cse547/ams547 Midterm 1 Spring 2010

100 pts +10 extra credit

There are 5 Problems. Each problem is worth 20pts. There is one extra credit problem (10pts). If needed, use extra pages attached.

PROBLEM 1 Use a summation factor to solve the recurrence

$$
\begin{gathered}
T_{0}=5 \\
2 T_{n}=n T_{n-1}+3 n!, n>0
\end{gathered}
$$

Write carefully all steps of solution.

PROBLEM 2 Use the Perturbation Method to evaluate a closed formula for:
Part $1 \quad S_{n}=\sum_{k=0}^{n}(-1)^{n-k}$.
Part $2 S_{n}=\sum_{k=0}^{n}(-1)^{n-k} k$.

PROBLEM 3 Show that

1. $\sum_{k=0}^{n} k^{2}=\sum_{1 \leq j \leq k \leq n} k$
2. $\sum_{k=0}^{n} k^{2}+\sum_{k=0}^{n} k^{3}=2 \sum_{1 \leq j \leq k \leq n} j k$.

PROBLEM 4 Use summation by parts to prove that

$$
\sum_{k=0}^{n-1} \frac{H_{k}}{(k+1)(k+2)}=\frac{n-H_{n}}{n+1}
$$

PROBLEM 5 Use the formula

$$
\Delta\left(c^{\underline{x}}\right)=\frac{c^{\underline{x+2}}}{(c-x)}
$$

to prove that

$$
\sum_{k=1}^{n} \frac{(-2)^{\underline{k}}}{k}=(-1)+(-1)^{n} n!
$$

EXTRA CREDIT Show that the infinite sum $\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+2)}$ CONVERGES to 1; i.e.

$$
\Sigma_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}=1
$$

1 Useful Formulas

$$
\begin{gathered}
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right), \quad s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{n-1} a_{n-2} \ldots a_{1}}{b_{n} b_{n-1} \ldots b_{2}} \\
x^{\underline{m}}=\overbrace{x(x-1) \ldots(x-m+1)}^{m \text { factors }}, \quad \text { integer } m \geq 0 \\
x^{\bar{m}}=\overbrace{x(x+1) \ldots(x+m-1)}^{m \text { factors }}, \quad \text { integer } m \geq 0 \\
x \frac{-m}{-}=\frac{1}{(x+1)(x+2) \ldots(x+m)}, \quad \text { for } m>0 \\
x^{\frac{m+n}{}=x^{\frac{m}{-}}(x-m)^{\underline{n}},} \quad \text { integers } m \text { and } n \\
\square_{n}=\sum_{0 \leq k \leq n}^{k^{2}=\frac{n(n+1)(2 n+1)}{6},} \quad \text { for } n \geq 0 \\
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}, \\
\text { for } n \geq 1 \\
\mathrm{D} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \quad \Delta f(x)=f(x+1)-f(x) \\
\mathrm{D}\left(x^{m}\right)=m x^{m-1}, \quad \Delta(x \underline{m})=m x \frac{m-1}{n}
\end{gathered}
$$

DEFINITION 1

If the limit of the sequence $\left\{S_{n}=\sum_{k=1}^{n} a_{k}\right\}$ exists we call it an INFINITE SUM write it as

$$
\Sigma_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \Sigma_{k=1}^{n} a_{k}
$$

The sequence $\left\{S_{n}\right\}$ is called its sequence of partial sums.

DEFINITION 2

If the limit $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then we say that the infinite sum $\Sigma_{n=1}^{\infty} a_{n}$ CONVERGES to S otherwise the infinite sum DIVERGES.
In a case that $\lim _{n \rightarrow \infty} S_{n}$ exists and is infinite, then we say that the infinite sum $\Sigma_{n=1}^{\infty} a_{n}$ DIVERGES to ∞ and we write

$$
\Sigma_{n=1}^{\infty} a_{n}=\infty
$$

In a case that $\lim _{n \rightarrow \infty} S_{n}$ does not exist we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ DIVERGES.

Extra space

Extra space

Extra Space

