CSE547

Chapter 2, Problems 8

Chapter 2, Problem 8 Question.

What is the value of 0 m, when m is a given integer?

Chapter 2, Problem 8

Definition of $x^{\underline{m}}$ and $x-\frac{m}{}$

$$
\cdot x^{m}=x(x-1) \ldots(x-m+1)
$$

From: (2.43) Concrete Mathematics
A Foundation for Computer Science
Graham, Knuth, Patashnik
-x-m = 1/[(x+1)(x+2)...(x+m)]

From: Lecture Notes 9

Chapter 2, Problem 8

$$
\text { For } m>=1
$$

- For $m>=1$ we use the definition $x^{\underline{m}}=x(x-1) \ldots(x-$ $\mathrm{m}+1$).
- $x=0$ will always give us a product of 0 .

$$
0=0(0-1) \ldots(0-m+1)
$$

Chapter 2, Problem 8

For m <= 0

- For $m>=1$ we use the definition $x-m=$ $1 /[(x+1)(x+2) \ldots(x+m)]$.
- $0-\mathrm{m}=1 /[(0+1)(0+2) \ldots(0+|\mathrm{m}|)]$
$=1 /\left[1^{*} 2^{*} \ldots{ }^{*}|m|\right]$
$=1 /(|m|!)$

Chapter 2, Problem 8 Conclusion.

What is the value of $0 \frac{m}{}$, when m is a given integer?

$$
\begin{gathered}
0 \text {, if } \mathrm{m}>=1 ; \\
1 /(|\mathrm{m}|!) \text {, if } \mathrm{m}<=0 .
\end{gathered}
$$

