Problem 31 Chapter 2

CSE547

- The Rieman Zeta function is defined as follows:

$$
\begin{aligned}
& \zeta(k)=\sum_{j=1}^{\infty} \frac{1}{j \underline{k}} \\
& \zeta(1)=\sum_{j=1}^{\infty} \frac{1}{j}=1+\frac{1}{2}+\frac{1}{3}+\ldots
\end{aligned}
$$

- $\zeta(1)$ is undefined because the summation diverges. However, $\zeta(2), \zeta(3), \ldots$ are all convergent.

Each of the following are convergent. Their sums, however, are different.
$\zeta(2)=\sum_{j=1}^{\infty} \frac{1}{j \underline{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots$
$\zeta(3)=\sum_{j=1}^{\infty} \frac{1}{j \underline{3}}=1+\frac{1}{8}+\frac{1}{27}+\ldots$
$\zeta(4)=\sum_{j=1}^{\infty} \frac{1}{j \underline{4}}=1+\frac{1}{16}+\frac{1}{81}+$
$\zeta(5)=\sum_{j=1}^{\infty} \frac{1}{j \underline{5}}=1+\frac{1}{32}+\frac{1}{243}+$

Problem \#31:

- The problem in the textbook stated:
- 1.) We wish to prove that $\Sigma(\zeta(k)-1)=1$, for $k \geq 2$.
- 2.) We need to also find out what the following expression is equal to:

$$
\Sigma(\zeta(2 k)-1) \text { for } k \geq 1 .
$$

- Let's start by proving that $\Sigma(\zeta(\mathrm{k})-1)=1$, for $k \geq 2$.
- $\zeta(2)-1=1 / 2^{2}+1 / 3^{2}+1 / 4^{2}+1 / 5^{2} \ldots$
- $\zeta(3)-1=1 / 2^{3}+1 / 3^{3}+1 / 4^{3}+1 / 5^{3} \ldots$
- $\zeta(4)-1=1 / 2^{4}+1 / 3^{4}+1 / 4^{4}+1 / 5^{4} \ldots$
- $\zeta(5)-1=1 / 2^{5}+1 / 3^{5}+1 / 4^{5}+1 / 5^{5} \ldots$
- If we add along the columns of this array, we get this:
- $\left(1 / 2^{2}+1 / 2^{3}+1 / 2^{4}+1 / 2^{5}+\ldots\right)+\left(1 / 3^{2}+1 / 3^{3}+\right.$ $\left.1 / 3^{4}+1 / 3^{5} \ldots\right)+\left(1 / 4^{2}+1 / 4^{3}+1 / 4^{4}+1 / 4^{5} \ldots\right)+\ldots$
- A simplified version of this would be:
$=\Sigma 1 / 2^{k}+\Sigma 1 / 3^{k}+\Sigma 1 / 4^{k}+\ldots$ (with k going from 1 to ∞)
$=\Sigma\left(\Sigma 1 / n^{k}\right)$.
The inner summation $\left(\Sigma 1 / n^{k}\right)$ is nothing more than a geometric series. It is convergent because the sequence goes to zero as k goes to infinity. To find the sum of a convergent geometric series, we take the first term, a_{1}, and then divide by (1-r), where r is the common ratio.

Proof:

- Let S be a geometric series with first term ' a_{0} ' and common ratio ' r '. It may be finite or infinite.
- Then $S=a_{0}+a_{0} r+a_{0} r^{2}+\ldots+a_{0} r^{n-1}$
- Then $r^{*} S=a_{0} r+a_{0} r^{2}+\ldots+a_{0} r^{n-1}+a_{0} r^{n}$
- $S-r^{*} S=a_{0}-a_{0} r^{n}$
- $S=a_{0}\left(1-r^{n}\right) /(1-r)$
- $S=a_{0} /(1-r)$ if $r^{n} \rightarrow 0$.
- Therefore, $S=a_{0} /(1-r)$ if r is less than one.
- $\Sigma 1 / n^{k}=\left(1 / n^{2}\right) /(1-1 / n)$
- because $1 / n$ is the first term and n is the common ratio.

$$
=\left(1 / n^{2}\right)^{*}(n / n-1)
$$

Now we need to split the equation into two parts. This is called partial fraction decomposition.

$$
=\frac{1}{n-1}-\frac{1}{n} \quad \text { because of partial fractions. }
$$

- Therefore, $\Sigma\left(\Sigma 1 / n^{\mathrm{k}}\right)=\Sigma\left(\frac{1}{\mathrm{n}-1}-\frac{1}{n}\right)$ where n goes from 2 to infinity.

$$
\begin{aligned}
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots \\
& =1-1 / 2+1 / 2-1 / 3+1 / 3-1 / 4+1 / 4+\ldots \\
& =1-1 / 2+1 / 2-1 / 3+1 / 3-1 / 4+1 / 4+\ldots=1 . \\
& \text { Since the terms go to zero, we can cancel } \\
& \text { every term out with its' additive inverse. } \\
& \text { Therefore, the sum of the series is one. } \\
& \text { We have proved the first problem. }
\end{aligned}
$$

Now, let's try to find out what the following expression is equal to:

$$
\Sigma(\zeta(2 k)-1) \text { for } k \geq 1 .
$$

We know that this summation should be smaller than one because we are taking only the even zeta numbers.

- Let's write down some of the series so that we can get an idea of what's going on:
- $\zeta(2)-1=1 / 2^{2}+1 / 3^{2}+1 / 4^{2}+1 / 5^{2}+\ldots$
- $\zeta(4)-1=1 / 2^{4}+1 / 3^{4}+1 / 4^{4}+1 / 5^{4}+\ldots$
- $\zeta(6)-1=1 / 2^{6}+1 / 3^{6}+1 / 4^{6}+1 / 5^{6}+\ldots$
- Recall, that each of these series is convergent. Again, we will take each column and try to sum it up and then add all of the columns together at the end.
- $=\left(1 / 2^{2}+1 / 3^{2}+1 / 4^{2}+1 / 5^{2}+\ldots\right)+\left(1 / 2^{4}+1 / 3^{4}+\right.$ $\left.1 / 4^{4}+1 / 5^{4}+\ldots\right)+\left(1 / 2^{6}+1 / 3^{6}+1 / 4^{6}+1 / 5^{6}+\ldots\right)$ $+(\ldots)$
- $=\left(1 / 2^{2}+1 / 2^{4}+1 / 2^{6}+\ldots\right)+\left(1 / 3^{2}+1 / 3^{4}+1 / 3^{6}+\right.$
$\ldots)+\left(1 / 4^{2}+1 / 4^{4}+1 / 4^{6}+\ldots\right)+\left(1 / 5^{2}+1 / 5^{4}+\right.$
$\left.1 / 5^{6}+\ldots\right)+\ldots$
- $=\Sigma\left(\Sigma 1 / \mathrm{n}^{2 \mathrm{k}}\right)$. Again, the inner summation is just a geometric series that converges, and therefore, we can take the sum very easily.
- $\Sigma 1 / \mathrm{n}^{2 \mathrm{k}}=\left(1 / \mathrm{n}^{2}\right) /\left(1-1 / \mathrm{n}^{2}\right)$

$$
\begin{aligned}
& =\left(1 / n^{2}\right) /\left\{n^{2} /\left(n^{2}-1\right)\right\} \\
& =1 /\left(n^{2}-1\right) .
\end{aligned}
$$

- Therefore, the expression $\Sigma\left(\Sigma 1 / \mathrm{n}^{2 k}\right)$ simplifies to
- $\Sigma\left(1 / n^{2}-1\right)$. If we try to evaluate this, we will need to break this down into partial fractions.
- This leads us to:
- $\Sigma 1 / 2\left(\frac{1}{n-1}-\frac{1}{n+1}\right)=1 / 2[1-1 / 3+1 / 2-1 / 4+1 / 3-1 / 5 \ldots]$
- Because of the telescoping property, this is what happens:
- $=1 / 2[1-1 / 3+1 / 2-1 / 4+1 / 3-1 / 5 \ldots]$
- $=1 / 2[1+1 / 2]$
- $=3 / 4$

Therefore, the sum is $3 / 4$.

