Chapter one

Problem 2 and 14

Problem 2

- Find the shortest sequence of moves that transfers a tower of n disks from the left peg A to right peg B, if direct moves between A and B are disallowed. Each move must be to or from the middle peg. As usual a larger disk must never appear above a smaller one.)

The problem can be solved recursively as follows:

First consider case, $\mathrm{n}=1$, where we have to move a single disk from A to B. Since direct moves are disallowed this requires 2 moves and hence $P(1)$
$=2$.

We define the task of moving n disks from peg A to peg B recursively as follows.

- By assumption we know how to move the top n-1 disks from A to B without direct move $\rightarrow P(n-1)$
- Move the largest disk from A to the middle $\rightarrow 1$
- Again by assumption we know how to move the top $\mathrm{n}-1$ disks from B to $A \rightarrow P(n-1)$
- Move the largest disk from the middle to $B \rightarrow 1$
- Again by assumption we know how to move the top $\mathrm{n}-1$ disks from A to B without direct move $\rightarrow P(n-1)$
- After these moves all the n disks will be in order on peg B. Thus we can see that the total moves required to transfer the n disks is $P(n)=3 P(n-1)+2$.
- We want to guess the close form so we look at small cases: where we know $P(1)=2$;
- $P(2)=3 * 2+2=8$,
- $P(3)=3 * 8+2=26, .$.
- We suggest the solution to this recurrence as: $P(n)=3^{\wedge} n-1$.

Proof by induction for $P(n)=3^{\wedge} n-1$:

$P(0)=3^{\wedge} 0-1=0$
For $\mathrm{n}>0$ we assume that it works
When n is replaced by $n-1$:
$P(n)=3 P(n-1)+2=3\left(3^{\wedge}(n-1)-\right.$
$1)+2=3^{\wedge} n-1$.

Problem 14

Problem 14

How many pieces of cheese can you obtain from a single thick piece by making five straight slices?
(the cheese must stay in it's original position while you do all the cutting, and each slice must correspond to a plane in 3D) Find a recurrence relation for $p(n)$, the maximum number of three dimensional regions that can be defined by n different planes.

We use this problem

- How many slices of pizza can a person obtain by making n straight cuts with pizza knife.
- Which actually is "What is the maximum number $L(n)$ of regions defined by n lines in the plane?".
We showed by induction $L(n)=L(n-1)+n$ $\mathrm{n}>0$
And the close formula for that is $L(n)=$ $n(n+1) / 2+1$
- Consider the most general case, where planes inserted are not parallel and no set of more than 2 planes intersect in the same line. For the n'th plane, all the $\mathrm{n}-1$ previously intersected planes will intersect the n'th plane and create $\mathrm{n}-1$ cuts on that plane.
- As it was shown these $\mathrm{n}-1$ cuts will divide the n'th plane into at most 1+ $\mathrm{n}(\mathrm{n}-1) / 2$ regions.

The most of new pieces by the n'th cut is exactly this number.
Thus the recurrence relation that describe the maximum number of pieces attainable using n cuts is

$$
P(n)=P(n-1)+1+n(n-1) / 2
$$

given that the base case $P(0)=1$.
$P(1)=2$;
$P(2)=2+1+1=4=1 * 2 * 3 / 6+2+1$
$P(3)=4+3+1=8=2 * 3 * 4 / 6+3+1$
$P(4)=8+6+1=15=3 * 4 * 5 / 6+4+1$
$P(5)=15+10+1=26=4 * 5 * 6 / 6+5+1$
$P(6)=26+15+1=42=5 * 6 * 7 / 6+6+1$
The solution to this recurrence is
$\mathrm{P}(\mathrm{n})=(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1) / 6+\mathrm{n}+1$ which can be proved by induction.

Prove by induction: $P(n)=(n-1) n(n+1) / 6+n+1$

It works for $\mathrm{P}(0)=1$;
Assume it holds when n is replaced with $\mathrm{n}-1$ since

$$
\begin{aligned}
& P(n)=P(n-1)+n(n-1) / 2+1 \text { then } \\
& P(n)=(n-2)(n-1)(n) / 6+n+n(n-1) / 2+1
\end{aligned}
$$

And :

$$
P(n)=(n-1) n(n+1) / 6+n+1
$$

