cse547
Problems 5,7 Chapter 2

Problem 5

- Question: What's wrong with the following derivation?

$$
\left(\sum_{j=1}^{n} a_{j}\right)\left(\sum_{j=1}^{n} \frac{1}{a_{k}}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}}=\sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}}=\sum_{k=1}^{n} \sum_{k=1}^{n} n=n^{2}
$$

Correctness verification (1)

- We want to see whether the derivation is correct or not
- For this we set $\mathrm{n}=3$ and we want to see if the right part of the derivation is equal to the left part

Correctness verification (2)

$$
\begin{aligned}
& S_{L}=\left(\sum_{j=1}^{3} a_{j}\right)\left(\sum_{j=1}^{3} \frac{1}{a_{k}}\right) \\
& S_{L}=\left(\sum_{j=1}^{3} a_{j}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \\
& S_{L}=\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \\
& S_{L}=a_{1}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)+a_{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)+a_{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \\
& S_{L}=1+\frac{a_{1}}{a_{2}}+\frac{a_{1}}{a_{3}}+\frac{a_{2}}{a_{1}}+1+\frac{a_{2}}{a_{3}}+a_{3}\left(\frac{a_{3}}{a_{1}}+\frac{a_{3}}{a_{2}}+1\right) \\
& S_{L}=3+\frac{a_{2}+a_{3}}{a_{1}}+\frac{a_{1}+a_{3}}{a_{2}}+\frac{a_{1}+a_{2}}{a_{3}}
\end{aligned}
$$

Correctness verification (3)

$$
\begin{aligned}
& S_{R}=\sum_{j=1}^{3} \sum_{k=1}^{3} \frac{a_{k}}{a_{k}} \\
& S_{R}=\sum_{j=1}^{3}\left(\frac{a_{1}}{a_{1}}+\frac{a_{2}}{a_{2}}+\frac{a_{3}}{a_{3}}\right) \\
& S_{R}=\sum_{j=1}^{3} 3 \\
& S_{R}=9=3^{2}
\end{aligned}
$$

We can see that $S_{L}!=S_{R}$, so we detect that the derivation is not correct

Correctness - General case

- We could have inferred that the derivation is not correct also if we try to express S_{L} and S_{R} in the general case!
- By eliminating the sum sign (as we did in the previous example and also see pages 49, 90 -> "General distributive law" in the notes and in the book too) we get:

$$
\begin{aligned}
& S_{L}=n+\frac{a_{2}+a_{3}+\ldots+a_{n}}{a_{1}}+\frac{a_{1}+a_{3}+a_{4}+\ldots+a_{n}}{a_{2}}+ \\
& +\ldots+\frac{a_{1}+\ldots+a_{k-1}+a_{k}+\ldots+a_{n}}{a_{k}}+\ldots+\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{a_{n}} \\
& S_{R}=n^{2}, \forall a_{j} j=1 . . n, \forall a_{k} k=1 . . n \\
& \Rightarrow S_{R} \neq S_{L}
\end{aligned}
$$

How can we find the error?

- Idea: check every step of the derivation
- We have 2 derivation steps (see below):

$$
\left(\sum_{j=1}^{n} a_{j}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) \xlongequal{\varrho} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}} \sum_{2}^{2} \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{a_{k}}{a_{k}}=\sum_{k=1}^{n} \sum_{k=1}^{n} n=n^{2}
$$

- We want to check which one is wrong

Derivation step 1

- We check the first step of the derivation

$$
\left(\sum_{j=1}^{n} a_{j}\right)\left(\sum_{j=1}^{n} \frac{1}{a_{k}}\right) \stackrel{1}{=} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}}
$$

- Can we do this step? Yes
- Why? Based on the "General Distributive Law" that we proved in class (see pages 90,91 in the lecture notes)

Derivation step 2

- We check the first step of the derivation

$$
\left(\sum_{j=1}^{n} a_{j}\right)\left(\sum_{j=1}^{n} \frac{1}{a_{k}}\right) \stackrel{1}{=} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_{j}}{a_{k}}
$$

- Can we do this step? Yes
- Why? Based on the "General Distributive Law" that we proved in class (see pages 90-99 in the lecture notes)

Derivation step 2

- We check the first step of the derivation

- Can we do this step? No!
- Why? Because the transformation is not in accordance with the changing of the indexes in multiple sums rule.

Derivation step 2

- We check the first step of the derivation
- From logic we know that in the multiple sum S^{\prime} in this step, k is a bound variable to the inner sum, while j is a bound variable to the exterior sum

- But in the multiple sum $S^{\prime \prime}, \mathrm{k}$ is a bound variable both to the inner sum, and to the exterior sum.
- Based on the substitution rules of predicate logic, we cannot substitute j of the outer sum with the same k as the one in the inner sum.

Derivation 2

- The substitution works only when

$$
\mathrm{a}_{\mathrm{j}}=\mathrm{a}_{\mathrm{k}}, \forall i, j, 1 \leq j, k \leq n .
$$

- Why? Because then we will have:

$$
\begin{aligned}
& S_{L}=n+\frac{a_{2}+a_{3}+\ldots+a_{n}}{a_{1}}+\frac{a_{1}+a_{3}+a_{4}+\ldots+a_{n}}{a_{2}}+ \\
& +\ldots+\frac{a_{1}+\ldots+a_{k-1}+a_{k}+\ldots+a_{n}}{a_{k}}+\ldots+\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{a_{n}} \\
& S_{L}=n+\frac{(n-1) a_{1}}{a_{1}}+\ldots+\frac{(n-1) a_{n}}{a_{n}} \\
& S_{L}=n+(n-1) n=n^{2}=S_{R}
\end{aligned}
$$

Problem 7

- Let $\nabla f(x)=f(x)-f(x-1)$. What is $\nabla\left(x^{\bar{m}}\right)$?
- We define the Rising Factorial Power, $x^{\bar{m}}$, (see page 48 in the book) as:

$$
x^{\bar{m}}=x(x+1) \ldots(x+m-1), m>0
$$

- We want to evaluate:

$$
\nabla\left(x^{\bar{m}}\right)=x^{\bar{m}}-(x-1)^{\bar{m}}
$$

Problem 7

- We define the Rising Factorial Power, $\left(x^{\bar{m}}\right)$, (see page 144 of the notes or book page 48) as:

$$
x^{\bar{m}}=x(x+1) \ldots(x+m-1), m>0
$$

- We want to evaluate:

$$
\nabla\left(x^{\bar{m}}\right)=x^{\bar{m}}-(x-1)^{\bar{m}}
$$

- To prove:

$$
\nabla\left(x^{\bar{m}}\right)=m x^{\overline{m-1}}
$$

Problem 7

- In other words we want to say that the ∇ operator behaves like the D operator defined in the book (see page 47) the same as that for the notes (page 139)
- In order to prove this we first evaluate:

$$
x^{\bar{m}}=x(x+1)(x+2) \ldots(x+m-1)
$$

- Then we evaluate:

$$
\begin{aligned}
(x-1)^{\bar{m}} & =(x-1) x(x+1)(x+2) \ldots(x-1+m-1) \\
& =(x-1) x(x+1)(x+2) \ldots(x+m-2)
\end{aligned}
$$

Problem 7

- Now we can evaluate:

$$
\begin{aligned}
\nabla\left(x^{\bar{m}}\right) & =x^{\bar{m}}-(x-1)^{\bar{m}} \\
& =x(x+1)(x+2) \ldots(x+m-1)-(x-1) x(x+1)(x+2) \ldots(x+m-2) \\
& =x(x+1)(x+2) \ldots(x+m-2)(x+m-1-x+1) \\
& =x(x+1)(x+2) \ldots(x+m-2) m \\
& =m x^{\overline{m-1}}, \text { q.e.d }
\end{aligned}
$$

- Final result:

$$
\nabla\left(x^{\bar{m}}\right)=m x^{\overline{m-1}}
$$

Problem 7

- In the book the definition for the $\nabla\left(x^{\bar{m}}\right)$ operator is:

$$
\nabla\left(x^{\bar{m}}\right)=x^{\bar{m}}-(x-1)^{\bar{m}}
$$

- We want to see what is the result if we use the definition for the Δ operator (see class notes definition page 144 and book page 47):

$$
\Delta f(x)=f(x+1)-f(x)
$$

Problem 7

- We first evaluate:

$$
\begin{aligned}
(x+1)^{\bar{m}} & =(x+1)(x+2) \ldots(x+1+m-1) \\
& =(x+1)(x+2) \ldots(x+m)
\end{aligned}
$$

- Then we evaluate:

$$
x^{\bar{m}}=x(x+1)(x+2) \ldots(x+m-1)
$$

- In the end we get

$$
\begin{aligned}
\Delta\left(x^{\bar{m}}\right) & =(x+1)^{\bar{m}}-x^{\bar{m}} \\
& =(x+1)(x+2) \ldots(x+m)-x(x+1)(x+2) \ldots(x+m-1) \\
& =(x+1)(x+2) \ldots(x+m-1)(x+m-x) \\
& =(x+1)(x+2) \ldots(x+m-1) m \\
& =m(x+1)^{\overline{m-1}} \quad \begin{array}{l}
\text { This is the result obtained using } \\
\text { the } \Delta \text { formula! }
\end{array}
\end{aligned}
$$

Problem 7

- We obtained:

This is the book result using the $\boldsymbol{\nabla}$ operator!

Thank you! Questions?

