CSE547 HOMEWORK (DISCRETE MATHEMATICS) SOLUTIONS

DEFINITIONS

Check the LIST OF DEFINITIONS (in Downloads) to verify the mistakes in case of NO answer.

PART 1: GENERAL DEFINITIONS

Power Set $\mathcal{P}(A)=\{X: \quad A \subseteq X\}$.
n
(Cartesian) Product of two sets A and B .
$A \times B=\{(a, b): \quad a \in A \cap b \in B\}$.

Domain of $\mathbf{R} \quad$ Let $R \subseteq A \times A$, we define domain of R: $D_{R}=\{a \in A:(a, b) \in R\}$.

ONTO function $f: A \xrightarrow{\text { onto }} B$ iff $\forall b \in A \exists a \in B f(a)=b$.

Composition Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$, we define a new function $h: A \longrightarrow C$, called a COMPOSITION of f and g , as follows: for any $x \in A, \quad h(x)=g(f(x))$.

Inverse function Let $f: A \longrightarrow B$ and $g: B \longrightarrow A$. g is called an INVERSE function to f iff $\forall a \in A((f \circ g)(a)=g(f(a)=a)$.

Sequence of elements of a set A is any function $f: N \longrightarrow A$ or $f: N-\{0\} \longrightarrow A$.

Generalized Intersection of a sequence $\left\{A_{n}\right\}_{n \in N}$ of sets: $\bigcap_{n \in N} A_{n}=\left\{x: \exists n \in N x \in A_{n}\right\}$.

Equivalence relation $\quad R \subseteq A \times A$ is an equivalence relation in A iff it is reflexive, antisymmetric and transitive.

Partition A family of sets $\mathbf{P} \subseteq \mathcal{P}(A)$ is called a partition of the set A iff the following conditions hold.

1. $\forall X \in \mathbf{P}(X=\emptyset)$

$$
\text { 2. } \forall X, Y \in \mathbf{P}(X \cup Y=\emptyset)
$$

3. $\bigcup \mathbf{P}=A$
n
Partition and Equivalence For any partition $\mathbf{P} \subseteq \mathcal{P}(A)$ of A, there is an equivalence relation on A such that its equivalence classes are some sets of the partition \mathbf{P}.

Mathematical Induction Let $P(n)$ be any property (predicate) defined on a set N of all natural numbers such that:
Base Case $n=2 \quad P(2)$ is true.
Inductive Step The implication $P(n) \Rightarrow P(n+1) \quad$ can be proved for any $n \in N$
THEN $\forall n \in N P(n)$ is a true statement.

PART 2: POSETS

Poset A set $A \neq \emptyset$ ordered by a relation R is called a poset. We write it as a tuple: $(A, R),(A, \leq)$, (A, \preceq) or (A, \leq). Name poset stands for "partially ordered set".

Smallest (least) $\quad a_{0} \in A$ is a smallest (least) element in the poset $(A, \preceq) \quad$ iff $\quad \exists a \in A\left(a_{0} \preceq a\right)$.

Greatest (largest) $\quad a_{0} \in A$ is a greatest (largest) element in the poset (A, \preceq) iff $\forall a \in A\left(a \preceq a_{0}\right)$.

Maximal $\quad a_{0} \in A$ is a maximal element in the poset $(A, \preceq) \quad$ iff $\neg \forall a \in A\left(a_{0} \preceq a \cap a_{0} \neq a\right)$.

Minimal $\quad a_{0} \in A$ is a minimal element in the poset (A, \preceq) iff \neg exists $a \in A\left(a \preceq a_{0} \cap a_{0} \neq a\right)$.

Lower Bound Let $B \subseteq A$ and (A, \preceq) is a poset. $a_{0} \in A$ is a lower bound of a set B iff $\exists b \in B\left(a_{0} \preceq b\right)$.

Upper Bound Let $B \subseteq A$ and (A, \preceq) is a poset. $a_{0} \in A$ is an upper bound of a set B iff $\forall b \in B\left(b \preceq a_{0}\right)$.

Least upper bound of \mathbf{B} (lub B) Given: a set $B \subseteq A$ and (A, \preceq) a poset.
An element $x_{0} \in B$ is a least upper bound of $\mathrm{B}, x_{0}=l u b B$ iff x_{0} is (if exists) the least (smallest) element in the set of all upper bounds of B, ordered by the poset order \preceq.

Greatest lower bound of \mathbf{B} (glb B) Given: a set $B \subseteq A$ of a poset (A, \preceq).
An element $x_{0} \in A$ is a greatest lower bound of $\mathrm{B}, x_{0}=g l b B$ iff x_{0} is (if exists) the greatest element in the set of all lower bounds of B, ordered by the poset order \preceq.

$$
\mathbf{y}
$$

PART 3: LATTICES and BOOLEAN ALGEBRAS

Lattice A poset (A, \preceq) is a lattice iff For all $a, b \in A \quad \operatorname{lub}\{a, b\}$ or $g l b\{a, b\}$ exist.

Lattice notation Observe that by definition elements $l u b B$ and $g l b B$ are always unique (if they exist). For $B=\{a, b\}$ we denote:
$l u b\{a, b\}=a \cup b$ and $g l b\{a, b\}=a \cap b$.

Lattice union (meet) The element $l u b\{a, b\}=a \cap b$ is called a lattice union (meet) of a and b. By lattice definition for any $a, b \in A a \cap b$ always exists.
n
n

Lattice orderings Let the (A, \cup, \cap) be a lattice. The relations:
$a \preceq b$ iff $a \cup b=b, \quad a \preceq b$ iff $a \cap b=a$
are order relations in A and are called a lattice orderings.

Distributive lattice Axioms A lattice (A, \cup, \cap) is called a distributive lattice iff for all $a, b, c \in A$ the following conditions hold
$14 \quad a \cup(b \cap c)=(a \cup b) \cap(a \cup c)$
$15 \quad a \cap(b \cup c)=(a \cap b) \cup(a \cap c)$.
Conditions $14-15$ from above are called a distributive lattice axioms.

Lattice special elements The greatest element in a lattice (if exists) is denoted by 1 and is called a lattice UNIT. The least (smallest) element in A (if exists)is denoted by 0 and called a lattice zero.

Lattice with unit and zero If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write the lattice as: $(A, \cup, \cap, 0,1)$ and call is a lattice with zero and unit.

Lattice Unit Definition Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice unit iff for any $a \in A \quad x \cup a=a \quad$ and $\quad x \cap a=x$.

Lattice Unit Axioms If lattice unit x exists we denote it by 1 and we write the unit axioms as follows.

$$
\begin{array}{ll}
16 & 1 \cap a=a \\
17 & 1 \cup a=1
\end{array}
$$

n
n
n
n
n

PART 4: CARDINALITIES OF SETS, Finite and Infinite Sets.

Cardinality definition \quad Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1, \text { onto }} B)$.

Cardinality notations $|A|=|B|$ or $\operatorname{card} A=\operatorname{card} B$, or $A \sim B$ all denote that the sets A and B have the same cardinality.

Countable A set A is countable iff $|A|=\aleph_{0}$.

Uncountable A set A is uncountable iff A is NOT countable.

Cardinality Continuum We say that a set A has a cardinality $\mathcal{C}(|A|=\mathcal{C})$ iff $|A|=|R|$.

Cardinality $A \leq$ Cardinality $B \quad|A| \leq|B| \quad$ iff $\quad A \sim C$ and $C \subseteq B$.

Cardinality $A<$ Cardinality $B \quad|A|<|B|$ iff $|A| \leq|B|$ or $|A| \neq|B|$.

Cantor Theorem For any set $A,|A \leq \mathcal{P}(A)|$.
n

PART 5: ARITHMETIC OF CARDINAL NUMBERS

$\operatorname{Sum}(\mathcal{N}+\mathcal{M}) \quad$ We define: $\mathcal{N}+\mathcal{M}=|A \cup B|$, where A, B are such that $|A|=\mathcal{N},|B|=\mathcal{M}$.
n
Multiplication $(\mathcal{N} \cdot \mathcal{M})$ We define: $\mathcal{N} \cdot \mathcal{M}=|A \times B|$, where A, B are such that $|A|=\mathcal{N},|B|=\mathcal{M}$.

Power $\left(\mathcal{M}^{\mathcal{N}}\right) \quad \mathcal{M}^{\mathcal{N}}=\operatorname{card}\{f: \quad f: A \longrightarrow B\}$, where A, B are such that $|A|=\mathcal{M},|B|=\mathcal{N}$.
n
Power $2^{\mathcal{N}}$ We define:

$$
2^{\mathcal{N}}=\operatorname{card}\{f: \quad f: A \longrightarrow\{0,1\}\}, \text { where }|A|=\mathcal{N} .
$$

PART 4: ARITHMETIC OF $n, \aleph_{0}, \mathcal{C}$

Union $1 \quad \aleph_{0}+\aleph_{0}=\aleph_{0}$.
Union of two countable sets is a countable set.

Union $2 \quad \aleph_{0}+n=\aleph_{0}$.
Union of a finite (cardinality n) and a countable set is an infinitely countable set.
Union $3 \quad \aleph_{0}+\mathcal{C}=\mathcal{C}$.
Union of an infinitely countable set and an uncountable set is an uncountable set.

Cartesian Product $1 \quad \aleph_{0} \cdot \aleph_{0}=\aleph_{0}$.
Cartesian Product of two countable sets is a countable set.

Cartesian Product $2 n \cdot \aleph_{0}=\aleph_{0}$.

Cartesian Product of a finite set and an infinite set is an infinite set.

Cartesian Product $3 \quad \aleph_{0} \cdot \mathcal{C}=\mathcal{C}$.

Cartesian Product of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product $4 \mathcal{C} \cdot \mathcal{C}=\mathcal{C}$.
Cartesian Product of two uncountable sets is an uncountable set.

Power $12^{\aleph_{0}}=\mathcal{C}$.

Power $2 \quad \aleph_{0}^{\aleph_{0}}=\mathcal{C}$ means that $\operatorname{card}\{f: \quad f: N \longrightarrow N\}=\mathcal{C}$.

Power $3 \mathcal{C}^{\mathcal{C}}=2^{\mathcal{C}}$ means that there are $2^{\mathcal{C}}$ of all functions that map R into R .

Inequalities $\quad n<\aleph_{0} \leq \mathcal{C}$.

QUESTIONS
Circle proper answer. WRITE a short JUSTIFICATION. NO JUSTIFICATION, NO CREDIT.

Here are YES/NO answers with FEW JUSTIFICATIONS as examples

1. If $f: A \longrightarrow{ }_{\text {onto }}^{1-1} B$ and $g: B \longrightarrow{ }_{o n t o}^{1-1} A$, then g is an inverse to f.

JUSTIFY: The statement guarantee only that INVERSE function EXISTS.
2. Let $f: N \times N \longrightarrow N$ be given by a formula $f(n, m)=n+m^{2} . f$ is a $1-1$ function.

JUSTIFY: $f(1,2)=5=f(4,1)$
3. Let $A=\{a,\{\emptyset\}, \emptyset\}, B=\{\emptyset,\{\emptyset\}, \emptyset\}$. There is a function $f: A \longrightarrow_{\text {onto }}^{1-1} B$.

JUSTIFY: $|A|=3,|B|=2$
4. If $f: A \longrightarrow \longrightarrow^{1-1} \quad B$ and $g: B \longrightarrow{ }^{\text {onto }} A$, then $f \circ g$ and $g \circ f$ are onto.

JUSTIFY: $g \circ f$ no; take $|A|=2,|B|=3$
n
n
n
5. $\quad f: R-\{0\} \longrightarrow \longrightarrow^{1-1} \quad R$ is given by a formula: $f(x)=\frac{1}{x}$ and $g: R-\{0\} \longrightarrow R-\{0\}$ given by $g(x)=\frac{1}{x}$.
g is inverse to f .
JUSTIFY: f is not "onto"; inverse does not exist.

(If:A
n
n
n
6. $\{(1,2),(a, 1)\}$ is a binary relation in $\{1,2,3$,$\} .$

JUSTIFY: $a \notin\{1,2,3$,$\} .$
n
7. The function $f: N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n)=\{m \in N: m \leq n\}$ is a $1-1$ function. JUSTIFY: $n_{1} \neq n_{2}$ then obviously $f\left(n_{1}\right) \neq f\left(n_{2}\right)$
8. The function $f: N \times N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n, m)=\{m \in N: m+n=1\}$ is is a sequence.

JUSTIFY: Domain of f is not N.
9. The function $f: N \times N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n, m)=\{m \in N: m+n=1\}$ is is $1-1$.

JUSTIFY: $f(n, m)=\emptyset$ for all n, m such that $m+n \neq 1$.
10. The $f: N \longrightarrow \mathcal{P}(N)$ given by formula: $f(n)=\{m \in N: m+n=1\}$ is a family of sets.

JUSTIFY: Values of f are sets.
11. Let P be a predicate. If $P(0)$ is true and for all $k \leq n, P(k)$ is true implies $P(n+1)$ is true, then $\forall n \in N P(n)$ is true.

JUSTIFY: Principle of mathematical Induction.
12. Let $A_{n}=\{x \in R: n \leq x \leq n+1\}$. Consider $\left\{A_{n}\right\}_{n \in N} \cdot \bigcap_{n \in N} A_{n}=\emptyset$.

JUSTIFY: $A_{n} \cap A_{n+1}=n$
13. Let $A_{n}=\{x \in R: n+1 \leq x \leq n+2\}$. Consider $\left\{A_{n}\right\}_{n \in N} . \bigcup_{n \in N} A_{n}=R$.

JUSTIFY: $\bigcup_{n \in N}\{x \in R: n+1 \leq x \leq n+2\}=[1, \infty) \neq R$
14. $x \in \bigcup_{t \in T} A_{t}$ iff $\exists t \in T\left(x \in A_{t}\right)$

JUSTIFY: definition
15. Let $A_{n}=\{x \in N: 0<x<n\}$. The family $\left\{A_{n}\right\}_{n \in N}$ form a partition of N.

JUSTIFY: $A_{0}=\{x \in N: 0<x<0\}=\emptyset$.
16. Let $A_{t}=\{x \in\{1,2,3\}: x>t\}$ for $t \in\{0,1,2\} . \bigcap_{t \in T} A_{t}=\{1\}$.

JUSTIFY: $A_{0}=\{1,2,3\}, A_{1}=\{2,3\}, A_{2}=\{3\}$ and $\bigcap_{t \in T} A_{t}=\emptyset$.
n
17. There is an equivalence relation on N with infinite number of equivalence classes.

JUSTIFY: Equality on N.
n
n

n

18. There is an equivalence relation on $A=\{x \in R: 1 \leq x<4\}$ with equivalence classes: $[1]=\{x \in R: 1 \leq x<2\},[2]=\{x \in R: 2 \leq x<3\}$, and $[3]=\{x \in R: 3 \leq x<4\}$.

JUSTIFY: $\{[1],[2],[3]\}$ is a partition of A.
19. Each element of a partition of a set $\mathrm{A}=\{1,2,3\}$ is an equivalence class of a certain equivalence relation.

JUSTIFY: True for any set $A \neq$.
20. Set of all equivalence classes of a given equivalence relation is a partition.

JUSTIFY: Partition Theorem.
21. Let $R \subseteq A \times A$ The set $[a]=\{b \in A:(a, b) \in R\}$ is an equivalence class with a representative a.

JUSTIFY: ONLY when R is an equivalence relation.
n
22. Let $A=\{a, b, c, d\}$. There are 4^{3} words of length 3 in A^{*}.

JUSTIFY: Counting the functions theorem.
23. If a set A has n elements $(n \in N)$, then every subset of A is finite.

JUSTIFY: Any subset of a finite set is a finite set.
24. Let \sum be an alphabet $\sum=\{\%, \$, \&\}$. Denote $\sum^{k}=\left\{w \in \sum^{*}\right.$: lenghth $\left.(w)=k\right\}$. The set \sum^{3} has 29 elements.

JUSTIFY: $3^{3}=27$
25. There is an order relation that is also an equivalence relation and a function.

JUSTIFY: Equality on any set.
26. $\quad R=\{(N,\{1,2,3\}),,(Z,\{1,2,3\}),,(1, N),(-1, N),(3, Z)\}$ is a function defined on a set $\{N, Z, 1,-1,3\}$ with values in the set Z.

JUSTIFY: Elements of the range (values) of R are SUBSETS, not elements of Z.
n
27. If $f: R \longrightarrow R$ and $g: R \longrightarrow{ }^{1-1} \quad R$, then $g \circ f$ and $f \circ g$ exists.

JUSTIFY: Corresponding domains and ranges agree.
28. $\quad\{(1,2),(a, 1),(a, a)\}$ is a transitive binary relation defined in $A=\{1,2, a\}$.

JUSTIFY: $\quad(a, 2) \notin R$.
29. $f: N \longrightarrow \mathcal{P}(R)$ is given by the formula: $f(n)=\left\{x \in R ; x \leq \frac{-n^{3}+1}{\sqrt{n+3}+6}\right\}$ is a sequence.

JUSTIFY: Domain of f is N.
30. There is an order relation R defined in $A \neq \emptyset$ such that (A, R) is a poset.

JUSTIFY: Definition of Poset.
31. Let $A=\{\emptyset, N,\{1\},\{a, b, 3\}\}$. There are no more then 50 words of length 4 in A^{*}.

JUSTIFY: $|A|=4 \mid, 3^{4}>50$.
32. There is an equivalence relation on Z with infinitely countably many equivalence classes.

JUSTIFY: Equality on Z.
33. $\quad A$ is uncountable iff $|A|=|R|$ where R is the set of real numbers.

JUSTIFY: $A=\mathcal{P}(R)$ is uncountable and by Cantor theorem $|R|<|\mathcal{P}(R)|$.
n
34. $\quad A$ is infinite iff some subsets of A are infinite.

JUSTIFY: All subsets of a finite set are finite.
35. There exists an equivalence relation on N with \aleph_{0} equivalence classes.

JUSTIFY: Equality; $[n]=\{n\}$.
36. $\quad A$ is finite iff some subsets of A are finite.

JUSTIFY: all subsets are finite; $\{1\} \subseteq N$ and N is infinite.
n
37. If A is a countable set, then any subset of A is countable.

JUSTIFY: Theorem
38. If A is uncountable set, then any subset of A is uncountable.

JUSTIFY: $N \subseteq R$.
n
39. $\quad\{x \in Q: 1 \leq x \leq 2\}$ has the same cardinality as $\{x \in Q: 5 \leq x \leq 10\}$.

JUSTIFY: both sets are of cardinality \aleph_{0}.
40. If A is infinite set and B is a finite set, then $((A \cup B) \cap A)$ is infinite set.

JUSTIFY: $((A \cup B) \cap A)=A$.
41. The set of all squares centered in the origin has the same cardinality as R.

JUSTIFY: All such circles are uniquely defined by the radius r and $r \in R$.
42. If A, B are infinitely countable sets, then $A \cap B$ is a countable set.

JUSTIFY: $A \cap B$ is finite or infinitely countable.
43. $\quad A$ is uncountable iff there is a subset B of A such that $|B|=|A|$.

JUSTIFY: $N \subseteq Q,|N|=|Q|$ and Q is NOT uncountable.
n
44. $\quad A$ is uncountable iff $|A|=C$.

JUSTIFY: $\mathcal{P}(R)$ is uncountable and $|\mathcal{P}(R)| \neq \mathcal{C}$.
45. $\aleph_{0}+\aleph_{0}=\aleph_{0}$ means that the union of two infinitely countable sets is an infinitely countable set.

JUSTIFY: The fact that the union of two infinitely countable sets is an infinitely countable set is true (theorem), but does not reflect the definition of sum of cardinal numbers; two DISJOINT infinitely countable sets.
46. $|\mathcal{P}(N)|=\aleph_{0}$

JUSTIFY: $|\mathcal{P}(N)|=\mathcal{C}$.
47. $\operatorname{card}(N \cap\{1,3\})=\operatorname{card}(Q \cap\{1,2\})$

JUSTIFY: both sets have 2 elements.
48. A relation in N defined as follows: $n \approx m$ iff $n+m \in E V E N$ has \aleph_{0} equivalence classes. in N .

JUSTIFY: two equivalence classes.
n
49. $\quad \operatorname{card} A<\operatorname{card} \mathcal{P}(A)$

JUSTIFY: Cantor Theorem
50. A is infinite set iff there is $f: N \longrightarrow{ }_{o n t o}^{1-1} A$.

JUSTIFY: this is definition of the infinitely countable set.
n
51. $\mathcal{P}(A)=\{B: B \subset A\}$

JUSTIFY: $B \subseteq A$
n
52. $|Q \cup N|=\aleph_{0}$

JUSTIFY: $Q \cup N=Q$.
53. $|R \times Q|=\mathcal{C}$
54. $|N| \leq \aleph_{0}$

JUSTIFY: $|A| \leq|A|$.
55. Any non empty POSET has at least one MAX element.

JUSTIFY: (N, \leq) has no max element for \leq natural order.
n
56. If (A, \preceq) is a finite poset (i.e. A is a finite set), then a unique maximal is the largest element and a unique minimal is the least element.

JUSTIFY: Theorem
57. There is a non empty POSET that has no Max element.

JUSTIFY: (N, \leq) has no max element for (\leq natural order.
58. Any lattice is a POSET.

JUSTIFY: definition
59. It is possible to order N in such a way that (N, \leq) has \aleph_{0} MAX elements and no MIN elements.

JUSTIFY: diagram (lecture)
60. In any poset (A, \preceq), the greatest and least elements are unique.

JUSTIFY: Theorem
61. If a non empty poset is finite, then unique MAX element is the smallest.

JUSTIFY; in a finite poset unique MAX element is the greatest.
62. Each non empty lattice has 0 and 1.

JUSTIFY: (Z, \leq)
n
63. In any poset (A, \preceq), if a greatest and a least elements exist, then they are unique.

JUSTIFY: Theorem
64. Each distributive lattice has zero and unit elements.

JUSTIFY: diagram
65. It is possible to to order the set of Natural numbers N in such a way that the poset (N, \preceq) has a unique maximal element (minimal element) and no largest element (least element).
66. It is possible to to order the set of rational numbers Q in such a way that the poset (Q, \preceq) has a unique minimal element and no smallest (least) element.

JUSTIFY: diagram
n
67. In any poset, the largest element is a unique maximal element and the least element is the unique minimal element.

JUSTIFY: Theorem
68. If (A, \cup, \cap) is an infinite lattice (i.e. the set A is infinite), then 1 or 0 might or might not exist.

JUSTIFY: always true
69. There is a poset (A, \preceq) and a set $B \subseteq A$ and that B has none upper bounds.

JUSTIFY: $(N, \leq), B=N-\{0\}$.
70. There is a poset (A, \preceq) and a set $B \subseteq A$ and that B has infinite number of lower bounds.

JUSTIFY: $(N, \geq), B=\{0,1\}$.
71. If (A, \cup, \cap) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.

JUSTIFY: Theorem
72. Any finite lattice is distributive.

JUSTIFY: example in the lecture of 5elemst non-distributive lattice
n
73. Every Boolean algebra is a lattice.

JUSTIFY: definition
74. Any infinite Boolean algebra has unit (greatest) and zero (smallest) elements.

JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements
75. A non- generate Finite Boolean Algebras always have 2^{n} elements $(n \geq 1$.

JUSTIFY: Theorem
76. Sets A and B have the same cardinality iff $\exists f(f: A \xrightarrow{1-1} B)$.

JUSTIFY: f must be also "onto.
n
77. We say: a set A is finite iff $\exists n \in N(|A|=n)$.

JUSTIFY: definition
78. A set A is infinite iff A is NOT finite.

JUSTIFY: definition
79. \aleph_{0} (Aleph zero) is a cardinality of only N (Natural numbers).

JUSTIFY: definition
80. A set A is countable iff $|A|=\aleph_{0}$.

JUSTIFY: A set A is countable iff is FINITE or $|A|=\aleph_{0}$.
81. \mathcal{C} (Continuum) is a cardinality of Real Numbers, i.e. $\mathcal{C}=|\mathcal{R}|$.

JUSTIFY: definition y
82. For any set $A,|A|<|\mathcal{P}(A)|$.

JUSTIFY: Cantor Theorem y
83. $\mathcal{M}^{\mathcal{N}}$ is the cardinality of all functions that map a set A (of cardinality \mathcal{N}) into a set B (of cardinality \mathcal{M}).

JUSTIFY: definition

