CSE547 CARDINALITIES OF SETS

BASIC DEFINITIONS AND FACTS

Cardinality definition \quad Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1, \text { onto }} B)$.
Cardinality notations If sets A and B have the same cardinality we denote it as: $\quad|A|=|B|$ or $\operatorname{card} A=\operatorname{card} B$, or $A \sim B$. We also say that A and B are equipotent.

Cardinality We put the above notations together in one definition: $|A|=|B|$ or $\operatorname{card} A=\operatorname{cardB}$, or $A \sim B$ iff $\exists f(f: A \xrightarrow{1-1, \text { onto }} B)$.

Finite $\quad \mathrm{A}$ set A is finite iff $\exists n \in N \exists f(f:\{0,1,2, \ldots, n-1\} \xrightarrow{1-1, o n t o} A)$, i.e. we say: a set A is finite iff $\exists n \in N(|A|=n)$.

Infinite A set A is infinite $\mathrm{iff} \quad A$ is NOT finite.
Aleph zero \aleph_{0} (Aleph zero) is a cardinality of N (Natural numbers).
For any set, set A has a cardinality $\aleph_{0}\left(|A|=\aleph_{0}\right)$ iff $A \sim N$, (or $|A|=|N|$, or $\left.\operatorname{cardA}=\operatorname{cardN}\right)$.
Countable $\quad \mathrm{A}$ set A is countable iff A is finite or $|A|=\aleph_{0}$.
Infinitely countable A set A is infinitely countable iff $|A|=\aleph_{0}$.
Uncountable A set A is uncountable iff A is NOT countable.
Observe that it means that A set A is uncountable iff A is infinite and $|A| \neq \aleph_{0}$.

Continuum $\mathcal{C}($ Continuum $)$ is a cardinality of Real numbers, i.e. $\mathcal{C}=|\mathcal{R}|$.
We sat that a set A has a cardinality $\mathcal{C}(|A|=\mathcal{C})$ iff $|A|=|R|$.
Cardinality $A \leq$ cardinality $B \quad$ We define $|A| \leq|B| \quad$ iff $\quad A \sim C$ and $C \subseteq B$.

Simple Fact If $A \subseteq B$ then $|A| \leq|B|$.

For any cardinal numbers \mathcal{N}, \mathcal{M}, we say that
$\mathcal{N} \leq \mathcal{M}$ iff for any sets A, B, such that $|A|=\mathcal{N}$ and $|B|=\mathcal{M}$ we have $|A| \leq|B|$.
Cardinality $A<$ cardinality $B \quad|A|<|B|$ iff $|A| \leq|B|$ and $|A| \neq|B|$.

For any cardinal numbers \mathcal{N}, \mathcal{M} we say that

$$
\mathcal{N}<\mathcal{M} \text { iff for any sets } A, B, \text { such that }|A|=\mathcal{N} \text { and }|B|=\mathcal{M} \text { we have }|A|<|B|
$$

Cantor Theorem For any set $A,|A|<|\mathcal{P}(A)|$.
Cantor-Berstein Theorem For any sets A, B, If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

For any cardinal numbers \mathcal{N}, \mathcal{M}, we have that

If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{N}=\mathcal{M}$.

ARITHMETIC OF CARDINAL NUMBERS

$\operatorname{Sum}(\mathcal{N}+\mathcal{M}) \quad$ We define:
$\mathcal{N}+\mathcal{M}=|A \cup B|$, where A, B are such that $|A|=\mathcal{N},|B|=\mathcal{M}$ and $A \cap B=\emptyset$.
Multiplication $(\mathcal{N} \cdot \mathcal{M})$ We define:
$\mathcal{N} \cdot \mathcal{M}=|A \times B|$, where A, B are such that $|A|=\mathcal{N},|B|=\mathcal{M}$.
Power $\left(\mathcal{M}^{\mathcal{N}}\right) \quad \mathcal{M}^{\mathcal{N}}=\operatorname{card}\{f: \quad f: A \longrightarrow B\}$, where A, B are such that $|A|=\mathcal{N},|B|=\mathcal{M}$.
Observe that the definition says that $\mathcal{M}^{\mathcal{N}}$ is the cardinality of all functions that map a set A (of cardinality $\mathcal{N})$ into a set $B($ of cardinality $\mathcal{M})$.

Power $2^{\mathcal{N}}$ We define:

$$
2^{\mathcal{N}}=\operatorname{card}\{f: \quad f: A \longrightarrow\{0,1\}\}, \text { where }|A|=\mathcal{N} .
$$

$2^{\mathcal{N}}$ Theorems We prove the following.

1. $2^{\mathcal{N}}=\operatorname{card} \mathcal{P}(A), \quad$ where $|A|=\mathcal{N}$.
2. $2^{\aleph_{0}}=\mathcal{C}$.

Power Properties $\quad \mathcal{N}^{\mathcal{P}+\mathcal{T}}=\mathcal{N}^{\mathcal{P}} \cdot \mathcal{N}^{\mathcal{T}} . \quad\left(\mathcal{N}^{\mathcal{P}}\right)^{\mathcal{T}}=\mathcal{N}^{\mathcal{P} \cdot \mathcal{T}}$.
ARITHMETIC OF $n, \aleph_{0}, \mathcal{C}$

Union $1 \quad \aleph_{0}+\aleph_{0}=\aleph_{0}$.
Union of two infinitely countable sets is an infinitely countable set.
Union $2 \quad \aleph_{0}+n=\aleph_{0}$.
Union of a finite (cardinality n) and infinitely countable set is an infinitely countable set.
Union $3 \quad \aleph_{0}+\mathcal{C}=\mathcal{C}$.
Union of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Union $4 \quad \mathcal{C}+\mathcal{C}=\mathcal{C}$.
Union of two sets of cardinality the same as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product $1 \quad \aleph_{0} \cdot \aleph_{0}=\aleph_{0}$.
Cartesian Product of two infinitely countable sets is an infinitely countable set.
Cartesian Product $2 n \cdot \aleph_{0}=\aleph_{0}$.
Cartesian Product of a finite set and an infinitely countable set is an infinitely countable set.
Cartesian Product $3 \quad \aleph_{0} \cdot \mathcal{C}=\mathcal{C}$.
Cartesian Product of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product $4 \quad \mathcal{C} \cdot \mathcal{C}=\mathcal{C}$.
Cartesian Product of two sets of cardinality the same as Real numbers has the same cardinality as the set of Real numbers.

Power $1 \quad 2^{\aleph_{0}}=\mathcal{C}$.
The set of all subsets of Natural numbers (or any set equipotent with natural numbers) has the same cardinality as the set of Real numbers.

Power $2 \quad \aleph_{0}^{\aleph_{0}}=\mathcal{C}$.
There are \mathcal{C} of all functions that map N into N .
There are \mathcal{C} sequences (all sequences) that can be form out of an infinitely countable set.
$\aleph_{0}^{\aleph_{0}}=\{f: \quad f: N \longrightarrow N\}=\mathcal{C}$.

Power $3 \quad \mathcal{C}^{\mathcal{C}}=2^{\mathcal{C}}$.
There are $2^{\mathcal{C}}$ of all functions that map R into R .
The set of all real functions of one variable has the same cardinality as the set of all subsets of Real numbers.

Inequalities $\quad n<\aleph_{0}<\mathcal{C}$.
Theorem If A is a finite set, A^{*} is the set of all finite sequences formed out of A, then A^{*} has \aleph_{0} elements.
Shortly: If $|A|=n$, then $\left|A^{*}\right|=\aleph_{0}$.

