CSE547 HOMEWORK (DISCRETE MATHEMATICS)
SOLUTIONS

DEFINITIONS

Check the LIST OF DEFINITIONS (in Downloads) to verify the mistakes in case of
NO answer.

PART 1: GENERAL DEFINITIONS
Power Set P(4)={X: AC X}

Relative Complement A—-B={a:a€A N a ¢ B}.

(Cartesian) Product of two sets A and B.
Ax B={(a,b): a€A Nb € B}.

Domain of R Let R C A x A, we define domain of R: D ={a € A: (a,b) € R}.
ONTO function f: A 2% B iff Vbe AJac B f(a) =b.

Composition Let f: A — Bandg: B — C, we define a new function h: A — C,
called a COMPOSITION of f and g, as follows: for any x € A, h(z) = g(f(z)).

Inverse function Letf: A — B and g: B — A.
g is called an INVERSE function to f iff Va € A ((f o g)(a) = g(f(a) = a).

Sequence of elements of a set A is any function f: N — Aor f: N-—{0} — A.
Generalized Intersection of a sequence {A,}nen of sets: (), .y An={z: In€ N x € A,}.

Equivalence relation R C A X A is an equivalence relation in A iff it is reflexive, antisymmetric
and transitive.

Partition A family of sets P C P(A) is called a partition of the set A iff the following conditions
hold.

. VXeP (X =0)



2. VX,YEP (XUY =0)

3. UP=4

Partition and Equivalence  For any partition P C P(A) of A, there is an equivalence relation
on A such that its equivalence classes are some sets of the partition P.

Mathematical Induction Let P(n) be any property (predicate) defined on a set N of all natural
numbers such that:
Base Case n =2  P(2) is true.
Inductive Step The implication P(n) = P(n+ 1) can be proved for any n € N
THEN Vn € NP(n) is a true statement.

PART 2: POSETS

Poset A set A # () ordered by a relation R is called a poset. We write it as a tuple: (A, R), (4, <),
(A,=%) or (A, ). Name poset stands for ”partially ordered set”.

Yy
Smallest (least) ap € A is a smallest (least) element in the poset (4,=<) iff Ja € A (ap < a).

Yy
Greatest (largest) ag € A is a greatest (largest) element in the poset (4, =) iff Va € A (a < ag).

y

Maximal  ag € A is a maximal element in the poset (4,=) iff = Vae€ A (ap 2a N ag # a).

Minimal ag € A is a minimal element in the poset (A4,=) iff -
existsa € A (a 2 ag N ag # a).

Lower Bound Let B C A and (A,=<) is a poset. ay € A is a lower bound of a set B iff
db € B (ap < b).

Upper Bound Let B C A and (A, =) is a poset. ag € A is an upper bound of a set B iff
Vb e B (b= ap).

Least upper bound of B (lub B)  Given: a set B C A and (A, <) a poset.

An element xg € B is a least upper bound of B, 2 = lubB iff zg is (if exists) the least (smallest)
element in the set of all upper bounds of B, ordered by the poset order <.

Greatest lower bound of B (glb B)  Given: a set B C A of a poset (4, <).

An element g € A is a greatest lower bound of B, 2o = glbB iff z is (if exists) the greatest
element in the set of all lower bounds of B, ordered by the poset order <.



PART 3: LATTICES and BOOLEAN ALGEBRAS

Lattice A poset (A4, <) is a lattice iff For all a,b€ A lub{a,b} or glb{a,b} exist.

Lattice notation Observe that by definition elements lubB and glbB are always unique (if they
exist). For B = {a,b} we denote:
lub{a,b} =aUb and ¢lb{a,b} =anb.

Lattice union (meet) The element lub{a,b} = aNb is called a lattice union (meet) of a and b.
By lattice definition for any a,b € A a Nb always exists.

Lattice intersection (joint) The element gib{a,b} = a U b is called a lattice intersection (joint)
of a and b. By lattice definition for any a,b € A a U b always exists.

Lattice as an Algebra An algebra (A,U,N), where U,N are two argument operations on A is
called a lattice iff the following conditions hold for any a,b,c € A (they are called lattice
AXIOMS):

I1 aUb=bUaandanNb=>bNa
12 (aUb)Uc=aU(bUc) and (anb)Nec=an(bNc)
13 an(aUb)=a and aU(aNd)=a.

Lattice axioms The conditions 11- 13 from above definition are called lattice axioms.

Lattice orderings Let the (A4,U,N) be a lattice. The relations:

a=biff aUb=0b, a=b iff aNnb=a
are order relations in A and are called a lattice orderings.

Distributive lattice Axioms A lattice (A, U, N) is called a distributive lattice iff for all a,b,c € A
the following conditions hold

4 aU(ne) =(@Ub)N(aUc)
15 an(Uc)=(andb)U(anc).

Conditions 14- 15 from above are called a distributive lattice axioms.

Lattice special elements The greatest element in a lattice (if exists) is denoted by 1 and is called a
lattice UNIT. The least (smallest) element in A (if exists)is denoted by 0 and called a lattice zero.

Lattice with unit and zero If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write
the lattice as: (4,U,N,0,1) and call is a lattice with zero and unit.

Lattice Unit Definition Let (4,U,N) be a lattice. An element z € A is called a lattice unit iff
foranya€ A zUa=a and zxNa=uz.



Lattice Unit Axioms If lattice unit x exists we denote it by 1 and we write the unit axioms as

follows.
I6 1Na=a
17 1Ua=1.

Lattice Zero Let (A,U,N) be a lattice. An element x € A is called a lattice zero iff for any a € A
rUa=z and zxzNa=a.

Lattice Zero Axioms If lattice zero exists we denote it by 0 and write the zero axioms as follows.
I8 0Ua=0
19 0Nna=a.

Complement Definition Let (A4,U,N,1,0) be a lattice with unit and zero. An element z € A is
called a complement of an element a € Aiff aNzx=1 and aUxz=0.

Complement axioms Let (A4,U,N,1,0) be a lattice with unit and zero. The complement of a € A
is usually denoted by —a and the above conditions that define the complement above are called
complement axioms. The complement axioms are usually written as follows.

cl aU—a=0
c2 anNn—-a=1.

Boolean Algebra A distributive lattice with zero and unit such that each element has a comple-
ment is called a Boolean Algebra.

Boolean Algebra Axioms A lattice (4,U,N,1,0) is called a Boolean Algebra iff the operations
N, U satisfy axioms 11 -15, 0 € A and 1 € A satisfy axioms 16 - 19 and each element a € A has
a complement —a € A, i.e.

llo YacAd—acA((aU—a=1) N (aN—a=0)).

PART 4: CARDINALITIES OF SETS, Finite and Infinite Sets.

1—1,onto
—

Cardinality definition Sets A and B have the same cardinality iff 3f( f: A B).

Cardinality notations |A| = |B| or cardA = cardB, or A ~ B all denote that the sets A and B
have the same cardinality.

Finite We say: a set A is finite iff 3n € N(|4| =n).
Infinite A set A is infinite iff A is NOT finite.
Cardinality Aleph zero We say that a set A has a cardinality Ry (JA| = No) iff |4] = |N]|.

Countable A set A is countable iff |A| = N,.



Uncountable A set A is uncountable iff A is NOT countable.

Cardinality Continuum We say that a set A has a cardinality C ( |A] =C) iff |A| = |R|.
Cardinality A < Cardinality B |A| < |B| iff A~ C and C C B.

Cardinality A < Cardinality B |A4| < |B| iff |A| <|B]or |4| # |B|.

Cantor Theorem For any set A, |[A < P(A4)|.

PART 5: ARITHMETIC OF CARDINAL NUMBERS

Sum (N + M) We define:

N + M = |AU B|, where A, B are such that |A| =N, |B| = M.

Multiplication ( N - M) We define:
N - M =|A x B|, where A, B are such that |A| = N, |B| = M.

Power ( MY) MV =card{f: f: A — B}, where A, B are such that |A| = M, |B| = N.
Power 2V We define:

N =card{f: f: A— {0,1} }, where |A] = N.
PART 4: ARITHMETIC OF n, X, C

Union 1 Ry + Ny = Ng.
Union of two countable sets is a countable set.

Union 2 NO +n= No.
Union of a finite ( cardinality n) and a countable set is an infinitely countable set.

Union 3 Ny+C=C.
Union of an infinitely countable set and an uncountable set is an uncountable set.

Cartesian Product 1 Ny - Ny = Ng.
Cartesian Product of two countable sets is a countable set.

Cartesian Product 2 n- Ry = N.
Cartesian Product of a finite set and an infinite set is an infinite set.



Cartesian Product 3 Ny-C =C.
Cartesian Product of an infinitely countable set and a set of the same cardinality as Real num-
bers has the same cardinality as the set of Real numbers.

Cartesian Product 4 C-C=C.
Cartesian Product of two uncountable sets is an uncountable set.

Power 1 2% = (.

Power 2 Ng" = C means that
card{f: f:N—N}=C.

Power 3 (€ = 2¢ means that there are 2€ of all functions that map R into R.

Inequalities n <Xy <C.

QUESTIONS
Circle proper answer. WRITE a short JUSTIFICATION. NO JUSTIFICATION, NO
CREDIT.

Here are YES/NO answers with FEW JUSTIFICATIONS as examples

1. Iff: A—1 Band g: B—' L A, then g is an inverse to f.

onto onto

JUSTIFY: The statement guarantee only that INVERSE function EXISTS.

2. Let f: NxN — N be given by a formula f(n,m)=mn-+m?2 fisal—1 function.

JUSTIFY: f(1,2) =5 = f(4,1)
3. Let A= {a,{0},0}, B={0,{0},0}. There is a function f: A—. ' B.

onto

JUSTIFY: |A| =3, |B| =2
4. If f: A—171 Band g: B—°"° A, then fog and go f are onto.

JUSTIFY: go f no; take |A| =2, |B| =3
5. f:R—{0}—'" Ris given by a formula: f(z) = % and g: R — {0}— R — {0} given by

g(z) = 1.

g is inverse to f.

JUSTIFY: f is not ”onto”; inverse does not exist.



10.

11.

12.

13.

14.

15.

16.

17.

{(1,2),(a,1)} is a binary relation in {1,2,3, }.

JUSTIFY: a ¢ {1,2,3,}.

The function f : N — P(N) given by formula: f(n) ={m € N: m < n}isal—1 function.

JUSTIFY: ny # ng then obviously f(n1) # f(n2)

The function f: N x N — P(N) given by formula: f(n,m)={meN: m+n=1}is
is a sequence.
JUSTIFY: Domain of f is not N.

The function f: N x N — P(N) given by formula: f(n,m)={meN: m+n=1}1is
is 1-1.
JUSTIFY: f(n,m) =0 for all n,m such that m +n # 1.

The f: N — P(N) given by formula: f(n)={m e N: m+n =1} is a family of sets.

JUSTIFY: Values of f are sets.

Let P be a predicate. If P(0) is true and for all k¥ < n, P(k) is true implies P(n + 1) is true,
then VYn € N P(n) is true.

JUSTIFY: Principle of mathematical Induction.

Let A, ={z € R: n <z <n+1}. Consider {A,}nen. N,eny4n =0.

JUSTIFY: A, N Api1=n

Let A, ={z € R: n+1 <2 <n+2}. Consider {A,}nen. U,cy4n = R.

JUSTIFY: U,eny{z € R: n+1<2<n+2}=[l,00)#R
x € UyepAr iff 3t € T(x € Ay)

JUSTIFY: definition

Let A, ={x € N :0 <z <n}. The family {4, }nen form a partition of N.

JUSTIFY: Ag={zeN:0<z<0}=0.
Let Ay = {x € {1,2,3} : 2 >t} for t € {0,1,2}. N, A = {1}

JUSTIFY: Ag = {1,2,3}, A1 ={2,3}, Ay = {3} and (), 4 = 0.

There is an equivalence relation on IV with infinite number of equivalence classes.

JUSTIFY: Equality on N.



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

There is an equivalence relation on A = {x € R : 1 < z < 4} with equivalence classes:
M={zeR:1<zx<2},2]={reR:2<z<3},and B|={r € R:3 <z <4}

JUSTIFY: {[1], [2], [3] } is a partition of A. y

Each element of a partition of a set A = { 1,2,3} is an equivalence class of a certain equivalence
relation.

JUSTIFY: True for any set A #. y

Set of all equivalence classes of a given equivalence relation is a partition.

JUSTIFY: Partition Theorem. y

Let R C Ax A Theset [a] = {b € A: (a,b) € R} is an equivalence class with a representative a.

JUSTIFY: ONLY when R is an equivalence relation. n
Let A= {a,b,c,d}. There are 4% words of length 3 in A*.

JUSTIFY: Counting the functions theorem. y

If a set A has n elements (n € N), then every subset of A is finite.

JUSTIFY: Any subset of a finite set is a finite set. y
Let 3" be an alphabet 3° = {%, $,&}. Denote 2% = {w € 2% : lenghth(w) = k}.

The set 3% has 29 elements.

JUSTIFY: 3% =27 n

There is an order relation that is also an equivalence relation and a function.

JUSTIFY: Equality on any set. y

R={(N,{1,2,3,}),(Z2,{1,2,3,}),(1,N), (—1,N), (3, Z) } is a function defined on a set {N, Z,1, -1, 3}
with values in the set Z.

JUSTIFY: Elements of the range (values) of R are SUBSETS, not elements of Z. n

If f: R— Randg:R —'"! R, then go f and f o g exists.

JUSTIFY: Corresponding domains and ranges agree. y

{(1,2),(a,1), (a,a)} is a transitive binary relation defined in A = {1,2,a}.

JUSTIFY: (a,2) € R. n

f: N — P(R) is given by the formula: f(n)={z € R; z < \/_#3;36} is a sequence.

JUSTIFY: Domain of f is N. y



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

There is an order relation R defined in A # () such that (A, R) is a poset.

JUSTIFY: Definition of Poset.

Let A= {0,N,{1},{a,b,3}}. There are no more then 50 words of length 4 in A*.

JUSTIFY: |A| = 4|, 3* > 50.

There is an equivalence relation on Z with infinitely countably many equivalence classes.

JUSTIFY: Equality on Z.

A is uncountable iff |A| = |R| where R is the set of real numbers.

JUSTIFY: A = P(R) is uncountable and by Cantor theorem |R| < [P(R)|.

A is infinite iff some subsets of A are infinite.

JUSTIFY: All subsets of a finite set are finite.

There exists an equivalence relation on N with Ry equivalence classes.

JUSTIFY: Equality; [n] = {n}.

A is finite iff some subsets of A are finite.
JUSTIFY: all subsets are finite; {1} C N and N is infinite.

If A is a countable set, then any subset of A is countable.

JUSTIFY: Theorem

If A is uncountable set, then any subset of A is uncountable.

JUSTIFY: N C R.

{z € Q:1 <z <2} has the same cardinality as {z € Q : 5 <z < 10}.

JUSTIFY: both sets are of cardinality Ng.

If A is infinite set and B is a finite set, then ((AU B) N A) is infinite set.

JUSTIFY: ((AUB)NA) = A.

The set of all squares centered in the origin has the same cardinality as R.

JUSTIFY: All such circles are uniquely defined by the radius r and r € R.

If A, B are infinitely countable sets, then AN B is a countable set.

JUSTIFY: AN B is finite or infinitely countable.



43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

53.

A is uncountable iff there is a subset B of A such that |B| = |A].
JUSTIFY: N C @, |N|=|Q| and @ is NOT uncountable. n
A is uncountable iff |A| = C.

JUSTIFY: P(R) is uncountable and |P(R)| # C.

n
Ny + Ry = Ny means that the union of two infinitely countable sets is an infinitely countable set.
JUSTIFY: The fact that the union of two infinitely countable sets is an infinitely countable set
is true (theorem), but does not reflect the definition of sum of cardinal numbers; two DISJOINT
infinitely countable sets. n
[P(N)[ = Ro
JUSTIFY: |P(N)|=C.
n
card(N N{1,3}) = card(Q N {1,2})
JUSTIFY: both sets have 2 elements. y
A relation in N defined as follows: n ~ m iff n+m € EV EN has Xy equivalence classes. in N.
JUSTIFY: two equivalence classes. n
cardA < cardP(A)
JUSTIFY: Cantor Theorem
y
A is infinite set iff there is f : NV Hiﬁtlo A.
JUSTIFY: this is definition of the infinitely countable set.
n
P(A)={B:BcC A}
JUSTIFY: BC A
n
|QUN|=2Rg
JUSTIFY: QUN = Q.
y
RxQ|=C
JUSTIFY: C- Ry =C. y
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o4.

95.

56.

o7.

58.

99.

60.

61.

62.

63.

64.

65.

IN| < Ro

JUSTIFY: |A| < |A].

Any non empty POSET has at least one MAX element.

JUSTIFY: (N, <) has no max element for < natural order.

If (A, <) is a finite poset (i.e. A is a finite set), then a unique maximal is the largest element
and a unique minimal is the least element.

JUSTIFY: Theorem

There is a non empty POSET that has no Max element.

JUSTIFY: (N, <) has no max element for (< natural order.

Any lattice is a POSET.

JUSTIFY: definition

It is possible to order N in such a way that (N, <) has Xy MAX elements and no MIN elements.

JUSTIFY: diagram (lecture)

In any poset (4, <), the greatest and least elements are unique.

JUSTIFY: Theorem

If a non empty poset is finite, then unique MAX element is the smallest.

JUSTIFY; in a finite poset unique MAX element is the greatest.

Each non empty lattice has 0 and 1.

JUSTIFY: (Z,<)

In any poset (A, <), if a greatest and a least elements exist, then they are unique.

JUSTIFY: Theorem

Each distributive lattice has zero and unit elements.
JUSTIFY: diagram

It is possible to to order the set of Natural numbers N in such a way that the poset (N, <) has
a unique maximal element (minimal element) and no largest element (least element).

JUSTIFY: diagram

11



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

It is possible to to order the set of rational numbers @ in such a way that the poset (@, <) has
a unique minimal element and no smallest (least) element.

JUSTIFY: diagram

In any poset, the largest element is a unique maximal element and the least element is the
unique minimal element.

JUSTIFY: Theorem

If (A,U,N) is an infinite lattice (i.e. the set A is infinite ), then 1 or 0 might or might not exist.

JUSTIFY: always true

There is a poset (A, <) and a set B C A and that B has none upper bounds.

JUSTIFY: (N, <), B=N — {0}.

There is a poset (A4, <) and a set B C A and that B has infinite number of lower bounds.

JUSTIFY: (N, >), B = {0,1}.

If (A,U,N) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.

JUSTIFY: Theorem

Any finite lattice is distributive.

JUSTIFY: example in the lecture of 5elemst non-distributive lattice

Every Boolean algebra is a lattice.

JUSTIFY: definition

Any infinite Boolean algebra has unit (greatest) and zero (smallest) elements.

JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements

A non- generate Finite Boolean Algebras always have 2™ elements (n > 1.

JUSTIFY: Theorem

1-1

Sets A and B have the same cardinality iff 3f( f: A — B).

JUSTIFY: f must be also ”onto.
We say: a set A is finite iff In € N(JA| =n).

JUSTIFY: definition
A set A is infinite iff A is NOT finite.

JUSTIFY: definition

12



79.

80.

81.

82.

83.

Ng (Aleph zero) is a cardinality of only N (Natural numbers).

JUSTIFY: definition
A set A is countable iff |A| = Ry.

JUSTIFY: A set A is countable iff is FINITE or |A| = Ro.

C (Continuum ) is a cardinality of Real Numbers, i.e. C = |R|.

JUSTIFY: definition

For any set A, |A| < |P(4)].
JUSTIFY: Cantor Theorem

M is the cardinality of all functions that map a set A (of cardinality A) into a set B (of
cardinality M).

JUSTIFY: definition
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