Discrete Mathematics

Chapter 5 Problem 16
Chapter 4 Problem 14

Chapter 5,Problem No 16

- Evaluate the sum

$$
\sum_{k}\left(\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 b \\
b+k
\end{array}\right]\left[\begin{array}{c}
2 c \\
c+k
\end{array}\right](-1)^{k}
$$

Continued...

The binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]$ can be
expressed in terms of factorials as follows:
(n) $=\mathrm{n}!/\left(\mathrm{k}!^{*}(\mathrm{n}-\mathrm{k})!\right)$
k

Continued...

Lets try to express each of the terms in the problem in factorials :

$$
\begin{aligned}
\left(\begin{array}{c}
2 a \\
a+k
\end{array}\right] & =\frac{(2 a)!}{(2 a-(a+k))!*(a+k)!} \\
& =\frac{(2 a)!}{(a-k)!} \cdot
\end{aligned}
$$

Continued...

Similarly,

$$
\begin{aligned}
& \binom{2 b}{b+k}=\frac{(2 b)!}{(b-k)!^{*}(b+k)!} \\
& \binom{2 c}{c+k}=\frac{(2 c)!}{(c-k)!^{*}(c+k)!}
\end{aligned}
$$

Continued...

Therefore,

$$
\sum_{k}\left(\begin{array}{l}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{l}
2 b \\
b+k
\end{array}\right)\left[\begin{array}{l}
2 c \\
c+k
\end{array}\right)(-1)^{k}
$$

$=\sum(2 a)!(2 b)!(2 c)!\quad(-1)^{\mathrm{k}}$
k (a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)!

Continued...

Multiplying numerator and denominator by

(a+b)! * $(b+c)$) * $(c+a)$!
We will therefore have,
$\left.\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(c+a)!}\right)_{k} \frac{(a+b)!(b+c)!(c+a)!(-1)^{k}}{(a-k)!(a+k)!(b-k)!(b+k)!(c-k)!(c+k)!}$

Constant
Lets try to get a known form for this.

Continued...

Considering :

$$
\begin{aligned}
& \sum(a+b)!(b+c)!(c+a)! \\
& \text { k (a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)! } \\
& =\sum_{k} \frac{(a+b)!}{(a+k)!(b-k)!} \quad(b+c)!\quad(c+k)!(c-k)!\quad(c+k)!(a-k)!
\end{aligned}
$$

(Just interchanging the order of the terms in the denominator)
We know that,
$\frac{(a+b)!}{(a+k)!(b-k)!}=\binom{a+b}{a+k}$

Continued...

Similarly,
$\frac{(b+c)!}{(b+k)!(c-k)!}=\binom{b+c}{b+k}$

$$
\frac{(c+a)!}{(c+k)!(a-k)!}=\binom{c+a}{c+k}
$$

Continued...

Therefore,

$$
\sum_{k} \frac{(a+b)!(b+c)!(c+a)!^{*}(-1)^{k}}{(a-k)!(a+k)!(b-k)!(b+k)!(c-k)!(c+k)!}
$$

$$
=\sum_{k}\left(\begin{array}{l}
a+b \\
a+k
\end{array}\right] \quad\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right] \quad\left(\begin{array}{l}
c+a \\
c+k
\end{array}\right]^{*}(-1)^{k}
$$ which is a known form.

Using the equation given in Textbook Page No . 171,Eq. 5-29.
We have,
$\sum_{k}\binom{a+b}{a+k} \quad\binom{b+c}{b+k} \quad\binom{c+a}{c+k} \quad *(-1)^{k}=\frac{(a+b+c)!}{a!b!c!}$

Solution

Thus, the solution for the problem becomes:
$\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(c+a)!} \quad \underbrace{} \quad \frac{(a+b+c)!}{a!b!c!}$

Chapter 4, Problem No 14

Does every prime occur as a factor of some Euclid number e_{n} ?

Continued...

Euclid Number :

Definition :
Euclid numbers are integers of the
form $E n=p_{n} \#+1$,
where $p_{n} \#$ is the primorial of p_{n} which is the nth prime.

Continued...

They are named after the ancient Greek mathematician Euclid, who used them in his original proof that there are an infinite number of prime numbers.
Primorial :
For $n \geq 2$, the primorial ($n \#$) is the product of all prime numbers less than or equal to n. For example, $7 \#=210$ is a primorial which is the product of the first four primes multiplied together $(2 \cdot 3 \cdot 5 \cdot 7)$.

Continued...

The simplest argument could be that to show that there is a prime number which is never the factor of any Euclid number. If we consider any Euclid number, $p_{n} \#$ is always a multiple of 2 .
And Euclid number is 1 added to $p_{n} \#$.

Continued..

Every Euclid number is of the form
$=(2 * k)+1$
where " k " is product of prime numbers $<=n$ excluding 2.
So, it is very clear that there exists no
Euclid number which is divisible by 2.

Answer

Hence, the answer is :
Every prime cannot occur as a factor of some Euclid number e_{n}.

THANK YOU

