Reminder

$$
\text { Reminder } \sum_{k} a_{k}[p(k)]=\sum_{k \in K} a_{k}=\sum_{k} a_{k}[k \in K]
$$

where $K=\{k: p(k)\}$
IN PARTICKCAR: when $a_{k}=1$, all $k \in K$

$$
\sum_{k}[P(k)]=\sum_{k \in k} 1
$$

$$
[P(k)]= \begin{cases}1 & P(k) 1 \\ 0 & \text { Tha } \\ 0 & P(k) \\ & \text { faks }\end{cases}
$$

CHACACTERISTIC FUNCTION Choratentic of PROPRRTEES $\phi[P(n) \cap Q(n)]=[P(n)] \cdot[Q(m)]]_{\text {Exerecice: }}^{\text {the prove it. }}$
(1) $[P(n) \cup Q(m)]=[P(m)]+[Q(m)]-[P(n) \cap Q(n)]$
$[P(n)][Q(n)]$
We wee (2) for summation (pabiculacose)

$$
\begin{aligned}
& \sum_{k}^{3}[P(k) \cup Q(k)]=\sum_{k}[P(k)]+\sum_{k}[Q(k)]-\sum_{k}[P \cap Q(A)] \\
& \text { This in a PAREioulA (ANJE of } \\
& \sum_{k \in K \cup K^{\prime}} a_{k}=\sum_{k \in k} a_{k}+\sum_{k \in K^{\prime}} a_{k}-\sum_{k \in K \cap K^{\prime}} a_{k} \quad \text { where }
\end{aligned}
$$

use $\lfloor x\rfloor=m$ itt $n \leq x<n+1$ to $k=\lfloor\sqrt[3]{n}\rfloor$ we get

$$
k \leq \sqrt[3]{x}<k+1 ; \quad k^{3} \leq x<(k+1)^{3}
$$

$$
\begin{aligned}
& k \leq \sqrt[3]{n}<k+1 ; \quad k^{3} \leq n \leq(k+1)^{3} \\
&= \sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][k=k m][1 \leq n \leq 1000] \\
&
\end{aligned}
$$

$$
\begin{aligned}
& k, m, m \\
& \left(k^{3} \leq n<(k+1)^{3}\right) n(1 \leq n \leq 1000) n^{(n k m)} \text { we qet ridot } n \text { calment } \\
& (k+1)^{3}=1000 ; \quad k+1=10 ; k=9 ;(1 \leq k<10) \\
& \left(k^{3} \leq k m<(k+1)^{3}-1 \leq k<10\right) \cup(m=1000)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(k^{3} \leqslant k m<(k+1)^{3} n 1 \leqslant k<10\right) \cup\left(k^{3} \leqslant k m<(k+1)^{3}\right] \cap 1 \leqslant k<10\right) \text { use (3) } \\
& =\sum_{k, n, m}=
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k, m}\left[k^{3} s k m<(k+1)^{3}\right][1 \leqslant k<10] \\
& +\sum[n=1000]-\sum_{k, m i n}\left[k^{3} s\right.
\end{aligned}
$$

$+\sum_{n}[n=1000]-\sum_{k, \min }\left[k^{3} s k m 4\left(k+1^{3} n\right.\right.$

$$
\begin{aligned}
& \text { Tale } \\
& P(n)=L \sqrt[3]{n}\rfloor / u \\
& {[\sqrt[3]{n}] \mid m \equiv k=[\sqrt[3]{n}] \cap(k \mid x) \equiv k=[\sqrt[3]{a}]_{n}(k=n \cdot n)} \\
& \sum_{1 \leq n \leqslant 100}[\sqrt[3]{n}] 1 m=\sum_{k, n}[k=[\sqrt[3]{m}] n(k \mid n)]\{1 \leqslant n \leqslant 100] \\
& =\sum_{k, n}\left[k \in 2^{2}=1\right][k=k m][1 \leqslant n \leqslant 1000]
\end{aligned}
$$

We got

$$
\begin{aligned}
& \left.\sum_{1 \leq n \leq 1000}[\sqrt[3]{x}] \mid x\right]= \\
& =1+\sum_{k_{1} m}\left[k^{3} \leqslant k m<(k+1)^{3}\right][1 \leqslant k<10] \\
& =1+\sum_{k, m}\left[k^{2} \leqslant m<\frac{(k+1)^{3}}{k}\right][1 \leqslant k<10] \\
& k^{2} \leqslant m<\frac{(k+1)^{3}}{k} \quad \text { ifs } m \in\left[k^{2} \ldots(k+1)^{3} / k\right) \\
& =1+\sum_{k_{1} m \mathrm{~m}}\left[m \in \left[k ^ { [k ^ { 2 } \ldots (k + 1) ^ { 3 } / k)] [1 \in K < 1 0] } \left[\begin{array}{c}
\text { How MANY m? (integer) }
\end{array}\right.\right.\right. \\
& \begin{array}{l}
\Rightarrow \text { How many m? (integer) } \\
{[\alpha, \ldots \beta) \text { has }[\beta]-\lceil\alpha\rceil \text { integer }}
\end{array} \\
& =1+\sum_{k}\left(\left\lceil\frac{(k+1)^{3}}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)(1 \leqslant k<10) \\
& \left(k+13 / k=\frac{k^{3}+3 k^{2}+3 k+1}{k}=k^{2}+3 k+3\right. \\
& =1+\sum_{1 \leq k<10}(3 k+4) \\
& \text { Evaluate } \\
& \left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil= \\
& =k^{2}+3 k+3+\left\lceil y_{k}\right\rceil-k^{2} \\
& =1+\frac{7.31}{2} \cdot 9=172 \\
& \begin{array}{ll}
=3 k+4 \quad\lceil x+n\rceil=[k\rceil+n \\
&
\end{array}
\end{aligned}
$$

Missing step in evaluation

$$
\sum_{k, m}\left[m \in\left[k^{2} \ldots(k+1) \frac{3}{k}\right)\right][1 \leqslant k<10]
$$

To evaluate it we cure the following properties and definitions
(1)

$$
\begin{aligned}
& \sum_{k} a_{k}[P(k)]=\sum_{p(k)} a_{k}=\sum_{k \in K} a_{k} \\
& \text { where } K=\{k: P(k)\}
\end{aligned}
$$

In partionlor case when $a_{6}=1$, all k we get PRopeRTY Shorthe-4
(2)

$$
\begin{aligned}
& \sum_{K}[P(k)]=\sum_{P(k)} 1=\sum_{k \in K} 1=|K|=|P(k)|
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \sum_{k, m} a_{k, m}[Q(k)][P(m)]= \\
& =\sum_{Q(k)} \sum_{P(m)} a_{k, m}=\sum_{P(m)} \sum_{Q(k)} a_{k, m}
\end{aligned}
$$

as particular case of (3) for $a_{k, m}=1$ \& all k, m (ples (3)) we qet
(4)

$$
\begin{aligned}
\sum_{k, m}[P(m)][Q(k)] & =\sum_{Q(k)} \sum_{P(m)} 1 \\
=\sum_{Q(k)}|P(m)| & =\sum_{K}|P(m)|[Q(k)] \\
|P(m)| & =\mid\{(m \in 2: P(m)\} \mid
\end{aligned}
$$

IN OUE CASE: $\quad Q(k): 1 \leqslant k<10$

$$
\begin{aligned}
& P(m): m \in\left[k^{2} \ldots(k+1)^{2} / k\right) \\
& |P(m)|=\left\lceil(k+1)^{2} / k\right\rceil-\left\lceil k^{2}\right\rceil
\end{aligned} \begin{aligned}
& \Gamma \alpha, \beta) \text { has } \\
& \Gamma \beta\rceil-\lceil\alpha\rceil \text { Intepers }
\end{aligned}
$$

Jutequs!

$$
=\left\lceil k^{2}+3 k+3+1 / k\right\rceil-\left\lceil k^{2}\right\rceil=3 k+4
$$

we use (4) to evaluate

$$
\begin{gather*}
\sum_{k, m}\left[m \in\left[k^{2} .(k+1 / k)\right][1 \leqslant k<10]=\sum(3 k+4)[1 \leqslant k+1]\right. \\
=\sum_{1 \leqslant k<10}(3 k+4)=1+\frac{7+31}{2} \cdot 9=172 \tag{FND}
\end{gather*}
$$

CASINO PRoblem is just
a cressed-up version of
a mathematical question:
(Q) HOW MANY integers x, where $1 \leqslant n \leqslant 1000$, satisfory the property $[\sqrt[3]{n}] \mid n$? Generalization:
(GO) How MANy miteqeas m, where $1 \leqslant x \leqslant N$. satiety the property $\lfloor\sqrt[2]{x}\rfloor \mid x$
N -denotes here aws NaTuRAL number $\geqslant 1000$. I kop Boole Notation

Homework PRobLEM write all details of the sole five of $G Q$. on P.7T-76.

SPECTRUM
For any $\alpha \in R$ we define a SPECTRUM of α as

$$
\operatorname{spectrum~of~} \alpha
$$

For some $\alpha \in R, \operatorname{Spec}(\alpha)$ is a Multiset i.e at can contain

$$
\begin{aligned}
& \text { repeating elements } \\
& \alpha=\frac{1}{2},[\alpha]=0,\lfloor 2 \alpha\rfloor=1,\lfloor 3 \alpha\rfloor=\left\lfloor\frac{3}{2}\right\rfloor=1 \\
& 14 \alpha\rfloor=\left\lfloor 4 \cdot \frac{1}{2}\right\rfloor=2,\lfloor 5 \alpha\rfloor=\lfloor\text { MuLTSET } \\
& \operatorname{spec}(1 / 2)=\{0,1,1,2,2,3,3,4,4,5 \ldots\} \\
& \sqrt{2} \times 1.4 \\
& \alpha=\sqrt{2} \quad\lfloor\alpha\rfloor=1,\lfloor 2 \alpha\rfloor=\lfloor 2 \cdot \sqrt{2}\rfloor=\lfloor 2,8, .\rfloor=2 \\
& \lfloor 3 \alpha\rfloor=\lfloor 3 \sqrt{2}\rfloor=\lfloor 4,2-\rfloor=4,\lfloor 4 \alpha\rfloor=\lfloor 5.6\rfloor=5 \\
& \operatorname{spec}(\sqrt{2})=\{1,2,4,5,7,8,9,11,12 \ldots\} \\
& \operatorname{Spec}(2+\sqrt{2})=\{3,6,10,13,17,20, \ldots\}
\end{aligned}
$$

Observation
$\operatorname{spec}(\sqrt{2})$ and $\operatorname{spec}(2+\sqrt{2})$) Fo meir a PARTITION of Natural number! (nil) le $\operatorname{spec}(\sqrt{2}) \cap \operatorname{spec}(2+\sqrt{2})=\phi$
$\operatorname{spec}(\sqrt{2}) \cup \operatorname{spec}(2+\sqrt{2})=N$
(both are mon-empt')
The proof is not strightferwond. It consider two cases (1) Finite FAcT (any miN) (1) Generalizenteson of the finite Fact to the set of all N.
(1) First let's look at certain Fowir subsets of $\operatorname{spec}(\sqrt{2}), \operatorname{spec}(2+\sqrt{2})$.

$$
A_{n}=\left\{m \in N: \frac{m \in \operatorname{spec}(\sqrt{2}) \wedge m \leq(n)\}}{} \wedge m \in \operatorname{spec}(Q+\sqrt{2}) \wedge m \leqslant n\right\}
$$

$B_{(n)}=\{m \in N: m \in \operatorname{spec}(Q+\sqrt{2}) \wedge m \leqslant n\}$
Remarks: $\operatorname{Spec}(\sqrt{2}), \operatorname{spec}(2+\sqrt{2})$ are SETS, they are subsets of N .
Example

$$
A_{8}=\{1,2,4,5,7,8\}, B_{8}=\{3,6\}
$$

observe that
$\left.O A_{(8)} \cup B(8)=\{1 \ldots(8)\}=\{m: m \leq 8)\right\}$
$\left(1 A_{(}\right) \cap B 8=\$ A N D\left|A_{8}\right|+\left|B_{8}\right|=8$
Let's dhech $n=15$

$$
\begin{aligned}
& A_{(1)}=\{1,2,4,5,7,8,9,11,12,14,15\} \\
& \left.B_{6}=\{3,6,10,13\} \text { AND }\left|A_{15}\right|+\left|B_{15}\right|=15\right\}
\end{aligned}
$$

We get again

$$
\begin{aligned}
& \text { agaci } \\
& A_{(1)} \cup B_{(15}=\{1, \ldots(0) \\
& \left(2 A_{15} \cap B_{15}=\phi\right.
\end{aligned}
$$

$m \leq(15)$
acombinationg
We are going to prove that thence three property enol for ale $m \in N, n \geqslant 1$.
FINITE FACT (1)
Given two sets
$A_{m}=\{m \in N: m \in \operatorname{Spec}(\sqrt{2})$ a $m \leqslant n\}$
$B_{n}=\{m \in N: m \in \operatorname{Spec}(2+\sqrt{z}) \wedge m \leq n\}$
The following conditions hold
(1) $A_{m} \cap B_{m}=\phi$, fo all $n \geqslant 1, n \in N$
(2) $A_{n} \neq \phi, B_{n} \notin \phi$
(1) $A_{n} \cup B_{n}=\{1, \ldots n\}$ it $\left|A_{n}\right|+\left|B_{n}\right|=n$

The FINITE FACI does not YET Proves that $A_{n} \cup B_{n}=\{1, \ldots n\}$ but provides a wecessong aud sufficient indiction for A to hold; ie
(1) $A_{m} \cup B_{n}=\{1, \ldots n\}$ eff $\left|A_{n}\right|+\left|B_{n}\right|=n$ next STEP: finite fact (2) We prove that

$$
\text { e prove that } \quad \text { 能 }\left|+\left|B_{n}\right|=n, \quad \&-a l l \geqslant 1\right.
$$

From F. facts (1) + (2) we obtain that the follow withe theorem folds
FINITE THEOREM (PARTITON(1))
For any $n \geqslant 1$, the sets A_{n}, B_{n} form a PARTITION of the finite subset $\{1, \ldots n y$ of N.
NEKT STEP: Extend the FINTTE THEOREN to the set N INFINITE THEOREM The sets $\operatorname{spec}(\sqrt{2}), \operatorname{spec}(2+\sqrt{2})$
form a PARTing for a PARTITION of $N(n \geqslant 1)$.

The Book proves onlY Finite FACT (2) and SAYS that from this (uochagn) the infinite theorem follies. Nor so obvious !
So - we provide have step by step proofs of all what is needed.
FIRST STEP We prove the qeneralizotice of the FINITF FACT(2)
GENERAL FACT
Let A, B be two non-eunty, disjoint subsets of a set $\{1, \ldots n\}, n \geqslant 1$ lie $A, B \subseteq\{1, \ldots n\}, A \neq d, B \neq \phi$,
Then the following condition holds

$$
A \cup B=\{1, \ldots n\} \text { oft }|A|+|B|=n
$$

In particullere we tale $A=A_{n}$, $B=B_{n}$ and oft ANITE PACT (2) as a particular case become observe:
O) $A_{a} \neq \sigma, B \geqslant क \mid$
$1 \in A_{\text {ne }}(8 \operatorname{cosel} u \neq 1), 3+B_{k}$ for ark $n \geqslant 1$.

To grove thant
$A_{m} \cap B_{n}=\phi$ for $n \geqslant 1$
we prove more gerent stateunt
(x) $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{spec}(2+\sqrt{2})=\varnothing$ Reminder:

$$
\text { *) } \operatorname{spec}(\sqrt{2}) \cap \operatorname{spec}(2+\sqrt{2})=1(\alpha)=\{\lfloor\alpha\rfloor,[2 \alpha],[3 \alpha] . . L K)\} . \quad\}
$$

consider $k \geqslant 1$ and $L k(2+\sqrt{2})\rfloor \in \operatorname{Spec}(2+1)$

$$
\begin{aligned}
& {[k(2+\sqrt{2})\rfloor=\lfloor 2 k+k \sqrt{2}\rfloor} \\
& =2 k+\lfloor k \sqrt{2}\rfloor \neq\lfloor k \sqrt{2}\rfloor
\end{aligned}
$$

$\lfloor n+x\rfloor=n+\lfloor x\rfloor$
$=2 k+\lfloor k \sqrt{2}\rfloor \neq L k \sqrt{2}$ ale $k \geqslant 1$
Thin Rocking that all elements of $\operatorname{spec}(\sqrt{2})$ and $\operatorname{spec}(2+\sqrt{2})$ are different and the sets are disjoint we proved thant A_{n}, B_{n} satisfy the whditions of the converts FACT (and count (1), (1) of FNITE FACT (1)) heme the condition (3) of the FFACT(1) holds as a particular case of the several Foch.
Plot of the G FACT follows.

Let $A, B \neq \phi, A \cap B=\phi, A, B S\{1, \ldots n\}^{28}$ want 10 slew
$A \cup B=\langle 1, \ldots n\}$-f $|A|+|B|=\mu$
Let $A \cup B=\{1, \ldots n\},|A \cup B|=n$ and $|A| \cup B|=|A|+|B|-|A \cap B|, 6 u+| A \cap B \neq \phi$ So $|A \cup B|=|A|+|B|=n$.
Now let $|A|+|B|=m$ and $|A \cup B| \neq n$ but $|A \cup B|=|A|+|B|$, so $n \neq n$ CONTRAORTDO.
Now we are going to prove
FINITE -FACT (2)

$$
\left|A_{n}\right|+\left|B_{n}\right|=m \quad f \text { all } n \geqslant 1, n \in N
$$

Wk want to be ole to count the eleunts of A_{n}, B_{n} (.e develop a greerol fermata for $\left|A_{n}\right|,\left|B_{n}\right|$
We do t in a GENECAC LASE of any $\alpha \in R$, one $\operatorname{spec}(\alpha)$
(DENOTE)
$\bar{N}(\alpha, n)=$ nuwiter of elements wi the $\operatorname{spec}(\alpha)$ that ore

$$
\begin{aligned}
& \operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,(3 \alpha\rfloor \ldots S \\
& m \in \operatorname{Spec}(\alpha) \text { iff } m=\lfloor k \alpha\rfloor a k>0 \\
& \alpha \in R, m \geqslant 1, n \in N \\
& N(\alpha, n)=|\{m: m=\lfloor K \alpha\rfloor \wedge m \leqslant n \wedge k>0\}| \\
& N(\alpha, n)=\mid\lfloor k \alpha\rfloor:\lfloor k \alpha\rfloor \leq m \wedge k>0 \\
& n, k \in N 4 \\
& N(\alpha, n)=|P(k) \cap Q(k)| \\
& P(k):\lfloor k \alpha\rfloor \leq n \\
& Q(k) \quad k>0 \\
& \sum_{P(k) \cap Q(w)} 1=|P(u) \cap Q(b)|=\sum_{k}[P(k)][Q(K) \mid \\
& =\sum_{Q(k)}[P(k)] \\
& N(\alpha, n)=\sum_{k}[\lfloor k \alpha\rfloor \leqslant n][k<0] \\
& =\sum_{k * 0}[\lfloor k \alpha\rfloor \leqslant n] \quad m \leqslant n \text { iff } \\
& m<n+1 \\
& =\sum_{k \rightarrow 0}[\lfloor k \alpha\rfloor<n+1]
\end{aligned}
$$

$$
\begin{aligned}
& N(\alpha, n)=\sum_{k>0}[\lfloor k \alpha\rfloor \leqslant(n+1)] \quad\lfloor x\rfloor<n \\
& =\sum_{k>0}[k \alpha<n+1] \\
& =\sum_{k}\left[k<\frac{n+1}{\alpha}\right][k>0] \\
& =\sum_{k}^{k}\left[0<k<\frac{n+1}{2}\right] \quad \begin{array}{l}
\sum_{k}^{\sum}[p(k)]= \\
\sum_{p(k)} 1=|p(k)|
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left|\left(0 \ldots \frac{n+1}{\alpha}\right)\right|^{\text {conly integers }}|(\alpha, \beta)|=[\beta)-[\alpha] \right\rvert\, \\
& =\left\lceil\frac{n+1}{\alpha}\right\rceil-0-1 \\
& |(\alpha, \beta)|=[\beta]-[\alpha]-1 \\
& \text { Gengral }
\end{aligned}
$$

$$
N(\alpha, n)=\left\lceil\frac{(n+1)}{\alpha}\right\rceil-1
$$

Apply it f $\alpha=\sqrt{2}, \alpha=2+\sqrt{2}$

$$
N(\sqrt{2}, n)+N(2+\sqrt{2}, n)=n
$$

Evaluation

$$
\begin{aligned}
& N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1 \\
& N(\sqrt{2}, n)+N(2+\sqrt{2}, n)=\left\lceil\frac{n+1}{\sqrt{2}}\right\rceil-1+\left\lceil\frac{n+1}{2+\sqrt{2}}\right\rceil-1 \\
& =\left\lfloor\frac{n+1}{\sqrt{2}}\right\rfloor+\left\lfloor\frac{n+1}{2+\sqrt{2}}\right\rfloor \\
& \lceil x\rceil-1=\lfloor x\rfloor \\
& \lfloor x\rfloor=x-\{x\} \\
& =\frac{n+1}{\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{2+\sqrt{2}}\right\} \\
& =(n+1)(\underbrace{\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{2}}}_{1})-\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right) \\
& =(n+1)-\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right)^{\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{2}}}= \\
& \text { wANTTHES }
\end{aligned}
$$

(n)

We are going now to prove that

$$
\left\{\frac{x+1}{\sqrt{2}}\right\}+\left\{\frac{x+1}{2+\sqrt{2}}\right\}=1
$$

Observe that we proved that

$$
\frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}=n+1
$$

I really prase to prove that

$$
\text { IF } \quad \frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}=n+1
$$

THEN

$$
\left\{\frac{n+1}{n}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}=1
$$

This is enough
We did alvedy proved

$$
\frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}=n+1
$$

We prove a more general fact FACT
Given $x_{1}, x_{2} \& 2$ (nou-itegen)
If $\quad x_{1}+x_{2}=n+1$
then $\left\{x_{1}\right\}+\left\{x_{3}\right\}=1 \quad n \in 2$
In case $x_{1}=\frac{m+1}{\sqrt{2}}, \quad x_{2}=\frac{m+1}{2+\sqrt{2}}$
Proof.

$$
x_{1}=\left\{x_{1}\right\rfloor+\left\{x_{1}\right\}, \quad x_{2}=\left\langle x_{2}\right\}+\left\{x_{2}\right\}
$$

we have

$$
\begin{aligned}
& x_{1}+x_{2}=\left\lfloor x_{1}\right\rfloor+\left\{x_{1}\right\rfloor+\left(x_{2}\right)+\left\{x_{3}\right\}=n+1 \\
& \left\{x_{1}\right\} \neq 0 \\
& \left\{x_{1}\right\}+\left\{x_{2}\right\}+\underbrace{\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor}_{\text {integer } 4}=(n+1) \\
& \left\{x_{1}\right\} \neq 0 \\
& x_{1}, x_{2} \text { vongut. }
\end{aligned}
$$

$0 \in\left\{x_{1}\right\}<1$
$0<\left\{x_{2}\right\}<1$
so $\left\{x_{1}\right\}+\left\{x_{2}\right\}=1$
$n+1=m+\theta$, where $0<\theta<2$, so $\theta=1$ moIst. and $m=n$

We hare proved
FINITE THEOREM (PARTITION THEOREM)
The sets A_{n}, B_{n} form a partition of the set $\{1, \ldots n\}$, foe ale $x \geqslant 1, x \in N$.

NEXT : INFINITE PARTITION THEOREM $\operatorname{Spec}(\sqrt{2}), \operatorname{spec}(2+\sqrt{2})$ form a partition of $N-20\}$.

Reminder

$$
\begin{aligned}
& \\
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\} \\
& B_{n}=\{m+\operatorname{spec}(2+\sqrt{2}): m \leq n\} \\
&\text { FACTS (about } \left.A_{n}, B_{n}\right)
\end{aligned}
$$

(1) $\forall n \geqslant 1\left(A_{n} \subseteq A_{n+1} \wedge B_{n} \subseteq B_{n+1}\right)$ $\left\{A_{n}\right\}$ is monotonically increasing sequence of sets. (B_{n}) the some
(2) $\forall \operatorname{minil}_{k \geqslant 1}\left(A_{n} \cap B_{k}=\Phi_{\wedge} \quad A_{n} \cup B_{n}=\{1, \ldots n\}\right)$
(3) $\operatorname{spec}(\sqrt{2})=\bigcup_{n \rightarrow 1} A_{n}$
$\operatorname{spec}(2+\sqrt{2})=\bigcup_{n \geqslant 1} B_{n}$

- follows directly from the definition ($n \leq n+1$); (2) was proved alred)
(3) maspec $(\sqrt{2})$ if $3 k+1 \quad m=L k(\sqrt{2})\rfloor$ it 4 $\exists_{n}=k m \in A_{n}$ lift $m+\bigcup_{n+1} A_{n}$. Sametor B_{n}. INFINITE PARTIION THEOREM (re-stated) For ang sets A_{m}, B_{n} the falloving conctitions holol
(1) $\bigcup_{n+1} A_{n} \neq \phi, \bigcup_{n>11} B_{n} \neq \phi$
(2) $\bigcup_{n+1} A_{m} \cap \bigcup_{m+1} B_{n}=\phi$
(3) $\bigcup A_{n} \cup \bigcup_{n=1} B_{n}=N-\{0\}$
i.e. The sets $\cup A_{n}=\sec (\sqrt{2})$ and $\cup B_{2}=\operatorname{spac}(2+\sqrt{2})$ form a PAFTTIO N of $\mathrm{N}=2 \mathrm{O}$
(1) is true ar $\forall \min _{n}\left(A_{n} \neq \phi \wedge B_{n} \neq \phi\right)$
(1) Assune $\cup A_{m} \cap \cup B_{n} \neq \phi$ a.e there is $x_{\text {s }}$
 controndictom in*tes $A_{B} \cap B_{n}=\$$ all E_{1} Mo.
(3) Assume

$$
x \in \bigcup_{n>11} A_{n} v x \in \bigcup_{n \geq 1}^{\infty} B_{n} \quad \text { ith } \exists_{k \geqslant 1} x \in A_{k}
$$

$$
\begin{aligned}
& x \in \bigcup_{n>1} A_{n} \vee x \in B_{n+1} \\
& \wedge \exists_{m \geqslant 1} n \in B_{n} . \text { (ases: } n=k, n>k, n<k .
\end{aligned}
$$

(n=k. we qet $x \in A_{n} \cup x \in B_{n}$ ot $x \in\left(A_{n} \cup B_{n}\right)$ and $\left.A_{n} \cup B_{n}>21, \ldots n\right\}$ so $x \in\{1, \ldots n\} \subseteq N$-论 and $x \in N-\lambda 0 s$.
$n>k \quad x \in A_{m} a x \in B_{k}, B_{n}+$ by FACT (1) $\left\{B_{n}\right\}$ is inerensing, so $B_{k} \in B_{n} \quad f \quad n>k$ and $x \in B_{n}$. So $x \in A_{n} \cup B_{n}=\{1 \ldots n\}$ and $x \in N-\{0\}$.
$n<k$, $\quad x \in A_{n} \quad A x \in B_{k}$. But $\left\{A_{n}\right\}$ is inerensing so $A_{n} \subseteq A_{k}$ for $k>h ; x \in A_{k}$ $\left.\left.x \in A_{n} \cup B_{k}=212 \ldots k\right\} \subseteq N-30\right\rangle$ and $x \in N-\{0\}$

$$
x \in A_{n} \cup B_{k}=2,1,10 \underbrace{}_{n \rightarrow 0} A_{n} \cup \bigcup_{n \rightarrow 10} B_{n}
$$

Assman pooot by controdiction. $x \notin$ UAn \cup UBn $i+t$ Let $x \in N-\{0 S$ one $x \notin$ Un $x \not \bigcup_{n \rightarrow 1} A_{n} \wedge x \notin B_{n \neq 1} B_{n}$ itt $\forall k x \notin A_{k} \wedge \forall_{m} x \notin B_{m}$ $B_{n+} A_{n} \cup B_{n}=\left\{I_{2}, n\right\}$, so $x \in A_{n} \cup x \in B_{n}$ thocinn $x \in\{1, \ldots n\}$

FLOOR/CEILING SUMS
EXAMOLE: Evaluate

$$
\begin{aligned}
& \sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor \\
& \text { observation: }\left\lfloor_{k \geqslant 0}^{\lfloor\sqrt{k}\rfloor}=\sum_{\substack{m=\lfloor\sqrt{k}\rfloor \\
m \geqslant 0}}\right. \\
& \sum_{0 \leq k<n}[\sqrt{k}]=\sum_{0 \leq k<n} \sum_{\substack{m \geqslant 0 \\
m=L \sqrt{k}]}} m \\
& =\sum_{0 \leq k<n^{2} 0} \sum_{m}[m=\lfloor\sqrt{k}\rfloor]=\sum_{m \geqslant 0} \sum_{0 \leq k e n} m[m=\lfloor\sqrt{k}\rfloor] \\
& =\sum_{m \geqslant 0} \sum_{k \geqslant 0} m[m=\lfloor\sqrt{k}]][k<n] \quad\lfloor x\rfloor=n \\
& n \leqslant x<n+1 \\
& =\sum_{m, k \geqslant 0} m[k<n] \cdot[m \leqslant \sqrt{k}<m+1] \\
& =\sum_{m, k \geqslant 0} m\left[k<n n m^{2} \leq k<(m+1)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor=\sum_{m, k \geqslant 0} m\left[m^{2} \leqslant k<(n+1)^{2} \wedge k<n\right]\right] \\
& \text { Let's look } n+P(k, m, n): m^{2} \leqslant k<(m+1)^{2} \wedge k<n \\
& p(k, m, n) \equiv m^{2} \leqslant k<n<(m+1)^{2} \cup m^{2} \leqslant k<(m+1)^{2} \leqslant n \\
& p(k, m, n)=Q \cup R \\
& \sum_{m, k}[Q \cup R]=\sum_{m, k} Q+\sum_{m, k} R-\sum_{m i k} Q \cap R \\
& T Q \cap R=0 \text { and we get }
\end{aligned}
$$

$Q \cap R$ is False, so $\sum Q \wedge R=0$ and we get

$$
\begin{aligned}
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor= & \sum_{m, k \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leq n\right] \\
& +\sum_{m, k \geqslant 0} m\left[m^{2} \leq k<n<(n+1)^{2}\right]
\end{aligned}
$$

Assume that $x=a^{2}$ for $a \in N$
Examine (2)

$$
m^{2} \leqslant k<a^{2}<(m+1)^{2}
$$

is a FALSE statement, there is no $a+N$

$$
m^{2} \leq a^{2}<(m+1)^{2}
$$

$$
m \leq a<(m+1))
$$

so second sum (2) is $=0$

$$
\begin{aligned}
& \sum_{0 \leqslant k<m}\lfloor\sqrt{k}\rfloor=\sum_{k_{1} m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leqslant a^{2}\right]^{38} \\
& m^{2} \leq k(m+1)^{2} \leq a^{2} \equiv m^{2} \leq k<(m+1)^{2} \cap \\
& n(m+1)^{2} \leqslant a^{2} \equiv m^{2} \leqslant k<(m+1)^{2} \cap m+1 \leqslant a \\
& =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2}\right][m+1 \leqslant a] \\
& =\sum_{m \geqslant 0} \sum_{k \geqslant 0} \frac{m[m+1 \geq a]}{w_{0} k}\left[m^{2} \leq k<(m+1)^{2}\right] \\
& =\sum_{m \geqslant 0} m[m+1 \leqslant a] \sum_{k \geqslant 0}\left[m^{2} \leq k<(m+1)^{2}\right] \\
& \left.\sum[p k)\right]=\sum_{p(L)} 1=\mid p(k) \\
& =\sum_{m \geqslant 0} m[m+1 \leq a] \sum_{k \geqslant 0}\left[\left[m^{2} . .(m+1)^{2}\right)\right]^{p(k)} \\
& \left|\left[\alpha_{0}, \beta\right)\right|=\lceil\beta]-[\alpha\rangle \\
& =\sum_{m \geqslant 0} m(2 m+1)[m+1 \leqslant a] \quad(m+1)^{2}-m^{2}=2 m+1 \\
& =\sum_{m \geqslant 0}\left(2 m^{2}+m\right)\left[m+\left.1\right|^{2} \leq a\right]=\sum_{m \geqslant 0}\left(2 m^{2}+3 m^{1}\right) \sum_{m+1} \leq \\
& \begin{array}{l}
\begin{array}{l}
x^{2}=x(x-1)=x^{2}-x \\
x^{2}=x
\end{array} \quad \left\lvert\, \begin{array}{l}
2 m^{2}+m=2 m^{2}-2 m+2 m+m \\
=2 m(m-1)+3 m=2 m^{2}+3 m^{\perp}
\end{array}\right., \quad \underbrace{\perp}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{0 \leqslant k<n}[\sqrt{k}\rfloor=\sum_{m \geqslant 0}\left(2 m^{2}+3 m^{2}\right)[m+1 \leqslant a]_{\substack{m+1 \leq a \\
m<a}}^{39} \\
& =\sum_{m \geq 0}\left(2 m^{2}+3 m^{-}\right)[m<a] \\
& 0 m \geqslant 0 \\
& =\sum\left(2 m^{2}+3 m^{1}\right) \\
& 0 \leqslant m<a \\
& =\sum_{0}^{a}\left(2 m^{2}+3 m^{\frac{1}{2}}\right) \delta m \\
& =2 \frac{m^{3}}{3}+\left.3 \frac{m^{2}}{2}\right|_{0} ^{a} \\
& =\frac{2}{3} m(m-1)(m-2)+\left.\frac{3}{2} m(m-1)\right|_{0} ^{a} \\
& =\frac{2}{3} a(a-1)(a-2)+\frac{3}{2} a(a-1) \\
& =a(a-1)\left(\frac{2}{3}(a-2)+\frac{3}{2}\right) \frac{2}{3} a-\frac{2}{3}+\frac{3}{2}= \\
& \begin{array}{l}
=\frac{4 a}{6}+\frac{1}{6}=\frac{1}{6}(4 a+1)
\end{array} \\
& \sum_{0 \leq c e n}\lfloor\sqrt{k}\rfloor=\frac{1}{6}(a-1) a(a+1) \\
& \text { Homeworide pat } \\
& n=a^{2} \\
& \text { end. } a=\lfloor\sqrt{n}\rfloor
\end{aligned}
$$

