CSE 547 - Problem 19, Chapter 2

Junkil Choo, Giordano Fusco, Nancy Ju

Group 6
Computer Sciences Department Stony Brook University

March 11, 2008

1 Understanding the problem

2 Quick review of the general method

3 Problem's solution

4 Checking the solution

1 Understanding the problem

2 Quick review of the general method

3 Problem's solution

4 Checking the solution

Use a summation factor to solve the recurrence

$$
\begin{array}{rlr}
T_{0} & =5 \\
2 T_{n} & =n T_{n-1}+3 n!, \quad \text { for } n>0
\end{array}
$$

Looking at small cases. . .

Substituting in $2 T_{n}=n T_{n-1}+3 n!$, we get:

- $T_{0}=5$
- $T_{1}=\frac{1 \cdot 5+3 \cdot 1}{2}=4$
- $T_{2}=\frac{2 \cdot 4+3 \cdot 2 \cdot 1}{2}=7$
- $T_{3}=\frac{3 \cdot 7+3 \cdot 3 \cdot 2 \cdot 1}{2}=\frac{39}{2}$
$T_{4}=\frac{4 \cdot \frac{39}{2}+3 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2}=75$
$\square T_{5}=\frac{5 \cdot 75+3 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2}=\frac{735}{2}$

Looking at small cases. . .

Substituting in $2 T_{n}=n T_{n-1}+3 n!$, we get:

- $T_{0}=5$
- $T_{1}=\frac{1 \cdot 5+3 \cdot 1}{2}=4$
- $T_{2}=\frac{2 \cdot 4+3 \cdot 2 \cdot 1}{2}=7$
- $T_{3}=\frac{3 \cdot 7+3 \cdot 3 \cdot 2 \cdot 1}{2}=\frac{39}{2}$
$T_{4}=\frac{4 \cdot \frac{39}{2}+3 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2}=75$
- $T_{5}=\frac{5 \cdot 75+3 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2}=\frac{735}{2}$

We cannot guess any pattern.

Which method can we use?

We can reduce the recurrence to a sum.

The general form is
and comparing to our case

$$
\begin{aligned}
a_{n} T_{n} & =b_{n} T_{n-1}+c_{n} \\
2 T_{n} & =n T_{n-1}+3 n!
\end{aligned}
$$

- $a_{n}=2$
- $b_{n}=n$
- $c_{n}=3 n!$

1 Understanding the problem

2 Quick review of the general method

3 Problem's solution

4 Checking the solution

How to reduce a recurrence to a sum

By multiplying by a summation factor s_{n} on both sides of

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n}
$$

we get

$$
s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-1}+s_{n} c_{n}
$$

By multiplying by a summation factor s_{n} on both sides of

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n}
$$

we get

$$
s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-1}+s_{n} c_{n}
$$

If we are able to impose

$$
s_{n} b_{n}=s_{n-1} a_{n-1}
$$

then we can rewrite the recurrence as

$$
S_{n}=S_{n-1}+s_{n} c_{n}
$$

where $S_{n}=s_{n} a_{n} T_{n}$

Here is the recipe

 (more details in the lecture's slides)Expanding S_{n}, we get

$$
S_{n}=s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}
$$

and then the closed formula for T_{n} is

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Expanding S_{n}, we get

$$
S_{n}=s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}
$$

and then the closed formula for T_{n} is

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

By unfolding $s_{n}=s_{n-1} a_{n-1} / b_{n}$, we obtain

$$
s_{n}=\frac{a_{n-1} a_{n-1} \cdots a_{1}}{b_{n} b_{n-1} \cdots b_{2}}
$$

1 Understanding the problem

2. Quick review of the general method

3 Problem's solution

4 Checking the solution

In our case

Since $a_{n}=2$ and $b_{n}=n$

$$
s_{n}=\frac{a_{n-1} a_{n-1} \cdots a_{1}}{b_{n} b_{n-1} \cdots b_{2}}=\frac{\overbrace{2 \cdot 2 \cdot 2 \cdots 2}^{n-1 \text { times }}}{n \cdot(n-1) \cdots 2 \cdot 1}=\frac{2^{n-1}}{n!}
$$

Since $a_{n}=2$ and $b_{n}=n$

$$
s_{n}=\frac{a_{n-1} a_{n-1} \cdots a_{1}}{b_{n} b_{n-1} \cdots b_{2}}=\frac{\overbrace{2 \cdot 2 \cdot 2 \cdots 2}^{n-1 \text { times }}}{n \cdot(n-1) \cdots 2 \cdot 1}=\frac{2^{n-1}}{n!}
$$

Remembering also that $T_{0}=5$ and $c_{n}=3 n!$, we can substitute in the closed formula for T_{n}

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{n!}{2^{n}}\left(5+3 \sum_{k=1}^{n} 2^{k-1}\right)
$$

$$
\begin{aligned}
T_{n} & =\frac{n!}{2^{n}}\left(5+3 \sum_{k=1}^{n} 2^{k-1}\right) \\
& =\frac{n!}{2^{n}}\left(5+3 \sum_{1 \leq k \leq n} 2^{k-1}\right) \\
& =\frac{n!}{2^{n}}\left(5+3 \sum_{0 \leq k-1 \leq n-1} 2^{k-1}\right) \\
& =\frac{n!}{2^{n}}\left(5+3 \sum_{r=0}^{n-1} 2^{r}\right)
\end{aligned}
$$

where we set $r=k-1$

We have seen that

$$
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}, \quad \text { for } x \neq 1
$$

so in our case

$$
\begin{aligned}
T_{n} & =\frac{n!}{2^{n}}\left(5+3 \sum_{r=0}^{n-1} 2^{r}\right) \\
& =\frac{n!}{2^{n}}\left(5+3 \frac{2^{(n-1)+1}-1}{2-1}\right) \\
& =\frac{n!}{2^{n}}\left(2+3 \cdot 2^{n}\right) \\
& =n!\left(2^{1-n}+3\right)
\end{aligned}
$$

1 Understanding the problem

2 Quick review of the general method

3 Problem's solution

4 Checking the solution

Substituting in $T_{n}=n!\left(2^{1-n}+3\right)$, we get:

- $T_{0}=1 \cdot\left(2^{1-0}+3\right)=5$
- $T_{1}=1 \cdot\left(2^{1-1}+3\right)=4$

■ $T_{2}=2 \cdot 1 \cdot\left(2^{1-2}+3\right)=7$

- $T_{3}=3 \cdot 2 \cdot 1\left(2^{1-3}+3\right)=\frac{39}{2}$

■ $T_{4}=4 \cdot 3 \cdot 2 \cdot 1 \cdot\left(2^{1-4}+3\right)=75$

- $T_{5}=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot\left(2^{1-5}+3\right)=\frac{735}{2}$

Substituting in $T_{n}=n!\left(2^{1-n}+3\right)$, we get:

- $T_{0}=1 \cdot\left(2^{1-0}+3\right)=5$
- $T_{1}=1 \cdot\left(2^{1-1}+3\right)=4$
- $T_{2}=2 \cdot 1 \cdot\left(2^{1-2}+3\right)=7$
- $T_{3}=3 \cdot 2 \cdot 1\left(2^{1-3}+3\right)=\frac{39}{2}$

■ $T_{4}=4 \cdot 3 \cdot 2 \cdot 1 \cdot\left(2^{1-4}+3\right)=75$

- $T_{5}=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot\left(2^{1-5}+3\right)=\frac{735}{2}$
which is exactly what we expected!

The solution of

$$
\begin{aligned}
T_{0} & =5 \\
2 T_{n} & =n T_{n-1}+3 n!, \quad \text { for } n>0
\end{aligned}
$$

is

$$
T_{n}=n!\left(2^{1-n}+3\right)
$$

```
Jumping ahead... :-)
```

Let me ask you this question:
When is

$$
T_{n}=n!\left(2^{1-n}+3\right)
$$

an integer?
Later on in this class, we will learn how to show that T_{n} is integer iff n is 0 or a power of 2 .

Questions ?

Junkil Choo, Giordano Fusco, Nancy Ju

Thanks!

