Chapter 5, Problem 17

Find the simple relation between
$\binom{2 n-1 / 2}{n}$ and $\binom{2 n-1 / 2}{2 n}$

Using $\binom{n}{k}=\frac{n(n-1)(n-2) \ldots \ldots . .(n-k+1)}{k!}$
$\binom{2 n-\frac{1}{2}}{n^{2}}=\frac{\left(2 n-\frac{1}{2}\right)\left(2 n-\frac{1}{2}-1\right)\left(2 n-\frac{1}{2}-2\right) \ldots \ldots}{}$
Both numerator and denominator has n terms

$$
=\frac{\left.\left(2 n-\frac{1}{2}\right)\left(2-\frac{1}{2}-1\right)\left(2 n-\frac{1}{2}-2\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots-\frac{1}{2}-n+1\right)}{n!}
$$

$$
\begin{aligned}
& =\frac{\left[\frac{(4 n-1)}{2}\right]\left[\frac{(4 n-3)}{2}\right]\left[\frac{(4 n-5)}{2}\right] \ldots \ldots(n+1 / 2)}{n!} \\
& =\frac{\left[\frac{(4 n-1)}{2}\right]\left[\frac{(4 n-3)}{2}\right]\left[\frac{(4 n-5)}{2}\right] \ldots \cdot\left[\frac{(2 n+1)}{2}\right]}{n!} \\
& =\frac{(4 n-1)(4 n-3)(4 n-5) \ldots \ldots \ldots(2 n+1)}{2^{n} n!} \\
& =\frac{(4 n-1)(4 n-3)(4 n-5) \ldots \ldots(4 n-(2 n-1))}{2^{n} n!}
\end{aligned}
$$

Multiplying the numerator and denominator by
$4 n(4 n-2)(4 n-4) \ldots . .(4 n-(2 n-2))$ and distributing them in between

$$
\frac{4 n(4 n-1)(4 n-2)(4 n-3)(4 n-4) \ldots .(4 n-(2 n-2))(4 n-(2 n-1))}{4 n(4 n-2)(4 n-4) \ldots(4 n-(2 n-2)) 2^{n} n!}
$$

Now denominator $=4 n(4 n-2)(4 n-4) \ldots(4 n-(2 n-2)) 2^{n} n!$
Taking 2 out of each of n terms in RED.
Denominator $=$

$$
\begin{aligned}
& \left.2^{n} 2 n(2 n-1)(2 n-2) \ldots \ldots(2 n-(n-1))\right) 2^{n} n! \\
& \left.2^{2 n} 2 n(2 n-1)(2 n-2) \ldots(2 n-(n-1))\right) n!
\end{aligned}
$$

$2^{2 n} 2 n(2 n-1)(2 n-2) \ldots(n+1) n!$
$2^{2 n}(2 n)!$
Now Substituting the value of denominator in Eq(1)
$=\frac{4 n(4 n-1)(4 n-2)(4 n-3)(4 n-4) \ldots(4 n-(2 n-2))(4 n-2 n+1) .}{2^{2 n}(2 n)!}$
$=\frac{\binom{4 n}{2 n}}{2^{2 n}}$

Hence $\binom{2 n-\frac{1}{2}}{n^{2}}=\frac{\binom{4 n}{2 n}}{2^{2 n}}$

Similarly we need to find $\binom{2 n-\frac{1}{2}}{2 n^{2}}=$
$=\frac{\left.\left(2 n-\frac{1}{2}\right)\left(2-\frac{1}{2}-1\right)\left(2 n-\frac{1}{2}-2\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2 n-\frac{1}{2}-2 n+1\right)}{(2 n)!}$
$=\frac{\left[\frac{(4 n-1)}{2}\right]\left[\frac{(4 n-3)}{2}\right]\left[\frac{(4 n-5)}{2}\right] \ldots \ldots(1 / 2)}{2 n)!}$

$$
=\frac{\left[\frac{(4 n-1)}{2}\right]\left[\frac{(4 n-3)}{2}\right]\left[\frac{(4 n-5)}{2}\right] \ldots \cdot\left[\frac{1}{2}\right]}{(2 n)!}
$$

Since we have 2 n terms in numerator

$$
=\frac{(4 n-1)(4 n-3)(4 n-5) \ldots \ldots \ldots(1)}{2^{2 n}(2 n)!}
$$

$$
\frac{(4 n-1)(4 n-3)(4 n-5) \ldots \ldots(1))}{2^{2 n}(2 n)!}
$$

Multiplying the numerator and denominator by
$4 n(4 n-2)(4 n-4) \ldots . .(2)$ and distributing them in between the numerator in above equation

$$
\frac{4 n(4 n-1)(4 n-2)(4 n-3)(4 n-4) \ldots \ldots(2)(1)}{4 n(4 n-2)(4 n-4) \ldots .(2) 2^{2 n}(2 n)!}
$$

Now denominator $=[4 n(4 n-2)(4 n-4) \ldots(4 n-(4 n-2))] 2^{2 n}(2 n)$!
Taking 2 out of each of (2 n) terms in RED.
Denominator $=$

$$
\begin{aligned}
& \left.2^{2 n} 2 n(2 n-1)(2 n-2) \ldots \ldots(2 n-(2 n-1))\right) 2^{2 n}(2 n)! \\
& 2^{2 n} 2 n(2 n-1)(2 n-2) \ldots .(1) 2^{2 n}(2 n)! \\
& 2^{2 n}(2 n)!2^{2 n}(2 n)!
\end{aligned}
$$

$2^{4 n}(2 n)!(2 n)!$

Substituting the value of the above denominator in Eq (2)

$$
\begin{aligned}
& \frac{4 n(4 n-1)(4 n-2)(4 n-3)(4 n-4) \ldots(2)(1)}{2^{4 n}(2 n)!(2 n)!} \\
& \frac{(4 n)!}{2^{4 n}(2 n)!(2 n)!} \\
& \text { Hence }\binom{2 n-\frac{1}{2}}{2 n^{2}}=\frac{(4 n)!}{2^{4 n}(2 n)!(2 n)!}
\end{aligned}
$$

Combining the solutions we get

$$
\frac{\binom{2 n-\frac{1}{2}}{n}}{\binom{2 n-\frac{1}{2}}{2 n^{2}}}=\frac{\frac{\binom{4 n}{2 n}}{2^{2 n}}}{\frac{(4 n)!}{2^{4 n}(2 n)!(2 n)!}}=\frac{\frac{(4 n)!}{2^{2 n}(2 n)!(2 n)!}}{\frac{(4 n)!}{2^{4 n}(2 n)!(2 n)!}}=2^{2 n}
$$

Chapter 5 Problem 16

Evaluate the sum

$$
\sum_{k}\binom{2 a}{a+k}\binom{2 b}{b+k}\binom{2 c}{c+k}(-1)^{k}
$$

Using formula
$\binom{n}{k}=\frac{n!(n-k)!}{k!}$
$\operatorname{For}\binom{2 a}{a+k},\binom{2 b}{b+k},\binom{2 c}{c+k}$ we have,
$\sum_{k}\binom{2 a}{a+k}\binom{2 b}{b+k}\binom{2 c}{c+k}(-1)^{k}$
$=\sum_{k} \frac{2 a!}{(a+k)!(a-k)!(b+k)!(b-k)!(c+k)!(c-k)!}(-1)^{k}$

$$
=\sum_{k} \frac{2 a!}{(a+k)!(a-k)!} \frac{2 b!}{(b+k)!(b-k)!} \frac{2 c!}{(c+k)!(c-k)!}(-1)^{k}
$$

We notice that
In order to solve the summation using equation 5.29, we must convert the summand terms to the product $\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}$

Thus consider
$\binom{a+b}{a+k}=\frac{(a+b)!}{(a+k)!(b-k)!}$
Similarly
$\binom{b+c}{b+k}=\frac{(b+c)!}{(b+k)!(c-k)!}$
$\binom{a+c}{c+k}=\frac{(a+c)!}{(c+k)!(a-k)!}$
Multiplying these 3 terms we get

$$
\begin{aligned}
& \binom{a+b}{a+k}\binom{b+c}{b+k}\binom{a+c}{c+k} \\
& =\frac{(a+b)!(b+c)!(a+c)!}{(a+k)!(b-k)!(b+k)!(c-k)!(c+k)!(a-k)!}
\end{aligned}
$$

We observe that denominator of our equation exactly matches denominator of our required equation. To match the numerator we multiply the equation by
$\frac{(a+b)!(b+c)!(a+c)!}{(a+b)!(b+c)!(a+c)}$
So we have

$$
\begin{aligned}
& \sum_{k}\binom{2 a}{a+k}\binom{2 b}{b+k}\binom{2 c}{c+k}(-1)^{k} \\
&=\sum_{k} \frac{(2 a)!(a+b)!}{(a+k)!(a-k)!(a+b)!(b+k)!(b-k)!(b+c)!(c+k)!(c-k)!(a+c)!}(-1)^{k} \\
& \text { As the terms are independent of } \mathrm{k} \text { we } \\
& \text { can take them out of the summation. }
\end{aligned}
$$

$$
\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(a+c)}
$$

$$
=\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(a+c)!} \sum_{k} \frac{(a+b)!}{(a+k)!(a-k)!(b+k)!(b-k)!(c+k)!(c-k)!} \frac{(b+c)!}{\left.(-1)^{k}\right)}
$$

Note that

$$
\frac{(a+b)!}{(a+k)!(b-k)!}=\binom{a+b}{a+k}
$$

$$
\begin{aligned}
& \frac{(b+c)!}{(b+k)!(c-k)!}=\binom{b+c}{b+k} \\
& \frac{(a+c)!}{(c+k)!(a-k)!}=\binom{a+c}{c+k} \\
& =\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(a+c)!} \sum_{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{a+c}{a+k}(-1)^{k}
\end{aligned}
$$

From book we have equation 5.29
$\sum\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{a+c}{a+k}(-1)^{k}=\frac{(a+b+c)!}{a!b!c!}$

Thus by substituting the formula,

$$
=\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(a+c)!} \frac{(a+b+c)!}{a!b!c!}
$$

So finally we have

$$
\begin{aligned}
\sum_{k}\binom{2 a}{a+k} & \binom{2 b}{b+k}\binom{2 c}{c+k}(-1)^{k} \\
& =\frac{(2 a)!(2 b)!(2 c)!}{(a+b)!(b+c)!(a+c)!} \frac{(a+b+c)!}{a!b!c!}
\end{aligned}
$$

