□ CSE547

□ Chapter 2, Problem 6

Chapter 2, Problem 6

□What is the value of Σ_k [1 ≤ j ≤ k ≤ n], as a function of j and n?

Information

- k lies between j and n $\{j \le k \le n\}$
- i lies between 1 and n $\{1 \le i \le n\}$
- It's a summation of '1' over one index k such that it satisfies the condition, $1 \le j \le k \le n$
- j here is just another constant like n.

Groundwork- A recap of different summation notations

 $\begin{tabular}{ll} $\Sigma_{P(k)} a_k implies that a is a function of k which is subject to iterative summation with P(k) defining the limits of summation. \end{tabular}$

$$\Box \Sigma_{P(k)} a_{k} = \Sigma_{k \in K} a_{k} = \Sigma_{K} [P(k)] a_{k}$$
where:

 $\mathsf{K} = \{\mathsf{k} \in \mathsf{N} : \mathsf{P}(\mathsf{k})\}$

and K is FINITE

A Recap of notations for summation!

The summation now becomes something like this: $\sum_{k} [P(k)]$,

 $\Rightarrow \sum_{\mathbf{k}} [P(\mathbf{k})] = \sum_{\mathbf{P}(\mathbf{k})} 1$

i.e. For our problem $\sum_{k} [1 \le j \le k \le n]$, P(k) is $[1 \le j \le k \le n]$ and a_k is 1 for all k. (Notice that a_k is a constant)

The Problem now is...

Since

 $[1 \leq j \leq k \leq n] = [1 \leq j \leq n] \text{ and } [j \leq k \leq n]$

Our problem is now:

 $\sum_{j \leq k \leq n} 1$

The Problem and the solution:

We need to add 1 (n-j+1) times. Which gives us,

$$\sum_{j\leq k\leq n}$$
 1

= (n-j+1)

Solution Continued...

One small thing to finish it up, if value of j doesn't satisfy the condition $j \le k \le n$ we need to evaluate the sum to zero.

Hence our final answer would be, $[j \le k \le n](n-j+1)$