
CHAPTER 2

INFINITE SUMS (SERIES)

Lecture Notes PART 2

1 Examples and Exercises

We consider now some examples and exercises.

EXAMPLE 1 Prove that
Σ∞n=1

cn

n!
CONVERGES for c > 0.

Hint: use d’Alambert Criterium.

Proof: first we evaluate

an+1

an
=

cn+1

cn
· n!
(n + 1)!

=
c

n + 1
.

Next we evaluate the limit

lim
n→∞

an+1

an
= lim

n→∞
c

n + 1
= 0 < 1.

By d’Alambert Criterium Σ∞n=1
cn

n! converges for c > 0. For c < 0 we get
alternating series.

EXERCISE 2 Prove that the sequence an = n! grows faster then the sequence
bn = cn for any c > 0.

Proof: we prove it by showing that

lim
n→∞

cn

n!
= 0.

Observe that we just proved that Σ∞n=1
cn

n! for any c > 0. By Theorem
1 we get that limn→∞ cn

n! = 0.

EXERCISE 3 Prove that the sequence bn = nn grows faster then the se-
quence an = n! for any c > 0.
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Proof: we prove it, as before by showing that

lim
n→∞

n!
nn

= 0.

Observe that this is equivalent, by Theorem 1 to proving convergence of
the series Σ∞n=1

n!
nn . We prove it as the following example.

EXAMPLE 2 Use d’Alambert Criterium to prove convergence of the follow-
ing series:

Σ∞n=1

n!
nn

.

Proof: we evaluate

an =
n!
nn

, an+1 =
n!(n + 1)

(n + 1)n · (n + 1)

and hence

an+1

an
=

n!(n + 1)
(n + 1)n(n + 1)

=
nn

(n + 1)n
= (

n

n + 1
)n =

1
(1 + 1

n )n
.

Now we evaluate

lim
n→∞

an+1

an
= lim

n→∞
1

(1 + 1
n )n

=
1
e

< 1.

So by the d’Alambert Criterium Σ∞n=1
n!
nn converges.

EXAMPLE 3 The Harmonic series

H = Σ∞n=1

1
n

does not react on d’Alambert Criterium .

Proof: consider
an+1

an
=

1
n + 1

· n

1
=

n

n + 1
=

1
1 + 1

n

and
lim

n→∞
an+1

an
= lim

n→∞
1

1 + 1
n

= 1.

EXAMPLE 4

lim
n→∞

cn

n!
= 0, for c > 0, lim

n→∞
n!
nn

= 0.

Proof: follows directly from examples 1, 2 and Theorem 1 that says:

If Σ∞n=1 an converges, then limn→∞ an = 0.
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EXAMPLE 5 We know that the Harmonic series Σ∞n=1
1
n diverges. Use this

information and Cauchy Criterium to prove that

lim
n→∞

n
√

n = 1.

Proof: observe that the sequence an = n
√

n is for large n, decreasing and
an > 1, hence limn→∞ an exists and limn→∞ n

√
n ≥ 1. Assume now that

limn→∞ n
√

n 6= 1, i.e. that n
√

n > 1. This means that limn→∞ n

√
1
n < 1.

That would prove, by Cauchy Criterium that Σ∞n=1
1
n converges and

we get a contradiction.

EXAMPLE 6 The series

Σ∞n=1 =
|x(x− 1)....(x− n + 1)|

n!
· cn

converges for 0 < c < 1.

Proof: we evaluate

an+1

an
=
|x(x− 1)....(x− n)|cnc

n!(n + 1)
· n!
|x(x− 1)....(x− n + 1)|cn

=
|x− n|
n + 1

· c,

lim
n→∞

an+1

an
= lim

n→∞
| xn − 1|
1 + 1

n

· c = c.

By d’Alambert Criterium series converges for 0 < c < 1.

EXAMPLE 7

lim
n→∞

|x(x− 1)....(x− n + 1)|
n!

· cn for 0 < c < 1.

Proof: Observe that this is equivalent, by Theorem 1 to proving convergence
of the series from Example 6, proved to be convergent.

2 Absolute and Conditional Convergence

We define the notions of absolute and conditional convergence as follows.

Definition of absolute convergence. The series

Σ∞n=1an

converges absolutly if and only if the series

Σ∞n=1|an|
converges.
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Definition of conditional convergence. The series

Σ∞n=1an

converges conditionally if and only if the series

Σ∞n=1|an|

converges, but not absolutely, i.e. when

Σ∞n=1an converges and Σ∞n=1|an|does not converge.

We state without the proof the following main theorem about absolute conver-
gence.

Theorem 10 If the series Σ∞n=1an converges absolutely , then it converges.
Moreover,

|Σ∞n=1an| ≤ Σ∞n=1|an|.

Example 8 Geometric series Σ∞n=1aqn, |q| < 1 converges because the series
Σ∞n=1|q|n converges and Σ∞n=1|aqn| = |a|Σ∞n=1|q|n.

Example 9 The series

|Σ∞n=1

xn

n!
converges abolutely for all x ∈ R. Moreover,

|Σ∞n=1

xn

n!
= ex.

Proof: we proved, in Example 1 that it converges for c > 0, i.e. for |x|. The
convergence to ex is proved by other, analytical methods.

Example 10 The enharmonic series

Σ∞n=1 (−1)n+1 1
n

converges conditionally.

Proof: we have
|an| = |(−1)n+1 1

n
| = 1

n

and the series Σ∞n=1|an| = Σ∞n=1
1
n diverges.
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3 Finite and Infinite Commutativity

We know that the finite summation is commutative, i.e. that

Σn
k=1 ak = Σn

k=1 aik

where aik is any permutation of a1, a2, ...an.

The commutativity fails for some infinite sums, as we have showed in
Example 6 evaluating

Σ∞n=1(−1)n+1 = 1− 1 + 1− 1 + ....

in two different ways (permutations).

If we group the terms in pairs, we get

(1− 1) + (1− 1) + .... = 0

but if we start the pairing one step later, we get

1− (1− 1)− (1− 1)− ..... = 1− 0− 0− 0− ... = 1.

There are more examples in our book- pages 58-59.

QUESTION: when, for which class (if any) of infinite sums commutativity
holds. Which are the classes (if any) of infinite sums commutativity fails.
We have two basic Theorems (no proofs here).

Theorem 11 Every absolutely convergent infinite sum is commutative,
i.e.

Σ∞n=1 an = Σ∞n=1 amn

for any permutation m1, m2, ...mn.... of natural numbers ≥ 1.

Theorem 11 is not true foe any convergent infinite sum; we can get two permu-
tations build out of factors of enharmonic series Σ∞n=1 (−1)n+1 1

n in such
way that one converges and other diverges to ∞.

Theorem 12 RIEMANN (1826-1866) Theorem
Any conditionally convergent infinite sum can be transformed by permu-
tation of its factors into a sum that diverges, or to a sum that converges
to any limit (finite or infinite).
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