Keminder = Zak[rek] Z a. Z a, [P(1)] REK pck) y More K = EK: a = 1, all kek men (IN PARTICULAR) : [P(K)] = { + $\Sigma [P(k)] = Z$ Ke K Charabentic CHARACTERISTIC FUNCTION funder of ROMERTYES the predicate P(k) (P(n) ~ Q(m)) = [P(m)] · [Q(m)] Exercise : prove it $\mathbb{O}[P(n) \cup \mathbb{Q}(n)] = [P(n)] + [\mathbb{Q}(n)] - [P(n) \cap \mathbb{Q}(n)]$ We use @ For summation (patientercons)[Q(n)] $\sum [P(k) \cup Q(k)] = \sum [P(k)] + \sum [Q(k)] - \sum [P_n Q_n]$ THIS is a PARTI OULAR CASE OF Zau + Zau Zau where T a. KE KAK! KEK KEK K+KuK'

 $\frac{P(m) = L \sqrt{m} \frac{3}{m} \frac{1}{m} \frac{1}{m} \frac{dat}{dm} \frac{dat}{dm} \frac{1}{m} \frac{1}{m} \frac{dat}{dm} \frac{1}{m} \frac$ Take $\sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \left[\sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{$

= Z [k=1][k=km][1=n =1000]

use Kinim [x]=m iff m ≤ x cn+1 to K=[Um] we get K≤ √n < K+1; K³ ≤ n 6 (k+1)³

= Z[k³ ≤ n < (k+1)³][k=km][1≤n≤1000]

 $(k^{3} \le n < (k+1)^{3}) \land (1 \le n \le 1000) \land (n=km) = qet rid of n:$ (K+1)3=1000; K+1=10; K=9; (1<K<10) (K³ 5 Km < (k+1)³ ~ 15 k <10) U(m=1000)

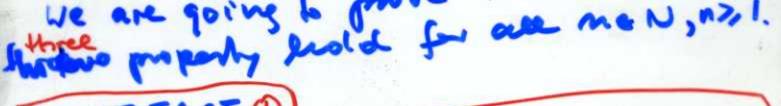
= E [[k³ ≤ km < [k+1]³] ~ 1 ≤ k < 10) (m=1000)

 $= \sum_{k_{1}m} \left[k^{3} \leq k_{m} \leq \left[(k+1)^{3} \right] \left[1 \leq k < 0 \right] \right]$ $K_{i}M + \sum \left[n=1000\right] - \sum \left[k \le km \left(k+1\right)^{2} \right]$ $\sum_{i=1}^{N} \sum \left[n=1000\right] - \left(1 \le k \le 10\right) \left(km \ge 1000\right)^{2}$

20 we got $\sum \left[\left[\sqrt{n} \right] \right]^{n}$ = 1 + Z [k³ ≤ km < (k+1)³][1 ≤ k<10] Kim = 1 + Z [$k^2 \le m < \frac{(k+1)^3}{k}$][$1 \le k < 10$] $k^2 \le m < \frac{(k+1)^3}{k}$ iff $m \in [k^2 \cdot \frac{(k+1)^3}{k}]$ = $1 + \sum_{k_{im}} [m \in [k^2 \cdot (k+1)^2] [1 \in k < 10]$ Ed. . p) has [p] - [x] integes = 1 + $\sum (\Gamma(k+1)^{3}] - \Gamma(k^{3}) (1 \le k \le 10)$ K ($\Gamma(k+1)^{3}] - \Gamma(k^{3}) (1 \le k \le 10)$ $(k+13)^{2} = \frac{k^{3}+3k^{2}+3k+1}{k} = \frac{k^{2}+3k+3}{k}$ Evaluate $\frac{k^{3}+3k^{2}+3k+1}{k} = \frac{k^{2}+3k+3}{k}$ = | + Z (3k+4) [K2+3+++] - [K2] = = K2+3K+3+ [1/k]-K2 = 1+ 7.31.9 (172) = 3K+4 [x+n]=[x]+n

20a Missing step in evaluation Z[me[k2. (K+1)2)][1≤K<10] Km To evaluate it we use the following properties and definitions $\sum_{k} \sum_{k=1}^{n} \sum_{k=1}^{n$ where K=EK: P(k)} In particular case when $\alpha_k = 1$, all k PROPERTY Shorthand we get $\sum [P(u)] = \sum I = \sum I = |K| = |P(u)|$ 0 Kek P(L) elevery of K KI= [{KI POD} Kez. CARDINALITY ofK DEFINITOW Z a [Q(K)][P(m)] = 3 K,m = ZZa. E Z akim P(m) (2(c) Q(E) P(m)

AS PARTICULAR CASE of Q _{Kim} = 1 for all we get	205 La, m (pun 3)
$ \bigcirc \sum_{k,m} [P(m)][Q(v)] $	$= \sum_{Q(x)} \sum_{P(m)} \sum_{i=1}^{i}$
= <u>[</u> P()] Q(k)	$= \sum_{k} P(m) [Q(k)] $
[P(~)] =	= 1 Emez: P(m)31
IN OUL CASE : Q(c): 15K<10
P(m): m [k	(K+1)2) [Id, B) has
1P(m)] = [(k+1)] -	(K+1)/2) [d, b) has [K+1)/2] [d, b) has [Fk2] [f]-[d] Jutegers
Juteges! = [K2+3++3+4	$[] - [k^{2}] = 3k + 4$
to to evelu	ate
Z[me[**. (++)][14	k < 105 = 2 (3k+4) [15k/g
$F_{im} = \sum_{\substack{(3k+4) \\ i \leq k \leq i0}}$	= 1+ 7:3".9 = (172)


2(CASINO PROBLEM is just a dressed-up version of a mathematical question : Q HOWMANY integers m, where I SN \$ 1000, Satisfy the property [Vm]]n. Generalization: GQ HOW MANY integers a, there I Sm & N, satisty she property N-denotes have any NATURAL hunder 3, 1000 : I kaop Buck NOTATION [Talm ! Horswork Problets of the solution write all details of the solution of GQ. on 1.75-76.

22 SPECTRUM For any deR we define a SPECTRUM of d as Spec (4) = { [4], [2d], [3d] 5 For some d+R, Spec(d) is a multiset i.e ut can contain repeating elements $\frac{[Example]}{(2-2)} = 0, \ [2u] = 1, \ [3u] = [\frac{2}{2}] = [$ $|4x| = [4 + 1] = 2, [5x] = [5/2] = 2 e^{\frac{1}{2}}$ Spec(1/2)=20, 1, 1, 2, 2, 3, 3, 4, 4, (...) $d = \sqrt{2} \quad \lfloor d \rfloor = 1, \quad \lfloor 2d \rfloor = \lfloor 2 \cdot \sqrt{2} \rfloor = \lfloor 2, 8. \rfloor = 2$ [32] = [3V2] = L4.2.] = 4, L\$2]=L5.6]=5 Spec(J2) = {1,2,4,5,7,8,9,11,12...} Spec(2+V2) = {3,6,10, 13,17,20,... 5

Observation) are SETS and Spec(JZ) and Spec(2+JZ) form a PARTITION OF Natural number. 1.e spec(JZ) ~ spec(2+JZ) = ¢ Spec(12) ~ Spec(2+22) = N (both are non-empty) The proof is not strightforward. It considers two cases O Finite FACT (any MEN) O Generalization of the finite Fact to the set of all N. O FIRST let's look at certain Franiz subsets of spec(vz), spec(2+vz). Am = Emen: mespecte) n m & m3 BG= [men: mespec(2+vz), ms[] Remark: Spec (UE), Spec (2+UE) are SETS, they are subsets at N. $A_8 = \{1, 2, 4, 5, 7, 8\}, B_8 = \{3, c\}$ Example

 $(A_{0} \cup B_{0} = 1...(3) = 2m : m \le 0)$ $(A_{0} \cap B_{0} = 0 \text{ AND } |A_{8}| + |B_{8}| = 3$ Let's duch $n \ge 15$

A@= 21, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15 5 BE = 23, 6, 10, 135 AND 1A, 1+18, 1=15 We get again ATUR BT = El, ... Of spon: metry DAIT N BIT = & avoulinating We are going h prove that These three property field for all men, no, 1.

FINITE FACT Am = Emen: meSpec(12) ~ mens Given two sets Bn = Emen: me spec(2+vz) ~ m ≤ n j The following conditions hused D- Amn Bm = ¢, for all m≥, 1, nell O An ±¢, Bn ±¢ ⊕ this Asn Bn = ¢ O Amu Bn = {1,...n} ift |An|+|Bn|=n

28 The FINITE FACT does not YET PROVES that Anu Bu = 21,...... but privides a necessary and Sufficient condition for it to hold; i.e O Amu Bn - 215... h) off IAn 1+18, 1=n NEXT STEP : FINITE FACT 2 IAultlBulan, Sudluzi From F. FACTS ()+ () we obtain that the followith theorem folds FINITE THEOREM (PART TOND) For any Mo, I, the sets Am, Bn form a PARTITION of the finite subset Eb... h y of N. NEXT STEP : Extend the FINITE THEOREM to the set N INFINITE THEOREM The sets spectre), Spec(2+ve) form a PARTITION of N(MDI).

The Book pores ONLY Finite 26 FACT @ and SAYS that frem this analysis the infinite theorem folions. NOT SO OBVIOUS! So - we provide have step by step proofs of all mat is needed. FIRST STEP We prove & generalizofier of the FINITE FACTO GENERAL FACT Let A, B be two non-empty, disjoint subjects of a set {b...ny, n>1 Le A, B 5 21, , A + d, B + d, And the following condition holds AUB= 21,....nj cf+ 1A1+1B1=m In particular we take A= An, B= Bn and got FINITE PACT (2) as a particular case becare observe : OA, ±0, 6, ± 4) IGAn (Sudluzi), 34 8. (all noi)

AmnBm=& fall nal To prove flat . 27 Ve pour more gaund statement Spec(vz) ~ Spec (2+vz) = 4) Reminder: Spec(2) = { [], [22], [32] ... [22]. 9 Consider KBI and LK(2+VE) Je Spec(2+) $\left[\frac{k(2+\sqrt{2})}{2} = \left[\frac{2k+k\sqrt{2}}{2}\right] + \left[\frac{n+r}{2}\right] = n+Lx$ = 2k + Lk Vej # Lk Vej ale ko trochnique that all elements of Spec (Ve) and spec (2+ ale) are spec (Ve) and spec (2+ ale) are difficunt and the sets are disjonit We pouch that Am, Bu satisty the worditions of the Foresc FACT (and courd (), () of FINITE FACT () here the condition () of the FFACTO holds as a particular case at the cound Fast. Proof of the GFACT follows.

Let $A, B \neq 4$, $A \cap B = 4$, $A, B \leq \{1, \dots, n\}^{28}$ Want to show Let AUB=21,...., IAUBI= n and IAUBI=[AI+1BI-1ANB], 64+ JANB=\$ SU IAUBI=IAItIBI=n. Nous let IAI+IBI=m and ItuBI=n but IAUBI = IAI + IBI SO NAN CONTRADICTION. HOW WE are going to prove FINITE FACT (2) [An1+1Bn1=m frake mai, new] We want to be alle to COUNT the elements of An, Br le develop a general Genda for IAnl, IBn! We do it in a consear case of any der, and spec(d) N(d,n) = number of elements in the Spec (d) that are in DENO TE

Spec(2) = [12], [22], [32] 5 29
$me Spec(d) iff m = \lfloor kd \rfloor \land k > 0$ $d \in R, m \neq 1, neN$ $N(d, n) = \left\{ m : m = \lfloor kd \rfloor \land m \leq n \land k > 0 \right\}$
N(din) = [LKd] : LKd] & A K >0 m, keng
$N(k,n) = P(k) \cap Q(k) P(k): [k] \leq n$ $Q(k) k \neq 0$ $Z = P(k) \cap Q(k) = Z [P(k)] [Q(k)] \\ k$
P(K)nQ(L) = Z [P(K)] Q(L)
$N(a,n) = \sum_{k} [lka] \leq n] [k < 0]$ $= \sum_{k \neq 0} [lka] \leq n] \qquad m \leq n \leq 14$ $= \sum_{k \neq 0} [lka] \leq n] \qquad m < n + 1$
= Z [LKAJ < N+1]

30 $N(d,n) = \sum [[kd] \leq m]$ Lx] <n iff 270 x<n = E [Kd < n+1] K70 = Z [K < +1][K)] $= \sum_{k} \left[O < k < \frac{m+1}{2} \right] \sum_{k} \left[\sum_{k} P(w) \right] = \frac{1}{2} \left[\sum_{k} P(w) \right]$ $= \sum_{\substack{n \in \mathbb{N}^{n} \\ n \in \mathbb{N}^{n}}} = |\{k \in \mathbb{T} : 0 \in \mathbb{K} < \frac{n+1}{n} | \\ y_{ourby (urbegers} \\ \frac{1}{n} + 1 \\ |(u, \beta)| = [n] - [u] - [u] - 1 \\ |(u, \beta)| = [n] - [u] -$ = []] - 0 - 1 Gengerl $N(d,n) = \int \frac{(m+1)}{d} - 1$ Formers. Apply it for 2 = V2, 2=2+V2 NEXT GOAL : prove that $N(v_{2}, n) + N(2+v_{2}, n) = m$

3 Evaluation $N(\alpha,n) = \lceil \frac{m+1}{\alpha} \rceil - 1$ $N(J_{2},n) + N(2+J_{2},n) = \left[\frac{n+1}{J_{2}}\right] - \left[+\frac{n+1}{2+J_{2}}\right] - \left[+\frac{n+1}{2+J_{2}}\right] - \left[-\frac{n+1}{J_{2}}\right] - \left[+\frac{n+1}{J_{2}}\right] - \left[+\frac{n+1}{J_{2}}\right]$ [x] = 1 - [x] $= \left\lfloor \frac{n+1}{\sqrt{2}} \right\rfloor + \left\lfloor \frac{n+1}{2+\sqrt{2}} \right\rfloor$ [x]= x-{x] $=\frac{m+1}{\sqrt{2}}-\left\{\frac{m+1}{\sqrt{2}}\right\}+\frac{m+1}{2+\sqrt{2}}-\left\{\frac{m+1}{2+\sqrt{2}}\right\}$ $=(m+i)(x_{2}^{+}+\frac{1}{2}x_{2}^{-})-(\{\frac{m+1}{2}\}+\{\frac{m+1}{2}\})$ $= (m + 1) - \left(\left\{ \frac{m + 1}{\sqrt{2}} \right\} + \left\{ \frac{m + 1}{2 + \sqrt{2}} \right\} \right) \frac{1}{\sqrt{2}} + \frac{1}{24E} = \frac{1}{\sqrt{2}}$ $= \frac{248\sqrt{2} + \sqrt{2}}{\sqrt{2}(2 + \sqrt{2})} \frac{242\sqrt{2}}{24E^{2}}$ $= \sqrt{2}(2 + \sqrt{2}) \frac{1}{24E^{2}} = 1$ We are going now to prove that $\left(\left\{\begin{array}{c}a+1\\ \sqrt{2}\end{array}\right\}+\left\{\begin{array}{c}a+1\\ 2+\sqrt{2}\end{array}\right\}=(\right)$ Observe that we proved that $\frac{m+1}{\sqrt{2}} + \frac{m+1}{2+\sqrt{2}} = m+1$

I meally please to prove flict $IF \frac{h+1}{12} + \frac{h+1}{2+52} = h+1$ THEN $\{\frac{m+1}{m}\} + \{\frac{m+1}{2+m}\} = 1$ This is enough We did alvedy proved $\frac{N+1}{\sqrt{2}} + \frac{u+1}{2+\sqrt{2}} = u+1$

We prove a more general fact	32
FACT	
Given $X_1, X_2 \notin Z \pmod{-itegen}$ If $X_1 + X_2 = m+1$ into $M = M = 0$	
$\exists f \chi_1 + \chi_2 = m + 1 \text{supposed}$	
then $\{x, y + \xi x_0\} = 1$ nez	
In our case $X_1 = \frac{m+1}{\sqrt{2}}$, $X_2 = \frac{m+1}{2+\sqrt{2}}$	
Proof. $X_1 = [X_1] + \{X_1\}, X_2 = [X_1] + [X_2]$	5
we have Decklei	
$x_1 + x_2 = [x_1] + [x_1] + [x_2] + [x_2] = n+1$ $D \in \{x_2\} <$	1 A.
Extess called and this this this this this this this this	0
$ \{x_i\} + \{x_2\} + \lfloor x_i \rfloor + \lfloor x_i \rfloor = \{m+1\} \\ im + equar = x_i : x_i : x_i = ND \\ x_i : x_i = ND $	+0
O EEX, J C I KI KE ND	0101.
1= Latt + Lix5 02 (222 222 1)	
Octris+tris<2	
n+1 = m+Q, where $0 < Q < 2$, so $Q = 1$	1
motor. and man	- 70

53 We have proved (PARTITION THEOREM) FINITE THEOREM The sots Am, Bm Jam a partition of the set El,... n), for all nz 1, ne N. NEXT : INFINITE PARTITION THEOREM Spec(VZ), Spec(2+VZ) form a partition of N-203. An- Emespec(E): mens Reminder Bn = Zm + Spac(ZtuE) : m Enj FACTS (about An, Bn) O Unzi (Ans Anni A Bus Buri) EAnd is monohenically increasing sequence of sets. 28.) the same (Vmvi (Ann Bk=d n Anu Bn= Els ... ny) O Spec(JE) = UAn Spec(2+VE) = UBr

O follows directly from the definition (m = n+1); O was proved already O me spec(UZ) iff 3kz1 m= [KUZ] iff Jusik me An iff me UAn. Same for Bn-

INFINITE PARTITION THEOREM (ne-stated)

For any sets Am, Br the following couditions hold

O UAn #d, UBn #\$

C UAm n UBn = ¢

O UAn U UBn = Notos

1.e. the sets UAm= spec(UZ) and UBm= spec (2+UZ) form a PARTITION

of N-502

() is true on the (An ± ¢ ∧ Bn ± ¢). QASSIL UAMAUBA \$\$. e there is x; XE UAL & XE KOL itt XEAR A XEBM contradiction when Acabin = & all com

X E U Am U U Bn, show X E N-tos No. Mat) Assume XEUA, V XEUB, itt Ben XEAL A Jma, X&Bn. Cases: n=k, n>k, n<k.</p> (n=k we get x ∈ An v x ∈ Bn ift x ∈ (An v Bn) and An v Bn > 21,...n j so x ∈ {1,...n j ⊆ N-toj and YEN-205. (n7k) rEAM & XEBE. But by FACT O (n7k) rEAM & XEBE. But by FACT O EBNJis Morenelly, so By EBN for n7k EBNJis Morenelly, so By EBN for ny and and x E Bn. So x e An U Bn = 21... my and nck KEANAKE BU. But EANJis morensing Jo An SAE & Kon; xo Az and x = Anu Bx = 210 ... KS = N-205 and x = N-205 X6N-los, show X6 UAn UBn by contradictory. Roat by contradiction. Let XEN-205 and X& UALUUBL : ++ Assure X& UAN A X& BBN iff Ve K&AL A Vm X&Bm But Anu Bu sils. n j, so xch u x c Bu MATCO THE KELLS & CONTRADICTION

FLOOP/CEILING SUMS

 $\sum [V_R] = \sum \sum m_{30}$ $0 \le k \le n \quad m_{30}$ $m = L \sqrt{k}$

 $= \sum_{\substack{n \in \mathbb{N} \\ 0 \leq k \leq n \\ 0 \leq n \\ 0 \leq k \leq n \\ 0 \leq n \\ 0 \leq k \leq n \\ 0 \leq n \\ 0 \leq k \leq n \\ 0 \leq$

36

= Z Z m [m=[VE]][K <n] [x]=n N5 x <n+1

= Z m [kcn].[m ≤ [kcm+1]

 $= \sum_{m \in \mathcal{H}O} \left[(K(n))^{2} m^{2} \leq (K(n+1))^{2} \right]$

37
$\Sigma[UE] = \Sigma m[mexcento2 ~ kcn]$
psken mikigo zahranu ken
Let's what P(k,m,n): m ² skc m+1) n kcn
p(k,m,n) = m sken c(min) v m shelminst
p(k,m,m) = QUR - 5 RAR
$p(k_{i}m_{i}n) = Q U R$ $\sum [Q U R] = Z Q + Z R - Z Q n R$ $m_{i}k m_{i}k m_{i$
MR is False, so ZQAR = 0 and we get
and is False, so
$\sum_{\substack{v \in V \in J}} \sum_{\substack{v \in V \in V \\ m, w \neq v}} \sum_{\substack{m, w \neq v \\ m, w \neq v}} \sum_{\substack{m, w \neq v \\ m, w \neq v}} \sum_{\substack{m, w \neq v \\ m}} \sum_{\substack{m \in V \in V \\ m}} \sum_{\substack{v \in V \\ m} \sum_{\substack{v \in V \\ m}} \sum_{\substack{v \in V \\ m} \sum_{\substack{v \in V \\ m}} \sum_{\substack{v \in V \\ m}} \sum_{\substack{v \in V \\ m} } \sum_{\substack{v \in V \\ m} \sum_{\substack{v \in V \\ m} } \sum_{\substack{v \in V \\ m} \sum m} \sum_{\substack{v \in V \\ m} \sum \sum_{\substack{v \in V \\ m} } \sum_{\substack{v \in V \\ m} } \sum_{\substack{v \in V \\ m} \sum \sum_{v \in V \\ m} \sum \sum_{\substack{v \in V \\ m} } \sum$
+ Z mLm st
Assume that $m = a^2$ for a $\in N$
Examine (2)
$m^2 \leq k < a^2 < (m+1)^2$ in and
is a FALSE statement, there is me a c(inti)
$m^2 \leq a^2 < (m+1)^2$
so second sum (2) is = 0

 $\frac{\sum \left[\sqrt{k} \right]}{\sum k_{1} \sqrt{2}} = \sum m \left[m^{2} \leq k < (m+1)^{2} \leq a^{2} \right]$ $m^{2} \leq k d(m+1)^{2} \leq a^{2} \equiv m^{2} \leq k < (m+1)^{2} n$ $\int n(m+1)^2 \leq a^2 \equiv m^2 \leq k \leq (m+1)^2 n m + 1 \leq a$ = $\sum m [m^2 \le k \le (m+1)^2] [m+1 \le a]$ K. = 70 = Z Z m[m+1]a][m² ≤ k c (m+1]] m30 K30 Wok $= \sum_{m>0} m[m+1 \le a] \sum_{k>0} [m^2 \le k \le (m+1)^2]$ $= \sum_{m>0} m[m+1 \le a] \sum_{k>0} [m^2 \le k \le (m+1)^2] = \sum_{l=1}^{l} |P(k]|$ $= \sum_{m>0} m[m+1 \le a] \sum_{k>0} [[m^2 . (m+1)^2)] P(k)$ $= \sum_{m>0} [m+1 \le a] \sum_{k>0} [[m^2 . (m+1)^2)]$ $= \sum_{m>0} [m+1 \le a] \sum_{k>0} [[m^2 . (m+1)^2] = \sum_{m=1}^{l} [P(k]| = [P] - [2] = [P] - [$ = $\sum m(2m+1) [m+1 \le a] (m+1)^2 - m^2 = 2m+1$ $= \sum (2m^{2} + m) [m + 17 \le a] = \sum (2m^{2} + 3m^{2}) [m + 17 \le a] = \sum (2m^{2} + 3m^{2$ $x^{2} = x(x-1) = x^{2} - x$ $x^{2} = x(x-1) = x^{2} - x$ $x^{2} = x(x-1) = x^{2} - x$ $x^{2} = 2w(m-1) + 3m = 2m^{2} + 3m$

 $\sum_{0 \le k \le n} [k] = \sum_{m \ge 0} (2m^2 + 3m^2) [m + 1 \le \alpha]$ mtisa $= \sum (2m^2 + 3m^2) [m < a]$ $= \sum_{n=1}^{2} (2m^2 + 3m^2)$ $= \sum_{0}^{\alpha(2m^2 + 3m^2)} \delta m$ $= 2\frac{m^2}{3} + 3\frac{m}{2} \Big|_{0}^{a}$ $=\frac{2}{3}m(m-1)(m-2)+\frac{3}{2}m(m-1)|_{0}^{a}$ = $\frac{3}{3}a(a-1)(a-2)+\frac{3}{2}a(a-1)$ $= a(a-1)(\frac{1}{3}(a-2)+\frac{3}{2})_{\frac{3}{3}a-\frac{3}{3}+\frac{3}{2}} =$ $\sum_{\substack{i \in \mathbb{Z} \\ 0 \leq k \leq n}} \sum_{\substack{i \in \mathbb{Z} \\ n = a^{2} \\ n = a^{2}}} \sum_{\substack{i \in \mathbb{Z} \\ 0 \leq k \leq n}} \sum_{\substack{i \in \mathbb{Z} \\ 0 \leq k \leq n \\ n = a^{2} \\ end \\ a = \lfloor \sqrt{n} \rfloor}$