Chapter 5, Problem 7




Problem

» Is it true also when k < 0 ?




Observation1 (k > 0)

» Each term in the denominator of expanded r
to the -k falling adds 2r with an even number,

increasingly.
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Observation2 (k > 0)

» Each term in the denominator of expanded
(r-1/2) to the -k falling adds with an odd
number, increasingly.
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» This result equals to 2r to the -2k falling
times .ok -
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» Thus,
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» As the problem ask for in case k < 0, we can
set a k’ whose domain is negative integers;
therefore we can replace -k with k’

» We can rewrite the formula as
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The Result

» As the domain of k’ is as same as the domain
of k(that is less than zero) in the problem, we
got the solution:
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Verifying the property

» In case k = -1,
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» In case k = -2,
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