CSE547 HOMEWORK (DISCRETE MATHEMATICS) SOLUTIONS

DEFINITIONS

Check the LIST OF DEFINITIONS (in Downloads) to verify the mistakes in case of NO answer.

PART 1: GENERAL DEFINITIONS

Power Set
$$\mathcal{P}(A) = \{X : A \subseteq X\}$$
.
Relative Complement $A - B = \{a : a \in A \cap a \notin B\}$.
y
(Cartesian) Product of two sets A and B.
 $A \times B = \{(a, b) : a \in A \cap b \in B\}$.
y
Domain of R Let $R \subseteq A \times A$, we define domain of R: $D_R = \{a \in A : (a, b) \in R\}$.
y
ONTO function $f : A \xrightarrow{onto} B$ iff $\forall b \in A \exists a \in B f(a) = b$.
n
Composition Let $f : A \longrightarrow B$ and $g : B \longrightarrow C$, we define a new function $h : A \longrightarrow C$, called a COMPOSITION of f and g, as follows: for any $x \in A$, $h(x) = g(f(x))$.
y

Inverse function Let $f: A \longrightarrow B$ and $g: B \longrightarrow A$. g is called an INVERSE function to f iff $\forall a \in A \ ((f \circ g)(a) = g(f(a) = a))$.

Sequence of elements of a set A is any function $f: N \longrightarrow A$ or $f: N - \{0\} \longrightarrow A$.

Generalized Intersection of a sequence $\{A_n\}_{n \in N}$ of sets: $\bigcap_{n \in N} A_n = \{x : \exists n \in N \ x \in A_n\}.$

- **Equivalence relation** $R \subseteq A \times A$ is an equivalence relation in A iff it is reflexive, antisymmetric and transitive.
- **Partition** A family of sets $\mathbf{P} \subseteq \mathcal{P}(A)$ is called a partition of the set A iff the following conditions hold.

1. $\forall X \in \mathbf{P} \ (X = \emptyset)$

n

n

У

2. $\forall X, Y \in \mathbf{P} \ (X \cup Y = \emptyset)$

3.
$$\bigcup \mathbf{P} = A$$

Partition and Equivalence For any partition $\mathbf{P} \subseteq \mathcal{P}(A)$ of A, there is an equivalence relation on A such that its equivalence classes are some sets of the partition \mathbf{P} .

Mathematical InductionLet P(n) be any property (predicate) defined on a set N of all natural
numbers such that:Base Case n = 2P(2) is true.Inductive StepThe implication $P(n) \Rightarrow P(n+1)$ can be proved for any $n \in N$ THEN $\forall n \in NP(n)$ is a true statement.

PART 2: POSETS

Poset A set $A \neq \emptyset$ ordered by a relation R is called a poset. We write it as a tuple: (A, R), (A, \leq) , (A, \preceq) or (A, \leq) . Name poset stands for "partially ordered set".

Smallest (least) $a_0 \in A$ is a smallest (least) element in the poset (A, \preceq) iff $\exists a \in A \ (a_0 \preceq a)$.

Greatest (largest) $a_0 \in A$ is a greatest (largest) element in the poset (A, \preceq) iff $\forall a \in A \ (a \preceq a_0)$.

Maximal $a_0 \in A$ is a maximal element in the poset (A, \preceq) iff $\neg \forall a \in A \ (a_0 \preceq a \ \cap \ a_0 \neq a)$.

- **Minimal** $a_0 \in A$ is a minimal element in the poset (A, \preceq) iff \neg exists $a \in A$ $(a \preceq a_0 \cap a_0 \neq a)$.
- **Lower Bound** Let $B \subseteq A$ and (A, \preceq) is a poset. $a_0 \in A$ is a lower bound of a set B iff $\exists b \in B \ (a_0 \preceq b).$

Upper Bound Let $B \subseteq A$ and (A, \preceq) is a poset. $a_0 \in A$ is an upper bound of a set B iff $\forall b \in B \ (b \preceq a_0)$.

Least upper bound of B (lub B) Given: a set $B \subseteq A$ and (A, \preceq) a poset.

An element $x_0 \in B$ is a least upper bound of B, $x_0 = lubB$ iff x_0 is (if exists) the least (smallest) element in the set of all upper bounds of B, ordered by the poset order \preceq .

Greatest lower bound of B (glb B) Given: a set $B \subseteq A$ of a poset (A, \preceq) .

An element $x_0 \in A$ is a greatest lower bound of B, $x_0 = glbB$ iff x_0 is (if exists) the greatest element in the set of all lower bounds of B, ordered by the poset order \leq .

у

n

n

 \mathbf{n}

У

У

у

 \mathbf{n}

У

n

У

PART 3: LATTICES and BOOLEAN ALGEBRAS

- **Lattice** A poset (A, \preceq) is a lattice iff For all $a, b \in A$ $lub\{a, b\}$ or $glb\{a, b\}$ exist.
- **Lattice notation** Observe that by definition elements lubB and glbB are always unique (if they exist). For $B = \{a, b\}$ we denote: $lub\{a, b\} = a \cup b$ and $glb\{a, b\} = a \cap b$.
- **Lattice union (meet)** The element $lub\{a, b\} = a \cap b$ is called a lattice union (meet) of a and b. By lattice definition for any $a, b \in A$ $a \cap b$ always exists.
- **Lattice intersection (joint)** The element $glb\{a, b\} = a \cup b$ is called a lattice intersection (joint) of a and b. By lattice definition for any $a, b \in A \ a \cup b$ always exists.
- **Lattice as an Algebra** An algebra (A, \cup, \cap) , where \cup, \cap are two argument operations on A is called a lattice iff the following conditions hold for any $a, b, c \in A$ (they are called lattice AXIOMS):
 - **l1** $a \cup b = b \cup a$ and $a \cap b = b \cap a$
 - 12 $(a \cup b) \cup c = a \cup (b \cup c)$ and $(a \cap b) \cap c = a \cap (b \cap c)$
 - 13 $a \cap (a \cup b) = a$ and $a \cup (a \cap b) = a$.

Lattice axioms The conditions l1- l3 from above definition are called lattice axioms.

Lattice orderings Let the (A, \cup, \cap) be a lattice. The relations:

 $a \leq b$ iff $a \cup b = b$, $a \leq b$ iff $a \cap b = a$ are order relations in A and are called a lattice orderings.

- **Distributive lattice Axioms** A lattice (A, \cup, \cap) is called a distributive lattice iff for all $a, b, c \in A$ the following conditions hold
 - $14 \quad a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$
 - 15 $a \cap (b \cup c) = (a \cap b) \cup (a \cap c).$

Conditions <u>1</u>4- 15 from above are called a **distributive lattice axioms**.

У

у

У

- **Lattice special elements** The greatest element in a lattice (if exists) is denoted by 1 and is called a lattice UNIT. The least (smallest) element in A (if exists) is denoted by 0 and called a lattice zero.
- **Lattice with unit and zero** If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write the lattice as: $(A, \cup, \cap, 0, 1)$ and call is a lattice with zero and unit.
- **Lattice Unit Definition** Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice unit iff for any $a \in A$ $x \cup a = a$ and $x \cap a = x$.

 \mathbf{n}

n

У

у

- У
- у

Lattice Unit Axioms If lattice unit x exists we denote it by 1 and we write the unit axioms as follows.

- $\mathbf{l6} \quad 1 \cap a = a$
- **l7** $1 \cup a = 1.$
- **Lattice Zero** Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice zero iff for any $a \in A$ $x \cup a = x$ and $x \cap a = a$.

Lattice Zero Axioms If lattice zero exists we denote it by 0 and write the zero axioms as follows.

18 $0 \cup a = 0$

19 $0 \cap a = a$.

- **Complement Definition** Let $(A, \cup, \cap, 1, 0)$ be a lattice with unit and zero. An element $x \in A$ is called a complement of an element $a \in A$ iff $a \cap x = 1$ and $a \cup x = 0$.
- **Complement axioms** Let $(A, \cup, \cap, 1, 0)$ be a lattice with unit and zero. The complement of $a \in A$ is usually denoted by -a and the above conditions that define the complement above are called complement axioms. The complement axioms are usually written as follows.
 - $\mathbf{c1} \quad a \cup -a = 0$
 - **c2** $a \cap -a = 1$.
- **Boolean Algebra** A distributive lattice with zero and unit such that each element has a complement is called a Boolean Algebra.
- **Boolean Algebra Axioms** A lattice $(A, \cup, \cap, 1, 0)$ is called a Boolean Algebra iff the operations \cap, \cup satisfy axioms **l1 -l5**, $0 \in A$ and $1 \in A$ satisfy axioms **l6 l9** and each element $a \in A$ has a complement $-a \in A$, i.e.

110 $\forall a \in A \exists -a \in A ((a \cup -a = 1) \cap (a \cap -a = 0)).$

PART 4: CARDINALITIES OF SETS, Finite and Infinite Sets.

Cardinality definition Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1,onto} B)$.

Cardinality notations |A| = |B| or cardA = cardB, or $A \sim B$ all denote that the sets A and B have the same cardinality.

Finite We say: a set A is finite iff $\exists n \in N(|A| = n)$.

Infinite A set A is infinite iff A is NOT finite.

Cardinality Aleph zero We say that a set A has a cardinality \aleph_0 $(|A| = \aleph_0)$ iff |A| = |N|.

Countable A set A is countable iff $|A| = \aleph_0$.

4

у

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

n

 \mathbf{n}

у

у

у

У

у

Uncountable A set A is uncountable iff A is NOT countable.

	У
Cardinality Continuum We say that a set A has a cardinality C ($ A = C$) iff $ A = R $.	у
Cardinality $A \leq$ Cardinality $B A \leq B $ iff $A \sim C$ and $C \subseteq B$.	v
Cardinality $A < Cardinality B A < B $ iff $ A \le B $ or $ A \ne B $.	n
Cantor Theorem For any set A , $ A \leq \mathcal{P}(A) $.	n
PART 5: ARITHMETIC OF CARDINAL NUMBERS	
Sum $(\mathcal{N} + \mathcal{M})$ We define: $\mathcal{N} + \mathcal{M} = A \cup B $, where A, B are such that $ A = \mathcal{N}, B = \mathcal{M}.$	n
Multiplication ($\mathcal{N} \cdot \mathcal{M}$) We define: $\mathcal{N} \cdot \mathcal{M} = A \times B $, where A, B are such that $ A = \mathcal{N}, B = \mathcal{M}.$	v
Power ($\mathcal{M}^{\mathcal{N}}$) $\mathcal{M}^{\mathcal{N}} = card\{f: f: A \longrightarrow B\}$, where A, B are such that $ A = \mathcal{M}, B = \mathcal{N}$.	n
Power $2^{\mathcal{N}}$ We define:	
$2^{\mathcal{N}} = card\{f: f: A \longrightarrow \{0,1\}\}, \text{ where } A = \mathcal{N}.$	У
PART 4: ARITHMETIC OF n, \aleph_0, C	
Union 1 $\aleph_0 + \aleph_0 = \aleph_0$. Union of two countable sets is a countable set.	n
Union 2 $\aleph_0 + n = \aleph_0$. Union of a finite (cardinality n) and a countable set is an infinitely countable set.	n
Union 3 $\aleph_0 + \mathcal{C} = \mathcal{C}$. Union of an infinitely countable set and an uncountable set is an uncountable set.	n
Cartesian Product 1 $\aleph_0 \cdot \aleph_0 = \aleph_0.$ Cartesian Product of two countable sets is a countable set.	n
Cartesian Product 2 $n \cdot \aleph_0 = \aleph_0$. Cartesian Product of a finite set and an infinite set is an infinite set.	n

Cartesian Product 3 $\aleph_0 \cdot \mathcal{C} = \mathcal{C}$. Cartesian Product of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.	
	у
Cartesian Product 4 $C \cdot C = C$.	
Cartesian Product of two uncountable sets is an uncountable set.	
	n
Power 1 $2^{\aleph_0} = C$.	
	У
Power 2 $\aleph_0^{\kappa_0} = C$ means that	
$card\{f: f: N \longrightarrow N\} = \mathcal{C}.$	
	У
Power 3 $C^{\mathcal{C}} = 2^{\mathcal{C}}$ means that there are $2^{\mathcal{C}}$ of all functions that map R into R.	
	У
Inequalities $n < \aleph_0 \leq C$.	
	\mathbf{n}

QUESTIONS

Circle proper answer. WRITE a short JUSTIFICATION. NO JUSTIFICATION, NO CREDIT.

Here are YES/NO answers with FEW JUSTIFICATIONS as examples

1. If $f: A \longrightarrow_{onto}^{1-1} B$ and $g: B \longrightarrow_{onto}^{1-1} A$, then g is an inverse to f.

JUSTIFY: The statement guarantee only that INVERSE function EXISTS.

2. Let $f: N \times N \longrightarrow N$ be given by a formula $f(n,m) = n + m^2$. f is a 1-1 function.

JUSTIFY:
$$f(1,2) = 5 = f(4,1)$$
 n

3. Let $A = \{a, \{\emptyset\}, \emptyset\}, B = \{\emptyset, \{\emptyset\}, \emptyset\}$. There is a function $f: A \longrightarrow_{onto}^{1-1} B$.

JUSTIFY:
$$|A| = 3$$
, $|B| = 2$ **n**

4. If $f: A \longrightarrow^{1-1} B$ and $g: B \longrightarrow^{onto} A$, then $f \circ g$ and $g \circ f$ are onto.

JUSTIFY: $g \circ f$ no; take |A| = 2, |B| = 3

5. $f: R - \{0\} \longrightarrow^{1-1} R$ is given by a formula: $f(x) = \frac{1}{x}$ and $g: R - \{0\} \longrightarrow R - \{0\}$ given by $g(x) = \frac{1}{x}$. g is inverse to f.

JUSTIFY: f is not "onto"; inverse does not exist.

 \mathbf{n}

n

6. $\{(1,2), (a,1)\}$ is a binary relation in $\{1,2,3,\}$.

JUSTIFY:
$$a \notin \{1, 2, 3, \}$$
.

7. The function $f: N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n) = \{m \in N : m \le n\}$ is a 1-1 function.

JUSTIFY: $n_1 \neq n_2$ then obviously $f(n_1) \neq f(n_2)$

8. The function $f: N \times N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n,m) = \{m \in N : m+n = 1\}$ is is a sequence.

JUSTIFY: Domain of f is not N.

9. The function $f: N \times N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n,m) = \{m \in N : m+n = 1\}$ is is 1-1.

JUSTIFY: $f(n,m) = \emptyset$ for all n, m such that $m + n \neq 1$.

10. The
$$f: N \longrightarrow \mathcal{P}(N)$$
 given by formula: $f(n) = \{m \in N : m + n = 1\}$ is a family of sets

JUSTIFY: Values of f are sets.

11. Let P be a predicate. If P(0) is true and for all $k \le n$, P(k) is true implies P(n+1) is true, then $\forall n \in N \ P(n)$ is true.

JUSTIFY: Principle of mathematical Induction.

12. Let $A_n = \{x \in R : n \le x \le n+1\}$. Consider $\{A_n\}_{n \in N}$. $\bigcap_{n \in N} A_n = \emptyset$.

JUSTIFY:
$$A_n \cap A_{n+1} = n$$

13. Let
$$A_n = \{x \in R : n+1 \le x \le n+2\}$$
. Consider $\{A_n\}_{n \in \mathbb{N}}$. $\bigcup_{n \in \mathbb{N}} A_n = R$.

JUSTIFY:
$$\bigcup_{n \in \mathbb{N}} \{x \in \mathbb{R} : n+1 \le x \le n+2\} = [1,\infty) \ne \mathbb{R}$$
 n

14.
$$x \in \bigcup_{t \in T} A_t \text{ iff } \exists t \in T (x \in A_t)$$

JUSTIFY: definition

15. Let $A_n = \{x \in N : 0 < x < n\}$. The family $\{A_n\}_{n \in N}$ form a partition of N.

JUSTIFY:
$$A_0 = \{x \in N : 0 < x < 0\} = \emptyset.$$
 n

16. Let
$$A_t = \{x \in \{1, 2, 3\} : x > t\}$$
 for $t \in \{0, 1, 2\}$. $\bigcap_{t \in T} A_t = \{1\}$.

JUSTIFY:
$$A_0 = \{1, 2, 3\}, A_1 = \{2, 3\}, A_2 = \{3\} \text{ and } \bigcap_{t \in T} A_t = \emptyset.$$

17. There is an equivalence relation on N with infinite number of equivalence classes.

JUSTIFY: Equality on N.

У

7

n

у

n

 \mathbf{n}

У

У

У

18.	There is an equivalence relation on $A = \{x \in R : 1 \le x < 4\}$ with equivalence classes: [1] = $\{x \in R : 1 \le x < 2\}$, [2] = $\{x \in R : 2 \le x < 3\}$, and [3] = $\{x \in R : 3 \le x < 4\}$.	
	JUSTIFY: $\{[1], [2], [3]\}$ is a partition of A.	У
19.	Each element of a partition of a set $A = \{ 1,2,3 \}$ is an equivalence class of a certain equivalence relation.	
	JUSTIFY: True for any set $A \neq $.	у
20.	Set of all equivalence classes of a given equivalence relation is a partition.	
	JUSTIFY: Partition Theorem.	У
21.	Let $R \subseteq A \times A$ The set $[a] = \{b \in A : (a, b) \in R\}$ is an equivalence class with a representative a.	
	JUSTIFY: ONLY when R is an equivalence relation.	n
22.	Let $A = \{a, b, c, d\}$. There are 4^3 words of length 3 in A^* .	
	JUSTIFY: Counting the functions theorem.	У
23.	If a set A has n elements $(n \in N)$, then every subset of A is finite.	
	JUSTIFY: Any subset of a finite set is a finite set.	v
24.	Let \sum be an alphabet $\sum = \{\%, \$, \&\}$. Denote $\sum^k = \{w \in \sum^* : lenghth(w) = k\}$. The set \sum^3 has 29 elements.	0
	JUSTIFY: $3^3 = 27$	n
25.	There is an order relation that is also an equivalence relation and a function.	
	JUSTIFY: Equality on any set.	у
26.	$R = \{(N, \{1, 2, 3, \}), (Z, \{1, 2, 3, \}), (1, N), (-1, N), (3, Z)\}$ is a function defined on a set $\{N, Z, 1, -1, N\}$ with values in the set Z.	-1,3
	JUSTIFY: Elements of the range (values) of R are SUBSETS, not elements of Z .	n
27.	If $f: R \longrightarrow R$ and $g: R \longrightarrow^{1-1} R$, then $g \circ f$ and $f \circ g$ exists.	
	JUSTIFY: Corresponding domains and ranges agree.	У
28.	$\{(1,2), (a,1), (a,a)\}$ is a transitive binary relation defined in $A = \{1,2,a\}$.	-
	JUSTIFY: $(a, 2) \notin R$.	n
29.	$f: N \longrightarrow \mathcal{P}(R)$ is given by the formula: $f(n) = \{x \in R; x \leq \frac{-n^3 + 1}{\sqrt{n^3 + 1}}\}$ is a sequence.	
	JUSTIFY: Domain of f is N .	у

30.	There is an order relation R defined in $A \neq \emptyset$ such that (A, R) is a poset.	
	JUSTIFY: Definition of Poset.	У
31.	Let $A = \{\emptyset, N, \{1\}, \{a, b, 3\}\}$. There are no more then 50 words of length 4 in A^* .	
	JUSTIFY: $ A = 4 , 3^4 > 50.$	n
32.	There is an equivalence relation on Z with infinitely countably many equivalence classes.	
	JUSTIFY: Equality on Z .	У
33.	A is uncountable iff $ A = R $ where R is the set of real numbers.	
	JUSTIFY: $A = \mathcal{P}(R)$ is uncountable and by Cantor theorem $ R < \mathcal{P}(R) $.	n
34.	A is infinite iff some subsets of A are infinite.	
	JUSTIFY: All subsets of a finite set are finite.	У
35.	There exists an equivalence relation on N with \aleph_0 equivalence classes.	
	JUSTIFY: Equality; $[n] = \{n\}.$	У
36.	A is finite iff some subsets of A are finite.	
	JUSTIFY: all subsets are finite; $\{1\} \subseteq N$ and N is infinite.	n
37.	If A is a countable set, then any subset of A is countable.	
	JUSTIFY: Theorem	У
38.	If A is uncountable set, then any subset of A is uncountable.	
	JUSTIFY: $N \subseteq R$.	n
39.	$\{x \in Q : 1 \le x \le 2\}$ has the same cardinality as $\{x \in Q : 5 \le x \le 10\}$.	
	JUSTIFY: both sets are of cardinality \aleph_0 .	У
40.	If A is infinite set and B is a finite set, then $((A \cup B) \cap A)$ is infinite set.	
	JUSTIFY: $((A \cup B) \cap A) = A.$	У
41.	The set of all squares centered in the origin has the same cardinality as R.	
	JUSTIFY: All such circles are uniquely defined by the radius r and $r \in R$.	у
42.	If A, B are infinitely countable sets, then $A \cap B$ is a countable set.	
	JUSTIFY: $A \cap B$ is finite or infinitely countable.	у

43.	A is uncountable iff there is a subset B of A such that $ B = A $.	
	JUSTIFY: $N \subseteq Q$, $ N = Q $ and Q is NOT uncountable.	n
44.	A is uncountable iff $ A = C$.	
	JUSTIFY: $\mathcal{P}(R)$ is uncountable and $ \mathcal{P}(R) \neq \mathcal{C}$.	n
45.	$\aleph_0 + \aleph_0 = \aleph_0$ means that the union of two infinitely countable sets is an infinitely countable set.	
	JUSTIFY: The fact that the union of two infinitely countable sets is an infinitely countable set is true (theorem), but does not reflect the definition of sum of cardinal numbers; two DISJOINT infinitely countable sets.	n
46.	$ \mathcal{P}(N) = \aleph_0$	
	JUSTIFY: $ \mathcal{P}(N) = \mathcal{C}.$	n
47.	$card(N \cap \{1,3\}) = card(Q \cap \{1,2\})$	11
	JUSTIFY: both sets have 2 elements.	у
48.	A relation in N defined as follows: $n \approx m$ iff $n + m \in EVEN$ has \aleph_0 equivalence classes. in N.	
	JUSTIFY: two equivalence classes.	n
49.	$cardA < card\mathcal{P}(A)$	
	JUSTIFY: Cantor Theorem	V
50.	A is infinite set iff there is $f: N \longrightarrow_{onto}^{1-1} A$.	у
	JUSTIFY: this is definition of the infinitely countable set.	n
51.	$\mathcal{P}(A) = \{B : B \subset A\}$	11
	JUSTIFY: $B \subseteq A$	
52.	$ Q \cup N = \aleph_0$	n
	JUSTIFY: $Q \cup N = Q$.	
53.	$ R imes Q = \mathcal{C}$	у
	JUSTIFY: $\mathcal{C} \cdot \aleph_0 = \mathcal{C}$.	У
	·	v

 \mathbf{n}

54.	N	$\leq \aleph_0$	
-----	---	-----------------	--

	JUSTIFY: $ A \leq A $.	
		У
55.	Any non empty POSET has at least one MAX element.	
	JUSTIFY: (N, \leq) has no max element for \leq natural order.	n
56.	If (A, \preceq) is a finite poset (i.e. A is a finite set), then a unique maximal is the largest element and a unique minimal is the least element.	
	JUSTIFY: Theorem	У
57.	There is a non empty POSET that has no Max element.	
	JUSTIFY: (N, \leq) has no max element for $(\leq \text{ natural order.})$	у
58.	Any lattice is a POSET.	
	JUSTIFY: definition	у
59.	It is possible to order N in such a way that (N, \leq) has \aleph_0 MAX elements and no MIN elements.	
	JUSTIFY: diagram (lecture)	у
60.	In any poset (A, \preceq) , the greatest and least elements are unique.	
	JUSTIFY: Theorem	У
61.	If a non empty poset is finite, then unique MAX element is the smallest.	
	JUSTIFY; in a finite poset unique MAX element is the greatest.	
		n
62.	Each non empty lattice has 0 and 1.	
	JUSTIFY: (Z, \leq)	n
63.	In any poset (A, \preceq) , if a greatest and a least elements exist, then they are unique.	
	JUSTIFY: Theorem	У
64.	Each distributive lattice has zero and unit elements.	
	JUSTIFY: diagram	n
65.	It is possible to to order the set of Natural numbers N in such a way that the poset (N, \preceq) has a unique maximal element (minimal element) and no largest element (least element).	

JUSTIFY: diagram

	It is possible to to order the set of rational numbers Q in such a way that the poset (Q, \preceq) has a unique minimal element and no smallest (least) element.	
	JUSTIFY: diagram	n
67.	In any poset, the largest element is a unique maximal element and the least element is the unique minimal element.	
	JUSTIFY: Theorem	у
68.	If (A, \cup, \cap) is an infinite lattice (i.e. the set A is infinite), then 1 or 0 might or might not exist.	
	JUSTIFY: always true	у
69.	There is a poset (A, \preceq) and a set $B \subseteq A$ and that B has none upper bounds.	
	JUSTIFY: $(N, \leq), B = N - \{0\}.$	у
70.	There is a poset (A, \preceq) and a set $B \subseteq A$ and that B has infinite number of lower bounds.	
	JUSTIFY: $(N, \geq), B = \{0, 1\}.$	у
71.	If (A, \cup, \cap) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.	
	JUSTIFY: Theorem	у
72.	Any finite lattice is distributive.	
	JUSTIFY: example in the lecture of 5elemst non-distributive lattice	n
73.	Every Boolean algebra is a lattice.	
	JUSTIFY: definition	у
74.	Any infinite Boolean algebra has unit (greatest) and zero (smallest) elements.	
	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements	у
75.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$.	у
75.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$. JUSTIFY: Theorem	y y
75. 76.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$. JUSTIFY: Theorem Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$.	y y
75. 76.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$. JUSTIFY: Theorem Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$. JUSTIFY: f must be also "onto.	y y n
75. 76. 77.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$. JUSTIFY: Theorem Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$. JUSTIFY: f must be also "onto. We say: a set A is finite iff $\exists n \in N(A = n)$.	y y n
75.76.77.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements ($n \ge 1$. JUSTIFY: Theorem Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$. JUSTIFY: f must be also "onto. We say: a set A is finite iff $\exists n \in N(A = n)$. JUSTIFY: definition	y y n y
75.76.77.78.	JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements A non- generate Finite Boolean Algebras always have 2^n elements $(n \ge 1$. JUSTIFY: Theorem Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$. JUSTIFY: f must be also "onto. We say: a set A is finite iff $\exists n \in N(A = n)$. JUSTIFY: definition A set A is infinite iff A is NOT finite.	y y n y

79. \aleph_0 (Aleph zero) is a cardinality of only N (Natural numbers).

JUSTIFY: definition

80. A set A is countable iff |A| = ℵ₀.
JUSTIFY: A set A is countable iff is FINITE or |A| = ℵ₀.
81. C (Continuum) is a cardinality of Real Numbers, i.e. C = |R|.
JUSTIFY: definition **y**82. For any set A, |A| < |P(A)|.
JUSTIFY: Cantor Theorem **y**83. M^N is the cardinality of all functions that map a set A (of cardinality N) into a set B (of cardinality M).

JUSTIFY: definition

у