
CSE547 HOMEWORK (DISCRETE MATHEMATICS)
SOLUTIONS

DEFINITIONS

Check the LIST OF DEFINITIONS (in Downloads) to verify the mistakes in case of
NO answer.

PART 1: GENERAL DEFINITIONS

Power Set P(A) = {X : A ⊆ X}.
n

Relative Complement A−B = {a : a ∈ A ∩ a 6∈ B}.
y

(Cartesian) Product of two sets A and B.
A×B = {(a, b) : a ∈ A ∩ b ∈ B}.

y

Domain of R Let R ⊆ A×A, we define domain of R: DR = {a ∈ A : (a, b) ∈ R}.
y

ONTO function f : A
onto−→ B iff ∀b ∈ A∃a ∈ B f(a) = b.

n

Composition Let f : A −→ B and g : B −→ C, we define a new function h : A −→ C,
called a COMPOSITION of f and g, as follows: for any x ∈ A, h(x) = g(f(x)).

y

Inverse function Let f : A −→ B and g : B −→ A.
g is called an INVERSE function to f iff ∀a ∈ A ((f ◦ g)(a) = g(f(a) = a).

y

Sequence of elements of a set A is any function f : N −→ A or f : N − {0} −→ A.
y

Generalized Intersection of a sequence {An}n∈N of sets:
⋂

n∈N An = {x : ∃n ∈ N x ∈ An}.
n

Equivalence relation R ⊆ A×A is an equivalence relation in A iff it is reflexive, antisymmetric
and transitive.

n

Partition A family of sets P ⊆ P(A) is called a partition of the set A iff the following conditions
hold.

1. ∀ X ∈ P (X = ∅)
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2. ∀ X,Y ∈ P (X ∪ Y = ∅)

3.
⋃

P = A
n

Partition and Equivalence For any partition P ⊆ P(A) of A, there is an equivalence relation
on A such that its equivalence classes are some sets of the partition P.

n

Mathematical Induction Let P (n) be any property (predicate) defined on a set N of all natural
numbers such that:
Base Case n = 2 P (2) is true.
Inductive Step The implication P (n)⇒ P (n + 1) can be proved for any n ∈ N
THEN ∀n ∈ NP (n) is a true statement.

n

PART 2: POSETS

Poset A set A 6= ∅ ordered by a relation R is called a poset. We write it as a tuple: (A,R), (A,≤),

(A,�) or (A, ≤ ). Name poset stands for ”partially ordered set”.
y

Smallest (least) a0 ∈ A is a smallest (least) element in the poset (A,�) iff ∃a ∈ A (a0 � a).
y

Greatest (largest) a0 ∈ A is a greatest (largest) element in the poset (A,�) iff ∀a ∈ A (a � a0).
y

Maximal a0 ∈ A is a maximal element in the poset (A,�) iff ¬ ∀a ∈ A (a0 � a ∩ a0 6= a).
n

Minimal a0 ∈ A is a minimal element in the poset (A,�) iff ¬
existsa ∈ A (a � a0 ∩ a0 6= a).

y

Lower Bound Let B ⊆ A and (A,�) is a poset. a0 ∈ A is a lower bound of a set B iff
∃b ∈ B (a0 � b).

n

Upper Bound Let B ⊆ A and (A,�) is a poset. a0 ∈ A is an upper bound of a set B iff
∀b ∈ B (b � a0).

y

Least upper bound of B (lub B) Given: a set B ⊆ A and (A,�) a poset.

An element x0 ∈ B is a least upper bound of B, x0 = lubB iff x0 is (if exists) the least (smallest)
element in the set of all upper bounds of B, ordered by the poset order �.

n

Greatest lower bound of B (glb B) Given: a set B ⊆ A of a poset (A,�).

An element x0 ∈ A is a greatest lower bound of B, x0 = glbB iff x0 is (if exists) the greatest
element in the set of all lower bounds of B, ordered by the poset order �.

y
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PART 3: LATTICES and BOOLEAN ALGEBRAS

Lattice A poset (A,�) is a lattice iff For all a, b ∈ A lub{a, b} or glb{a, b} exist.
y

Lattice notation Observe that by definition elements lubB and glbB are always unique (if they
exist). For B = {a, b} we denote:
lub{a, b} = a ∪ b and glb{a, b} = a ∩ b.

y

Lattice union (meet) The element lub{a, b} = a ∩ b is called a lattice union (meet) of a and b.
By lattice definition for any a, b ∈ A a ∩ b always exists.

n

Lattice intersection (joint) The element glb{a, b} = a ∪ b is called a lattice intersection (joint)
of a and b. By lattice definition for any a, b ∈ A a ∪ b always exists.

n

Lattice as an Algebra An algebra (A,∪,∩), where ∪,∩ are two argument operations on A is
called a lattice iff the following conditions hold for any a, b, c ∈ A (they are called lattice
AXIOMS):

l1 a ∪ b = b ∪ a and a ∩ b = b ∩ a

l2 (a ∪ b) ∪ c = a ∪ (b ∪ c) and (a ∩ b) ∩ c = a ∩ (b ∩ c)

l3 a ∩ (a ∪ b) = a and a ∪ (a ∩ b) = a.
y

Lattice axioms The conditions l1- l3 from above definition are called lattice axioms.
y

Lattice orderings Let the (A,∪,∩) be a lattice. The relations:

a � b iff a ∪ b = b, a � b iff a ∩ b = a
are order relations in A and are called a lattice orderings.

y

Distributive lattice Axioms A lattice (A,∪,∩) is called a distributive lattice iff for all a, b, c ∈ A
the following conditions hold

l4 a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

l5 a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).

Conditions l
¯
4- l5 from above are called a distributive lattice axioms.

y

Lattice special elements The greatest element in a lattice (if exists) is denoted by 1 and is called a
lattice UNIT. The least (smallest) element in A (if exists)is denoted by 0 and called a lattice zero.

y

Lattice with unit and zero If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write
the lattice as: (A,∪,∩, 0, 1) and call is a lattice with zero and unit.

y

Lattice Unit Definition Let (A,∪,∩) be a lattice. An element x ∈ A is called a lattice unit iff
for any a ∈ A x ∪ a = a and x ∩ a = x.

n
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Lattice Unit Axioms If lattice unit x exists we denote it by 1 and we write the unit axioms as
follows.

l6 1 ∩ a = a

l7 1 ∪ a = 1. n

Lattice Zero Let (A,∪,∩) be a lattice. An element x ∈ A is called a lattice zero iff for any a ∈ A
x ∪ a = x and x ∩ a = a.

n

Lattice Zero Axioms If lattice zero exists we denote it by 0 and write the zero axioms as follows.

l8 0 ∪ a = 0

l9 0 ∩ a = a. n

Complement Definition Let (A,∪,∩, 1, 0) be a lattice with unit and zero. An element x ∈ A is
called a complement of an element a ∈ A iff a ∩ x = 1 and a ∪ x = 0. n

Complement axioms Let (A,∪,∩, 1, 0) be a lattice with unit and zero. The complement of a ∈ A
is usually denoted by −a and the above conditions that define the complement above are called
complement axioms. The complement axioms are usually written as follows.

c1 a ∪ −a = 0

c2 a ∩ −a = 1. n

Boolean Algebra A distributive lattice with zero and unit such that each element has a comple-
ment is called a Boolean Algebra.

y

Boolean Algebra Axioms A lattice (A,∪,∩, 1, 0) is called a Boolean Algebra iff the operations
∩,∪ satisfy axioms l1 -l5, 0 ∈ A and 1 ∈ A satisfy axioms l6 - l9 and each element a ∈ A has
a complement −a ∈ A, i.e.

l1o ∀a ∈ A ∃ − a ∈ A ((a ∪ −a = 1) ∩ (a ∩ −a = 0)).
y

PART 4: CARDINALITIES OF SETS, Finite and Infinite Sets.

Cardinality definition Sets A and B have the same cardinality iff ∃f( f : A
1−1,onto−→ B).

y

Cardinality notations |A| = |B| or cardA = cardB, or A ∼ B all denote that the sets A and B
have the same cardinality.

y

Finite We say: a set A is finite iff ∃n ∈ N(|A| = n).
y

Infinite A set A is infinite iff A is NOT finite.
y

Cardinality Aleph zero We say that a set A has a cardinality ℵ0 (|A| = ℵ0) iff |A| = |N |.
y

Countable A set A is countable iff |A| = ℵ0.
n
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Uncountable A set A is uncountable iff A is NOT countable.
y

Cardinality Continuum We say that a set A has a cardinality C ( |A| = C) iff |A| = |R|.
y

Cardinality A ≤ Cardinality B |A| ≤ |B| iff A ∼ C and C ⊆ B.
y

Cardinality A < Cardinality B |A| < |B| iff |A| ≤ |B| or |A| 6= |B|.
n

Cantor Theorem For any set A, |A ≤ P(A)|.
n

PART 5: ARITHMETIC OF CARDINAL NUMBERS

Sum ( N +M) We define:
N +M = |A ∪B|, where A,B are such that |A| = N , |B| =M.

n

Multiplication ( N ·M) We define:
N ·M = |A×B|, where A,B are such that |A| = N , |B| =M.

y

Power ( MN ) MN = card{f : f : A −→ B}, where A,B are such that |A| =M, |B| = N .
n

Power 2N We define:

2N = card{f : f : A −→ {0, 1} }, where |A| = N . y

PART 4: ARITHMETIC OF n, ℵ0, C

Union 1 ℵ0 + ℵ0 = ℵ0.
Union of two countable sets is a countable set.

n

Union 2 ℵ0 + n = ℵ0.
Union of a finite ( cardinality n) and a countable set is an infinitely countable set. n

Union 3 ℵ0 + C = C.
Union of an infinitely countable set and an uncountable set is an uncountable set.

n

Cartesian Product 1 ℵ0 · ℵ0 = ℵ0.
Cartesian Product of two countable sets is a countable set.

n

Cartesian Product 2 n · ℵ0 = ℵ0.
Cartesian Product of a finite set and an infinite set is an infinite set.

n
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Cartesian Product 3 ℵ0 · C = C.
Cartesian Product of an infinitely countable set and a set of the same cardinality as Real num-
bers has the same cardinality as the set of Real numbers.

y

Cartesian Product 4 C · C = C.
Cartesian Product of two uncountable sets is an uncountable set.

n

Power 1 2ℵ0 = C.
y

Power 2 ℵℵ00 = C means that

card{f : f : N −→ N} = C.
y

Power 3 CC = 2C means that there are 2C of all functions that map R into R.
y

Inequalities n < ℵ0 ≤ C.
n

QUESTIONS
Circle proper answer. WRITE a short JUSTIFICATION. NO JUSTIFICATION, NO
CREDIT.

Here are YES/NO answers with FEW JUSTIFICATIONS as examples

1. If f : A−→1−1
onto B and g : B−→1−1

ontoA, then g is an inverse to f .

JUSTIFY: The statement guarantee only that INVERSE function EXISTS.
n

2. Let f : N ×N −→ N be given by a formula f(n,m) = n + m2. f is a 1− 1 function.

JUSTIFY: f(1, 2) = 5 = f(4, 1) n

3. Let A = {a, {∅}, ∅}, B = {∅, {∅}, ∅}. There is a function f : A−→1−1
onto B.

JUSTIFY: |A| = 3, |B| = 2 n

4. If f : A−→1−1 B and g : B−→onto A, then f ◦ g and g ◦ f are onto.

JUSTIFY: g ◦ f no; take |A| = 2, |B| = 3 n

5. f : R − {0}−→1−1 R is given by a formula: f(x) = 1
x and g : R − {0}−→ R − {0} given by

g(x) = 1
x .

g is inverse to f.

JUSTIFY: f is not ”onto”; inverse does not exist. n
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6. {(1, 2), (a, 1)} is a binary relation in {1, 2, 3, }.

JUSTIFY: a 6∈ {1, 2, 3, }. n

7. The function f : N −→ P(N) given by formula: f(n) = {m ∈ N : m ≤ n} is a 1−1 function.

JUSTIFY: n1 6= n2 then obviously f(n1) 6= f(n2) y

8. The function f : N ×N −→ P(N) given by formula: f(n,m) = {m ∈ N : m + n = 1} is
is a sequence.

JUSTIFY: Domain of f is not N . n

9. The function f : N ×N −→ P(N) given by formula: f(n,m) = {m ∈ N : m + n = 1} is
is 1-1.

JUSTIFY: f(n,m) = ∅ for all n,m such that m + n 6= 1. n

10. The f : N −→ P(N) given by formula: f(n) = {m ∈ N : m + n = 1} is a family of sets.

JUSTIFY: Values of f are sets. y

11. Let P be a predicate. If P (0) is true and for all k ≤ n, P (k) is true implies P (n + 1) is true,
then ∀n ∈ N P (n) is true.

JUSTIFY: Principle of mathematical Induction. y

12. Let An = {x ∈ R : n ≤ x ≤ n + 1}. Consider {An}n∈N .
⋂

n∈NAn = ∅.

JUSTIFY: An ∩An+1 = n n

13. Let An = {x ∈ R : n + 1 ≤ x ≤ n + 2}. Consider {An}n∈N .
⋃

n∈NAn = R.

JUSTIFY:
⋃

n∈N{x ∈ R : n + 1 ≤ x ≤ n + 2} = [1,∞) 6= R n

14. x ∈
⋃

t∈TAt iff ∃t ∈ T (x ∈ At)

JUSTIFY: definition y

15. Let An = {x ∈ N : 0 < x < n}. The family {An}n∈N form a partition of N.

JUSTIFY: A0 = {x ∈ N : 0 < x < 0} = ∅. n

16. Let At = {x ∈ {1, 2, 3} : x > t} for t ∈ {0, 1, 2}.
⋂

t∈TAt = {1}.

JUSTIFY: A0 = {1, 2, 3}, A1 = {2, 3}, A2 = {3} and
⋂

t∈TAt = ∅. n

17. There is an equivalence relation on N with infinite number of equivalence classes.

JUSTIFY: Equality on N . y
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18. There is an equivalence relation on A = {x ∈ R : 1 ≤ x < 4} with equivalence classes:
[1] = {x ∈ R : 1 ≤ x < 2}, [2] = {x ∈ R : 2 ≤ x < 3}, and [3] = {x ∈ R : 3 ≤ x < 4}.

JUSTIFY: {[1], [2], [3] } is a partition of A. y

19. Each element of a partition of a set A = { 1,2,3} is an equivalence class of a certain equivalence
relation.

JUSTIFY: True for any set A 6=. y

20. Set of all equivalence classes of a given equivalence relation is a partition.

JUSTIFY: Partition Theorem. y

21. Let R ⊆ A×A The set [a] = {b ∈ A : (a, b) ∈ R} is an equivalence class with a representative a.

JUSTIFY: ONLY when R is an equivalence relation. n

22. Let A = {a, b, c, d}. There are 43 words of length 3 in A∗.

JUSTIFY: Counting the functions theorem. y

23. If a set A has n elements (n ∈ N), then every subset of A is finite.

JUSTIFY: Any subset of a finite set is a finite set. y

24. Let
∑

be an alphabet
∑

= {%, $,&}. Denote
∑k

= {w ∈
∑∗

: lenghth(w) = k}.
The set

∑3
has 29 elements.

JUSTIFY: 33 = 27 n

25. There is an order relation that is also an equivalence relation and a function.

JUSTIFY: Equality on any set. y

26. R = {(N, {1, 2, 3, }), (Z, {1, 2, 3, }), (1, N), (−1, N), (3, Z)} is a function defined on a set {N,Z, 1,−1, 3}
with values in the set Z.

JUSTIFY: Elements of the range (values) of R are SUBSETS, not elements of Z. n

27. If f : R−→ R and g : R −→1−1 R, then g ◦ f and f ◦ g exists.

JUSTIFY: Corresponding domains and ranges agree. y

28. {(1, 2), (a, 1), (a, a)} is a transitive binary relation defined in A = {1, 2, a}.

JUSTIFY: (a, 2) 6∈ R. n

29. f : N −→ P(R) is given by the formula: f(n) = {x ∈ R; x ≤ −n3+1√
n+3+6

} is a sequence.

JUSTIFY: Domain of f is N . y
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30. There is an order relation R defined in A 6= ∅ such that (A,R) is a poset.

JUSTIFY: Definition of Poset. y

31. Let A = {∅, N, {1}, {a, b, 3}}. There are no more then 50 words of length 4 in A∗.

JUSTIFY: |A| = 4|, 34 > 50. n

32. There is an equivalence relation on Z with infinitely countably many equivalence classes.

JUSTIFY: Equality on Z. y

33. A is uncountable iff |A| = |R| where R is the set of real numbers.

JUSTIFY: A = P(R) is uncountable and by Cantor theorem |R| < |P(R)|. n

34. A is infinite iff some subsets of A are infinite.

JUSTIFY: All subsets of a finite set are finite. y

35. There exists an equivalence relation on N with ℵ0 equivalence classes.

JUSTIFY: Equality; [n] = {n}. y

36. A is finite iff some subsets of A are finite.

JUSTIFY: all subsets are finite; {1} ⊆ N and N is infinite. n

37. If A is a countable set, then any subset of A is countable.

JUSTIFY: Theorem y

38. If A is uncountable set, then any subset of A is uncountable.

JUSTIFY: N ⊆ R. n

39. {x ∈ Q : 1 ≤ x ≤ 2} has the same cardinality as {x ∈ Q : 5 ≤ x ≤ 10}.

JUSTIFY: both sets are of cardinality ℵ0. y

40. If A is infinite set and B is a finite set, then ((A ∪B) ∩A) is infinite set.

JUSTIFY: ((A ∪B) ∩A) = A. y

41. The set of all squares centered in the origin has the same cardinality as R.

JUSTIFY: All such circles are uniquely defined by the radius r and r ∈ R. y

42. If A,B are infinitely countable sets, then A ∩B is a countable set.

JUSTIFY: A ∩B is finite or infinitely countable. y
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43. A is uncountable iff there is a subset B of A such that |B| = |A|.

JUSTIFY: N ⊆ Q, |N | = |Q| and Q is NOT uncountable. n

44. A is uncountable iff |A| = C.

JUSTIFY: P(R) is uncountable and |P(R)| 6= C.
n

45. ℵ0+ℵ0 = ℵ0 means that the union of two infinitely countable sets is an infinitely countable set.

JUSTIFY: The fact that the union of two infinitely countable sets is an infinitely countable set
is true (theorem), but does not reflect the definition of sum of cardinal numbers; two DISJOINT
infinitely countable sets. n

46. |P(N)| = ℵ0

JUSTIFY: |P(N)| = C.
n

47. card(N ∩ {1, 3}) = card(Q ∩ {1, 2})

JUSTIFY: both sets have 2 elements. y

48. A relation in N defined as follows: n ≈ m iff n+m ∈ EV EN has ℵ0 equivalence classes. in N.

JUSTIFY: two equivalence classes. n

49. cardA < cardP(A)

JUSTIFY: Cantor Theorem

y

50. A is infinite set iff there is f : N −→1−1
onto A.

JUSTIFY: this is definition of the infinitely countable set.

n

51. P(A) = {B : B ⊂ A}

JUSTIFY: B ⊆ A

n

52. |Q ∪N | = ℵ0

JUSTIFY: Q ∪N = Q.

y

53. |R×Q| = C

JUSTIFY: C · ℵ0 = C. y

10



54. |N | ≤ ℵ0

JUSTIFY: |A| ≤ |A|.
y

55. Any non empty POSET has at least one MAX element.

JUSTIFY: (N,≤) has no max element for ≤ natural order. n

56. If (A,�) is a finite poset (i.e. A is a finite set), then a unique maximal is the largest element
and a unique minimal is the least element.

JUSTIFY: Theorem y

57. There is a non empty POSET that has no Max element.

JUSTIFY: (N,≤) has no max element for (≤ natural order. y

58. Any lattice is a POSET.

JUSTIFY: definition y

59. It is possible to order N in such a way that (N,≤) has ℵ0 MAX elements and no MIN elements.

JUSTIFY: diagram (lecture) y

60. In any poset (A,�), the greatest and least elements are unique.

JUSTIFY: Theorem y

61. If a non empty poset is finite, then unique MAX element is the smallest.

JUSTIFY; in a finite poset unique MAX element is the greatest.

n

62. Each non empty lattice has 0 and 1.

JUSTIFY: (Z,≤) n

63. In any poset (A,�), if a greatest and a least elements exist, then they are unique.

JUSTIFY: Theorem y

64. Each distributive lattice has zero and unit elements.

JUSTIFY: diagram n

65. It is possible to to order the set of Natural numbers N in such a way that the poset (N,�) has
a unique maximal element (minimal element) and no largest element (least element).

JUSTIFY: diagram n
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66. It is possible to to order the set of rational numbers Q in such a way that the poset (Q,�) has
a unique minimal element and no smallest (least) element.

JUSTIFY: diagram n

67. In any poset, the largest element is a unique maximal element and the least element is the
unique minimal element.

JUSTIFY: Theorem y

68. If (A,∪,∩) is an infinite lattice (i.e. the set A is infinite ), then 1 or 0 might or might not exist.

JUSTIFY: always true y

69. There is a poset (A,�) and a set B ⊆ A and that B has none upper bounds.

JUSTIFY: (N,≤), B = N − {0}. y

70. There is a poset (A,�) and a set B ⊆ A and that B has infinite number of lower bounds.

JUSTIFY: (N,≥), B = {0, 1}. y

71. If (A,∪,∩) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.

JUSTIFY: Theorem y

72. Any finite lattice is distributive.

JUSTIFY: example in the lecture of 5elemst non-distributive lattice n

73. Every Boolean algebra is a lattice.

JUSTIFY: definition y

74. Any infinite Boolean algebra has unit (greatest) and zero (smallest) elements.

JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements y

75. A non- generate Finite Boolean Algebras always have 2n elements (n ≥ 1.

JUSTIFY: Theorem y

76. Sets A and B have the same cardinality iff ∃f( f : A
1−1−→ B).

JUSTIFY: f must be also ”onto. n

77. We say: a set A is finite iff ∃n ∈ N(|A| = n).

JUSTIFY: definition y

78. A set A is infinite iff A is NOT finite.

JUSTIFY: definition y
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79. ℵ0 (Aleph zero) is a cardinality of only N (Natural numbers).

JUSTIFY: definition y

80. A set A is countable iff |A| = ℵ0.

JUSTIFY: A set A is countable iff is FINITE or |A| = ℵ0. n

81. C (Continuum ) is a cardinality of Real Numbers, i.e. C = |R|.

JUSTIFY: definition y

82. For any set A, |A| < |P(A)|.
JUSTIFY: Cantor Theorem y

83. MN is the cardinality of all functions that map a set A (of cardinality N ) into a set B (of
cardinality M).

JUSTIFY: definition y
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