CSE547
 Discrete Mathematics

Chapter 1, Problem 7

P4: Problem 7 on Page 17

Let $\mathbf{H}(\mathbf{n})=\mathbf{J}(\mathbf{n}+1)-\mathbf{J}(\mathbf{n})$. Equation (1.8) tells us that $\mathbf{H}(2 n)=2$, and $\mathbf{H}(2 n+1)=J(2 n+2)-$ $\mathbf{J}(\mathbf{2 n}+\mathbf{1})=(\mathbf{2 J}(\mathbf{n}+1)-1)-(\mathbf{2 J}(\mathrm{n})+\mathbf{1})=$ $2 H(n)-2$, for all $n \geq 1$. Therefore it seems possible to prove that $H(n)=2$ for all n, by induction on n . What's wrong here?

Detailed Solution

From the problem, we know the following:
(1) $\mathbf{H}(\mathbf{n})=\mathbf{J}(\mathbf{n}+1)-J(\mathbf{n})$
(2) Equation (1.8) from the textbook page 10:

$$
\begin{aligned}
J(1) & =1 \\
J(2 n) & =2 J(n)-1, \quad \text { for } n \geq 1 ; \\
J(2 n+1) & =2 J(n)+1, \quad \text { for } n \geq 1 .
\end{aligned}
$$

But how do we get $\mathbf{H}(2 n)$ and $\mathbf{H}(2 n+1)$?

Detailed Solution - continue

Let's check whether $\mathbf{H}(2 n)=2$, for all $n \geq 1$ as the problem stated:

$$
\begin{array}{rlrl}
\mathbf{H}(2 n) & =\mathbf{J}(2 n+1)-J(2 n) & H(n)=J(n+1)-J(n) \\
& =[2 J(n)+1]-[2 J(n)-1] & \text { Eq. }(1.8) \\
& =2 J(n)+1-2 J(n)+1 & \text { Take the }[] \text { out } \\
& =2 & \text { YES }! & \text { Algebra }
\end{array}
$$

Eq. (1.8):

$$
\begin{aligned}
J(1) & =1 & & \\
J(2 n) & =2 J(n)-1, & & \text { for } n \geq 1 ; \\
J(2 n+1) & =2 J(n)+1, & & \text { for } n \geq 1 .
\end{aligned}
$$

Detailed Solution - continue

Let's check whether $\mathbf{H}(2 n+1)=\mathbf{J}(2 n+2)-J(2 n+1)=$ $(2 J(n+1)-1)-(2 J(n)+1)=2 H(n)-2$, for all $n \geq 1$ as the problem stated:

$$
\mathbf{H}(\mathbf{n})=\mathbf{J}(\mathbf{n}+\mathbf{1})-\mathbf{J}(\mathbf{n})
$$

Algebra
Algebra
Eq. (1.8)
Take the [] out
Algebra
$\mathbf{H}(\mathbf{n})=\mathbf{J}(\mathbf{n}+1)-\mathbf{J}(\mathbf{n})$

Eq. (1.8):

$$
\begin{aligned}
& J(1)=1 \\
& J(2 n)=2 J(n)-1, \text { for } n \geq 1 ; \\
& J(2 n+1)=2 J(n)+1, \\
& \text { for } n \geq 1 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{H}(2 n+1)=\mathbf{J}(2 n+1+1)-\mathbf{J}(2 n+1) \\
& =\mathbf{J}(2 \mathbf{n}+2)-\mathbf{J}(2 \mathbf{n}+1) \\
& =\mathbf{J}(\mathbf{2}(\mathrm{n}+1))-\mathbf{J}(2 \mathrm{n}+1) \\
& =[2 J(n+1)-1]-[2 J(n)+1] \\
& =2 J(n+1)-1-2 J(n)-1 \\
& =2[J(n+1)-J(n)]-2 \\
& =2 H(n)-2 \quad Y E S!
\end{aligned}
$$

Detailed Solution - continue

Now, we proved the following is true.
$\mathbf{H}(\mathbf{2 n})=2$, for all $\mathrm{n} \geq 1$;
$H(2 n+1)=2 H(n)-2$, for all $n \geq 1$.

What is missing?
The base case when $\mathrm{n}=1$. What is $\mathbf{H}(\mathbf{1})=$?

Detailed Solution - continue

What is the base case $H(1)=$?

$$
\begin{aligned}
\mathbf{H}(\mathbf{1}) & =\mathbf{J}(1+1)-\mathbf{J}(\mathbf{1}) & & H(n)=\mathbf{J}(\mathrm{n}+1)-\mathbf{J}(\mathrm{n}) \text {, when } \mathrm{n}=1 \\
& =\mathbf{J}(2)-\mathbf{J}(\mathbf{1}) & & \text { Algebra } \\
& =[2 \mathbf{J}(\mathbf{1})-\mathbf{1}]-\mathbf{J}(\mathbf{1}) & & \text { Eq. }(\mathbf{1 . 8}) \\
& =2(\mathbf{1})-1-1 & & \text { Eq. }(\mathbf{1 . 8}) \\
& =0 & & \text { Algebra }
\end{aligned}
$$

Eq. (1.8): $\quad J(1)=1$

$$
\begin{aligned}
\mathrm{J}(2 \mathrm{n}) & =2 \mathrm{~J}(\mathrm{n})-1, & & \text { for } \mathrm{n} \geq 1 ; \\
\mathrm{J}(2 \mathrm{n}+1) & =2 \mathrm{~J}(\mathrm{n})+1, & & \text { for } \mathrm{n} \geq 1 .
\end{aligned}
$$

Conclusion

Review the problem: Let $\mathbf{H}(\mathbf{n})=\mathbf{J}(\mathbf{n}+1)-\mathbf{J}(\mathbf{n})$. Equation (1.8) tells us that $\mathbf{H}(2 n)=2$, and $H(2 n+1)=J(2 n+2)-J(2 n+1)$ $=(2 J(n+1)-1)-(2 J(n)+1)=2 H(n)-2, f o r ~ a l l ~ n \geq 1$. Therefore it seems possible to prove that $H(n)=2$ for all n, by induction on n. What's wrong here?
Conclusion: We proved that the following are true:
$H(2 n)=2$, for all $n \geq 1$;
$H(2 n+1)=2 H(n)-2$, for all $n \geq 1$.
However, the original problem does not have the base case $H(1)=0$, which we solved.
And, $H(1) \neq 2$ for $n=1$, which is a counter example for $H(n)=$ 2 for all n. Therefore, $H(n)=2$ for all n is not true.

