CSE547

Chapter 2, Problem 6

Chapter 2, Problem 6

\square What is the value of $\sum_{\mathrm{k}}[1 \leq \mathrm{i} \leq \mathrm{k} \leq \mathrm{n}]$, as a function of j and n ?

Information

\mathbf{k} lies between j and $\mathrm{n}\{\mathrm{i} \leq \mathrm{k} \leq \mathrm{n}\}$
¡ lies between 1 and $\mathbf{n}\{1 \leq \mathbf{i} \leq \mathrm{n}\}$
It's a summation of ' 1 ' over one index k such that it satisfies the condition, $\mathbf{1} \leq \mathbf{i} \leq \mathbf{k} \leq \mathbf{n}$
¡ here is $\ddagger u s t$ another constant like n.

Groundwork- A recap of different summation notations

$\square \sum_{P(k)} a_{k}$ implies that a is a function of k which is subject to iterative summation with $P(k)$ defining the limits of summation.
$\square \sum_{\mathrm{P}(\mathrm{k})} \mathrm{a}_{\mathrm{k}}=\sum_{\mathrm{k} \in \mathrm{K}} \mathrm{a}_{\mathrm{k}}=\sum_{\mathrm{K}}[\mathrm{P}(\mathrm{k})] \mathrm{a}_{\mathrm{k}}$
where:
$K=\{k € N: P(k)\}$
and K is FINITE

A Recap of notations for summation!

The summation now becomes something like this:
$\sum_{k}[P(k)]$,
$\Rightarrow \sum_{k}[P(k)]=\sum_{P(k)} 1$
i.e. For our problem $\sum_{k}[1 \leq i \leq k \leq n], P(k)$ is $[1 \leq i \leq k \leq$ n] and a_{k} is 1 for all k. (Notice that a_{k} is a constant)

The Problem now is...

Since
$[1 \leq \mathrm{i} \leq \mathrm{k} \leq \mathrm{n}]=[1 \leq \mathrm{i} \leq \mathrm{n}]$ and $[\mathrm{i} \leq \mathrm{k} \leq$
n]
Our problem is now:
$\sum_{i \leq k \leq n} 1$

The Problem and the solution:

We need to add $1(n-j+1)$ times. Which gives us,

$$
\sum_{i \leq k \leq n} 1
$$

$$
=(n-j+1)
$$

Solution Continued...

One small thing to finish it up, if value of \mathfrak{j} doesn't satisfy the condition $\mathrm{j} \leq \mathrm{k} \leq \mathrm{n}$ we need to evaluate the sum to zero.

Hence our final answer would be,
$[j \leq k \leq n](n-j+1)$

