CSE 547 Discrete Mathematics Chapter 4: Problem 14

Problem \#14

Prove or disprove :
a. $\operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n)$;
b. $\operatorname{lcm}(k m, k n)=k \operatorname{lcm}(m, n)$.

Solution

Definitions:

gcd : greatest common divisor
The greatest common divisor of two
integers m and n is the largest integer that divides them both:
$\operatorname{gcd}(m, n)=\max \{k \mid k \backslash m$ and $k \backslash n\}$.

Continued...

Icm : least common multiple The least common multiple of two integers m and n is the smallest integer k which is a multiplicative factor of both:
i.e.,
$\operatorname{lcm}(m, n)=\min \{k|k>0, m| k$ and $n \backslash k\}$
This is undefined if $\mathrm{m} \leq 0$ or $\mathrm{n} \leq 0$.

Continued...

Point to note:
In the above definitions, we have used klm and kln.
The functionality of ' '' is defined by: $\begin{aligned} & m \backslash n<=> m>0 \text { and } \\ & n=m k \text { for some integer } k\end{aligned}$

Informally, this is nothing but n / m written in the reverse manner.

Continued ...

To solve the given problem, it is important to know the following points:

1. Every positive integer n can be written as a product of primes, i.e., $n=p_{1} p_{2} \ldots \ldots \ldots \ldots p_{m}=\Pi p_{k}, 1 \leq k \leq m$ and $p_{1} \leq \ldots \ldots \leq p_{m}$
(Equation (4.10) on page 106)
For example, $12=2.2 .3 ; 35=5.7$ etc,.

Continued ...

And this expansion (factorization) is unique for every integer. This is called Fundamental Theorem of Arithmetic.
2.This theorem can be stated in another way as :
Every positive integer can be written uniquely in the form
$\mathrm{n}=\prod_{\mathrm{p}} \mathrm{p}$ pow $\left(\mathrm{n}_{\mathrm{p}}\right)$, where each $\mathrm{n}_{\mathrm{p}} \geq 0$. (Equation (4.11) on page 107)

Continued ...

The above equation represents n uniquely. So we can think of a sequence $<\mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{5} \ldots>$ as a number system for positive integers.

For example, the prime-exponent representation of 12 is $<2,1,0,0, \ldots . .>$ and for 18 it is $<1,2,0,0, \ldots \ldots>$.

Continued ...

3. To multiply two numbers, we simply add their representations. i.e.,
$k=m n<=>k_{p}=m_{p}+n_{p}$ for all p.
(Equation (4.12) on page 107)
This implies that $m \ln <m_{p} \leq n_{p}$ for all p,
(Equation (4.13) on page 107)

Continued ...

From the above point, it follows that

 $k=\operatorname{gcd}(m, n)<=>k_{p}=\min \left(m_{p}, n_{p}\right)$ for all p;(Equation (4.14) on page 107)
$k=\operatorname{lcm}(m, n)<=>k_{p}=\max \left(m_{p}, n_{p}\right)$ for all

$$
\mathrm{p} .
$$

(Equation (4.15) on page 107)
Example: $12=2^{2} \cdot 3^{1}$ and $18=2^{1} \cdot 3^{2}$

Continued...

Hence, $\operatorname{gcd}(12,18)=2^{\min (2,1)} \cdot 3^{\min (1,2)}$

$$
=2^{1} \cdot 3^{1}=6 ;
$$

$\operatorname{lcm}(12,18)=2^{\max (2,1)} \cdot 3^{\max (1,2)}$

$$
=2^{2} \cdot 3^{2}=36
$$

Now, coming to the given problem, we want to get the value of $\operatorname{gcd}(\mathrm{km}, \mathrm{kn})$ and Icm(km,kn) in terms of the $\operatorname{gcd}(m, n)$ and lcm(m,n) respectively.

Continued...

Let $K=(k m)(k n)$. This implies that

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}}=(\mathrm{km})_{\mathrm{p}}+ & (\mathrm{kn})_{\mathrm{p}} \text { for all } \mathrm{p} \\
& (\text { Using equation (4.12)) }
\end{aligned}
$$

Again, using the same equation,
if $A=k m$, then $A_{p}=k_{p}+m_{p}$ and if $B=k n$, then $B_{p}=k_{p}+n_{p}$

Continued...

Part (a):
L.H.S: $X=\operatorname{gcd}(k m, k n)<=>$

$$
\begin{aligned}
X_{p} & =\min \left(A_{p}, B_{p}\right) \\
= & \min \left(k_{p}+m_{p}, k_{p}+n_{p}\right) \\
& (\text { Using equation }(4.15))
\end{aligned}
$$

R.H.S: $Y=k\{\operatorname{gcd}(m, n)\}<=>$

$$
Y_{p}=k_{p}+\left\{\min \left(m_{p}, n_{p}\right)\right\}
$$

-- According to equation (4.12)

Continued...

Since, k_{p} is a term added to both m_{p} and n_{p}, it does not matter what the value of k_{p} is while calculating $\min \left(k_{p}+m_{p}, k_{p}+n_{p}\right)$ For example, lets assume $m_{p}<n_{p}$.
Then, $X_{p}=\left(k_{p}+m_{p}\right)$ and $Y_{p}=k_{p}+\left(m_{p}\right)$

Hence,

$$
\operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n)
$$

Continued...

Now consider Part (b).
lcm(km,kn) $=\mathrm{k} \operatorname{lcm}(\mathrm{m}, \mathrm{n})$

$$
\begin{aligned}
& \text { L.H.S: } \\
& \qquad \text { X }=\operatorname{Icm}(\mathrm{km}, \mathrm{kn})<=>
\end{aligned}
$$

$$
\begin{aligned}
& X_{p}=\max \left(A_{p}, B_{p}\right) \\
& =\max \left(k_{p}+m_{p}, k_{p}+n_{p}\right) \\
& \quad \text { Using equation (4.15) }
\end{aligned}
$$

Continued...

R.H.S:
$Y=k\{\operatorname{lcm}(m, n)\}<=>$

$$
Y_{p}=k_{p}+\left\{\max \left(m_{p}, n_{p}\right)\right\}
$$

-- According to equation (4.12)

Again following the same argument as for the Part (a),
If $m_{p}<n_{p}$, then ,
$X_{p}=\left(k_{p}+n_{p}\right)$ and $Y_{p}=k_{p}+\left(n_{p}\right)$, which are equal.

Continued...

Hence,

$$
\operatorname{lcm}(\mathrm{km}, \mathrm{kn})=\mathrm{k} \operatorname{lcm}(\mathrm{~m}, \mathrm{n})
$$

Therefore,
(a) $\operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n)$
(b) $\operatorname{lcm}(k m, k n)=k \operatorname{lcm}(m, n)$

