CHAPTER 5 EXERCISE \# 4

THE PROBLEM

EVALUATE:

$\binom{-1}{k}$ by negating its upper index.
(k in Z)

What is Upper Index Negation?

The following identity:
$\binom{r}{k}=(-1)^{k}\binom{k-r-1}{k}$
(where k in \mathbf{Z} and r in \mathbf{R})
is called the upper index negation identity.
(Proof of this identity is given in lecture notesslide 40 of chapter 5 ; and pg 164 of the book.)

solution to the problem

 $\binom{-1}{k}$$$
=(-1)^{k}\binom{k-(-1)-1}{k}
$$

We are using the "Upper index negation Identity" here.

$$
=(-1)^{k}\binom{k+1-1}{k} \ldots \operatorname{eg}(1)
$$

LET US EVALUATE
THIS

EVALUATING SUB-PROBLEM

 In order to be able to solve $\binom{k}{k}$, we need to first look at the following formal definition, "def1":$$
\begin{aligned}
& \binom{r}{z}=0, \text { if } z<0 . \\
& \binom{r}{z}=\frac{r \underline{k}}{k!}, \text { if } z \geq 0 . \quad \begin{array}{c}
z \text { in } Z \\
r \text { in } R
\end{array}
\end{aligned}
$$

SOLUTION TO THE SUBPROBLEM

Hence in order to be able to solve $\binom{k}{k}$
(where k ranges over all integers), it is obvious from the definition above that we need to consider two cases. One case when $\mathrm{k}<0$, and another case when $\mathrm{k} \geq 0$.

SOLUTION TO THE SUBPROBLEM

- Case When k <0, (then by def 1):
(:)

$=0$

- Case When $k \geq 0$, (then by def 1):
$\begin{aligned}\binom{k}{k}=\frac{k^{k}}{k!} & =\frac{k(k-1)(k-2) \ldots(k-k+1)}{k!} \\ & =\frac{k!}{k!}=1\end{aligned}$

GOING BACK TO THE PROBLEM

- Now, we had proven before that:
$\binom{-1}{k}$

$$
=(-1)^{k}\binom{k}{k}
$$

And we have just proven that:

(${ }^{(1)}$

$$
=0 \text { if } k<0 \text {. }
$$

$$
=1 \text { if } \mathrm{k} \geq 0
$$

solution to the problem

- Solution When $\mathrm{k}<0$:
$\binom{-1}{k}=(-1)^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{k}}=(-1)^{\mathrm{k}}(0)=0$
- Solution When $\mathrm{k} \geq 0$:

$$
\begin{aligned}
\binom{-1}{k} & =(-1)^{k}\binom{k}{k} \\
& =(-1)^{k}(1)=(-1)^{k}
\end{aligned}
$$

FINAL ANSWER

- When $\mathrm{k}<0$:

$\binom{-1}{k}$
 $=0$

- When $\mathrm{k} \geq 0$:
$\binom{-1}{k}=(-1)^{k}$

