^{k-n}-n^{j-n} \tag{9}
\end{gather*}
$$

Solution

Because four intersection points in Figure 2 belong to four distinct rays, they are distinct apparently. Further, we should consider whether there is a bent line i, such that i, j, k have a common intersection point.

Example 3

Figure: Is this situation possible?

Solution

First, we classify the intersection points into four groups:
(1) upper-upper
(2) upper-lower
(3) lower-upper
(9) lower-lower

Solution

Second, we choose the ray with largest x intercept as j. We use $v_{i j, \alpha}$ $(1 \leqslant \alpha \leqslant 4)$ to represent four intersection points of bent line i and j, and similarly $v_{k j, \alpha}$ stands for the intersection points of bent line k and j. α stands for the group. Now we should prove three claims:
(1) $v_{i j, \alpha} \neq v_{k j, \alpha}$
(2) $v_{i j, 1} \neq v_{k j, 3}$
(3) $v_{i j, 2} \neq v_{k j, 4}$

Solution

From equations 6 and 9 , we know that the x coordinates of the 1st class and the 4 th class intersection points are $-n^{j+k}$ and $-n^{j+k}-n^{k-n}-n^{j-n}$, which are strictly monotonic when we fix j. That means the intersection points are also distinct when k are distinct. From equations 7 and 8 , when we fix j, and let k be distinct values, the x coordinates obtained by the formulas are in the disjoint slots, so they are distinct. Therefore, $v_{i j, \alpha} \neq v_{k j, \alpha}$.

Solution

We first prove $v_{i j, 1} \neq v_{k j, 3}$. Because we know that x coordinate of $v_{i j, 1}$ is $-n^{j+k}$, and x coordinate of $v_{k j, 3}$ is between $-n^{j+k+1}$ and $<-n^{j+k}$, we can conclude that they cannot be the same.

Solution

We prove $v_{i j, 2} \neq v_{k j, 4}$ as follows:

- When $i<k$, suppose $v_{i j, 2}=v_{k j, 4}$, we can get $v_{i j, 2}=v_{k j, 4}=v_{i k, 2}$, because we know that when $j \neq k, v_{i j, 2} \neq v_{i k, 2}$, we get a contradiction. Therefore, in this case, $v_{i j, 2} \neq v_{k j, 4}$
- When $i>k$, suppose $v_{i j, 2}=v_{k j, 4}$, we can get $v_{i j, 2}=v_{k j, 4}=v_{k i, 3}$, because we know that $-n^{i+j}<x\left(v_{i j, 2}\right)<-n^{i+j-1}$ and $-n^{k+i+1}<x\left(v_{k i, 3}\right)<-n^{k+i}$ and $k \leqslant j-2$, we get $x\left(v_{i j, 2}\right)<x\left(v_{k i, 3}\right)$. Therefore, $v_{i j, 2} \neq v_{k j, 4}$.

Solution

In summary, because the x coordinates of all intersection points are less than $n^{2 k}$, that means for each ray, it intersects with other rays. Further, we have proved that these rays intersect at distinct points. So this set of n bent lines defines Z_{n} regions.

Problem

Problem 19

Is it possible to obtain Z_{n} regions with n bent lines when the angle at each zig is 30° ?

Analysis

We have a claim that: if one zig is located inside the bent line, in this situation, we cannot obtain Z_{n} regions.

Example 4

(a) Case 1

(b) Case 2
(b) Case 2

(c) Case 3

Figure: Zig is in the bent line

Solution

Base on the claim above, when add bent lines to the plane, we should avoid placing zig in any wedge.

Example 5

Figure: After adding 5 bent lines

Solution

After adding 5 bent lines, we cannot place any additional bent line such that no zig lies in the region of other bent line. Therefore, if $n>5$, it is impossible to obtain Z_{n}.

Example 6

The end

Thank you!

