CSE 547 Chapter 1, problem 20

Solution 2

Chapter 1 problem 20

Solve the general five-parameter recurrence

-h(1)=a;

- $h(2 n+j)=4 h(n)+y_{j} n+\beta_{j}$, for $j=0,1$ and $n \geq 1$ for $n \in N$

According to the book, we should ideally solve $h(n)$ for 5 parameters, and find the general equation
$h(n)=a(n) \alpha+b(n) \beta_{0}+c(n) \beta_{1}+d(n) \gamma_{0}+e(n) \gamma_{1}$.

Instead, we're going to take a different approach, using binary numbers.

First 5 solutions:

$$
\begin{aligned}
& h(1)=\alpha \\
& h(2)=h\left(2^{*} 1+0\right)=4 h(1)+n \gamma_{0}+\beta_{0}=4 \alpha+\gamma_{0}+\beta_{0} \\
& h(3)=h\left(2^{*} 1+1\right)=4 h(1)+n \gamma_{1}+\beta_{1}=4 \alpha+\gamma_{1}+\beta_{1} \\
& h(4)=h\left(2^{*} 2+0\right)=4 h(2)+n \gamma_{0}+\beta_{0}= \\
& 4\left(4 \alpha+\gamma_{0}+\beta_{0}\right)+2 \gamma_{0}+\beta_{0}= \\
& 16 \alpha+4 \gamma_{0}+4 \beta_{0}+2 \gamma_{0}+\beta_{0}=16 \alpha+6 \gamma_{0}+5 \beta_{0} \\
& h(5)=h\left(2^{*} 2+1\right)=4 h(2)+n \gamma_{1}+\beta_{1}= \\
& 4\left(4 \alpha+\gamma_{0}+\beta_{0}\right)+2 \gamma_{1}+\beta_{1}=16 \alpha+4 \gamma_{0}+4 \beta_{0}+ \\
& 2 \gamma_{1}+\beta_{1}
\end{aligned}
$$

There is no obvious pattern from these steps

We can use binary numbers to find the solution.
We can write out the number k in binary
expansion:
$k=\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}$
We know that each term b_{i} is 0 or 1 , with the leading digit, α, always 1 .
$h(1)=\alpha$
$h(2 n+j)=4 h(n)+\gamma_{j} n+\beta_{j} \quad$ for $j=0,1$
$h\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=4 h\left(1 b_{m-1} b_{m-2} \ldots b_{1}\right)_{2}+\gamma_{b_{0}}(1$
$\left.b_{m-1} b_{m-2} \cdots b_{1}\right)_{2}+\beta_{b_{0}}$

$$
\begin{aligned}
= & 4\left[4 h\left(1 b_{m-1} b_{m-2} \ldots b_{2}\right)_{2}+\gamma_{b_{m}}\left(1 b_{m-1} b_{m-2} \ldots b_{2}\right)_{2}+\right. \\
& \left.\left.\beta_{b_{1}}\right]+\gamma_{b_{1}} 1 b_{m-1} b_{m-2} \cdots b_{2}\right)_{2}+\beta_{b_{1}}+\gamma_{b_{0}}\left(1 b_{m-1} b_{m-}\right. \\
& \left.2 \cdots b_{1}\right)_{2}+\beta_{b_{0}}
\end{aligned}
$$

As we can see, by expanding the formula, we reduce the number of digits inside each binary term
bAs we expand the formula completely, the equation becomes
$h\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=4^{m} \alpha+4^{m-1}(1)_{2} V_{b m-1}+4^{m-2}(1$

$$
{ }^{1} \beta_{\mathrm{b}_{\mathrm{m}-2} \cdots+4}{ }^{1} \beta_{\mathrm{b}_{1}}+4{ }^{0} \beta_{\mathrm{b}_{0}}
$$

Where $m+1$ is the number of digits in the binary number $k=\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=\left(b_{m} \ldots b_{o}\right)_{2}$.
$h\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=4^{m} \alpha+4^{m-1}(1)_{2} \gamma_{b m-1}+4^{m-2}(1$

$$
\left.b_{m-2}\right)_{2} V_{b_{m-2}} \ldots+4^{0}\left(1 \ldots b_{1}\right)_{2} V_{b_{0}}+4^{m-1} \beta_{b_{m-1}}+4^{m-}
$$

$$
{ }^{1} \beta_{b_{m}-2} \ldots+4^{1} \beta_{b_{1}}+4^{0} \beta_{b_{0}}
$$

We can combine all the γ terms as a summation, which becomes

$$
\sum 4^{m-i}\left(1 \ldots b_{m-i+1}\right)_{2} V_{b_{m-i}}
$$

summation for $i: 1 \leq i \leq m$.
Similarly we can do the same thing to all the β terms, which turns into
$\sum 4^{m-i} \beta_{b_{m-1}}$,
summation for $\mathrm{i}: 1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{m}+1$ is the number of digits of the binary number $k=\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=\left(b_{m} \ldots b_{o}\right)_{2}$

The closed formula becomes

$h\left(b_{m} \ldots b_{o}\right)=4^{m} \alpha+\sum 4^{m-1}\left(1 \ldots b_{m-i+1}\right)_{2} V_{b_{m-i}}+$

$$
\sum 4^{m-i} \beta_{b_{m-1}}
$$

wbbhere summation is for i : $1 \leq i \leq m, m+1$ is the number of digits in the binary number $k=\left(1 b_{m-1} b_{m-2} \ldots b_{1} b_{0}\right)_{2}=\left(b_{m} \ldots b_{o}\right)_{2} h\left(b_{m} \ldots b_{o}\right)$,

Lets try k=5, which we solved already
$h(5)=16 \alpha+4 \gamma_{0}+4 \beta_{0}+2 \gamma_{1}+\beta_{1}$
In binary form: $h(5)=(101)$
$h(5)=4^{m} \alpha+\sum 4^{m-1}\left(1 \ldots b_{m-i+1}\right)_{2} V_{b_{m-i}}+\sum 4^{m-i} \beta_{b_{m-1}}$
$h(5)=4^{2} \alpha+4^{1}(1) \gamma_{b_{1}}+4^{0}(10) Y_{b_{0}}+4^{1} \beta_{b_{1}}+4^{0} \beta_{b_{0}}$
$h(5)=16 \alpha+4 \gamma_{b_{1}}+1(2) \gamma_{b_{0}}+4 \beta_{b_{1}}+\beta_{b_{0}}$
$h(5)=16 \alpha+4 \gamma_{0}+2 \gamma_{1}+4 \beta_{0}+\beta_{1}$

$$
\begin{aligned}
\mathrm{h}(1) & =4^{0} \alpha+0 \mathrm{y}_{\mathrm{b}_{\mathrm{m}}-\mathrm{i}}+0 \beta_{\mathrm{b}_{\mathrm{m}-\mathrm{i}}}=\alpha \\
\mathrm{h}(2) & =4^{1} \alpha+4^{0}(1) \mathrm{y}_{\mathrm{b}_{0}}+\beta_{\mathrm{b}_{0}}=4 \alpha+\mathrm{y}_{0}+\beta_{0} \\
\mathrm{~h}(3) & =4^{1} \alpha+4^{0}(1) \mathrm{y}_{\mathrm{b}_{0}}+4^{0} \beta_{\mathrm{b}_{0}}=4 \alpha+\mathrm{Y}_{1}+\beta_{1} \\
\mathrm{~h}(4) & =4^{2} \alpha+4^{1}(1) \mathrm{y}_{\mathrm{b}_{1}}+4^{0}(10) \mathrm{Y}_{\mathrm{b}}+4^{1} \beta_{\mathrm{b}_{1}}+4^{0} \beta_{\mathrm{b}_{0}} \\
& =16 \alpha+4(1) \mathrm{Y}_{0}+(2) \mathrm{Y}_{0}+4 \beta_{0}+\beta_{0} \\
& =16 \alpha+6 \mathrm{Y}_{0}+5 \beta_{0}
\end{aligned}
$$

Which are the same values we got recursively.

