cse547

Chapter 1, problem 2

Chapter No 1, Problem No 2

• Question :

Find the shortest sequence of moves that transfers a tower of n disks from the left peg A to the right peg B, if direct moves between A and B are disallowed. (Each move must be to or from the middle peg. As usual, a larger disk must never appear above a smaller one.)

The objective is to transfer the entire tower from A to C(in the diagram), if direct moves between A and C are disallowed. This problem is a variant of Tower of Hanoi problem.

GENERALIZE :

Lets assume that the tower has "n" disks. Let T_n be the minimum number of moves that will transfer "n" disks from one peg (i.e. A to another (i.e. C). Clearly $T_0 = 0$, because no moves at all are needed to transfer a tower of n = 0 disks. $T_1 = 2$ (Since the peg has to be transferred from A to B and then to C.) Similarly ,

$$T_2 = 8$$

 $T_3 = 26$

Winning Strategy :

(for n = 3)

1.Transfer top 2 disks from A to C (requiring T₂ disk moves).

- 2.Move the largest disk from A to center peg "B".
- 3. Move again the 2 disks from C back to A(requiring T_2 disk moves).

4.Move the largest disk to peg "C". 5.Again we now need to move 2 disks from A to C (requiring T₂ disk moves)

General Case :

1.Transfer top (n-1) disks from A to C.
2.Move the largest from A to center peg B.
3.Transfer (n-1) disks from C to A back.
4.Move the largest disk to C.
5.Transfer (n-1) disks from A to C again.

Total number of moves =

$$T_{n-1} + 1 + T_{n-1} + 1 + T_{n-1} = 3 T_{n-1} + 2$$

Recurrence Relation :

$$T_0 = 0$$

$$T_n = 3 T_{n-1} + 2$$

Lets compute successively a few values to guess the closed formula.

$$\begin{split} T_0 &= 0 \\ T_1 &= 3^*0 + 2 = 2 \\ T_2 &= 3^*2 + 2 = 8 \\ T_3 &= 3^*8 + 2 = 26 \\ T_4 &= 3^*26 + 2 = 80 \\ Observation : \\ T_n &= 3^n - 1 \end{split}$$

Now we have to prove that Recurrence relation = Closed Formula Lets apply Mathematical induction : Recurrence : $T_0 = 0, T_n = 3 T_{n-1} + 2$ **Closed Formula :** $T_n = 3^n - 1$, $n \ge 0$

Basis case : $T_{0} = 0$ C.F : $T_0 = 3^0 - 1 = 1 - 1 = 0$ Therefore, Recurrence = C.F for n=0Let us assume that our closed formula is correct for values $\leq n - 1$. So, now we need to prove : $T_n = 3^n - 1$

Applying the above relation in the recurrence relation, we get $T_n = 3 T_{n-1} + 2$ $= 3(3^{n-1} - 1) + 2$ $= 3^{n} - 3 + 2$ $= 3^{n} - 1$ Hence, the closed formula holds for n as well.

Therefore,

By Mathematical Induction we proved for all $n \in N$, $T_n = 3^n - 1$