cse547

Chapter 1, problem 2

Chapter No 1,Problem No 2

- Question :

Find the shortest sequence of moves that transfers a tower of n disks from the left peg A to the right peg B, if direct moves between A and B are disallowed. (Each move must be to or from the middle peg. As usual, a larger disk must never appear above a smaller one.)

The objective is to transfer the entire tower from A to C (in the diagram), if direct moves between A and C are disallowed.
This problem is a variant of Tower of Hanoi problem.

GENERALIZE :

Lets assume that the tower has " n " disks. Let T_{n} be the minimum number of moves that will transfer " n " disks from one peg (i.e. A to another (i.e. C). Clearly $T_{0}=0$, because no moves at all are needed to transfer a tower of $\mathrm{n}=0$ disks.

$\mathrm{T}_{1}=2$ (Since the peg has to be

 transferred from A to B and then to C.) Similarly,$$
\begin{aligned}
& \mathrm{T}_{2}=8 \\
& \mathrm{~T}_{3}=26
\end{aligned}
$$

Winning Strategy :

(for $\mathrm{n}=3$)
1.Transfer top 2 disks from A to C (requiring T_{2} disk moves).
2.Move the largest disk from A to center peg "B".
3.Move again the 2 disks from C back to A (requiring T_{2} disk moves).
4.Move the largest disk to peg "C".
5.Again we now need to move 2 disks from A to C (requiring T_{2} disk moves)

General Case :

1.Transfer top ($\mathrm{n}-1$) disks from A to C .
2.Move the largest from A to center peg B.
3.Transfer ($n-1$) disks from C to A back. 4.Move the largest disk to C. 5.Transfer ($n-1$) disks from A to C again.

Total number of moves $=$

$$
T_{n-1}+1+T_{n-1}+1+T_{n-1}=3 T_{n-1}+2
$$

Recurrence Relation :

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=3 T_{n-1}+2
\end{aligned}
$$

Lets compute successively a few values to guess the closed formula.

$$
\begin{aligned}
& \mathrm{T}_{0}=0 \\
& \mathrm{~T}_{1}=3^{\star} 0+2=2 \\
& \mathrm{~T}_{2}=3^{\star} 2+2=8 \\
& \mathrm{~T}_{3}=3^{\star} 8+2=26 \\
& \mathrm{~T}_{4}=3^{\star} 26+2=80 \\
& \text { Observation : } \\
& \mathrm{T}_{\mathrm{n}}=3^{n}-1
\end{aligned}
$$

Now we have to prove that
Recurrence relation = Closed Formula Lets apply Mathematical induction :
Recurrence:
$\mathrm{T}_{0}=0, \mathrm{~T}_{\mathrm{n}}=3 \mathrm{~T}_{\mathrm{n}-1}+2$
Closed Formula:

$$
T_{n}=3^{n}-1, n>=0
$$

Basis case:

$\mathrm{T}_{0}=0$
C.F : $\mathrm{T}_{0}=3^{0}-1=1-1=0$

Therefore, Recurrence $=$ C.F for $\mathrm{n}=0$
Let us assume that our closed formula is correct for values <= n-1.
So, now we need to prove : $T_{n}=3^{n}-1$

Applying the above relation in the recurrence relation, we get

$$
\begin{aligned}
T_{n} & =3 T_{n-1}+2 \\
& =3\left(3^{n-1}-1\right)+2 \\
& =3^{n}-3+2 \\
& =3^{n}-1
\end{aligned}
$$

Hence, the closed formula holds for n as well.

Answer

Therefore,
By Mathematical Induction we proved for all $n € N, T_{n}=3^{n}-1$

