cse547/ams547 MIDTERM 2 Spring 2010

100pts +10 extra points

NAME
ID:
ams/cs

Each problem 1-5 is worth 20 pts.

Useful Formulas sheet is attached!!!

QUESTION 1

Part 1 Prove that the sequence $a_{n}=n$! grows faster then the sequence $b_{n}=c^{n}$ for any $c>0$. Hint: use d'Alambert Criterium for a proper infinite sum and a proper theorem about infinite sums.

Part 2 We know that the Harmonic series $\Sigma_{n=1}^{\infty} \frac{1}{n}$ diverges. Use this information and Cauchy Criterium to prove that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

QUESTION 2 Give a direct proof from proper properties (list which) of the following fact.
For all $x \in R, x>0$

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

QUESTION 3 Prove the following
Spectrum Partition Theorem Let $\alpha, \beta>0, \alpha, \beta \in R-Q$ be such that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

THEN the sets $A=\operatorname{spec}(\alpha)$ and $B=\operatorname{spec}(\beta)$ form a partition of $Z^{+}=N-\{0\}$, i.e.

1. $A \neq \emptyset, \quad B \neq \emptyset$
2. $A \cap B=\emptyset$
3. $A \cup B=Z^{+}$.

QUESTION 4 Show that the nth element of the sequence:

$$
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \ldots \ldots
$$

is $\left\lfloor\sqrt{2} n+\frac{1}{2}\right\rfloor$.
Hint: Let $\mathrm{P}(\mathrm{x})$ represent the position of the last occurrence of x in the sequence. Use the fact that $P(x)=\frac{x(x+1)}{2}$.

Let the nth element be m. You need to find m.

QUESTION 5 Prove the following theorems.
Theorem 1 Let $m, n, k \in Z^{+}-\{0\}$.
IF $k \mid m n$ and $k \perp m$ (it means k, m are relatively prime), THEN $k \mid n$.
Theorem 2 When a number is relatively prime to each of several numbers, it is relatively prime to their product.

QUESTION 6 (EXTRA CREDIT- 10pts)

Show that
$\left\lfloor(n+1)^{2} n!e\right\rfloor \bmod n=2 \bmod n$, for all $n \in N$.

Hint: use the following

$$
e=\sum_{k \geq 0} \frac{1}{k!}
$$

and represent $(n+1)^{2} n!e$ as

$$
(n+1)^{2} n!e=A_{n}+(n+1)^{2}+(n+1)+B_{n}
$$

for certain A_{n}, B_{n} such that

$$
\forall n \in N\left(A_{n} \in Z\right), \quad \forall n \in N \exists k \in Z\left(A_{n}=n k\right), \quad \forall n \in N\left(0 \leq B_{n}<1\right)
$$

EXTRA SPACE

EXTRASPACE

1 Properties

$$
\begin{aligned}
& \lfloor x\rfloor=x \quad \Longleftrightarrow \quad x \in Z, \quad\lceil x\rceil=x \quad \Longleftrightarrow \quad x \in Z \\
& x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1 \\
& \lfloor-x\rfloor=-\lceil x\rceil, \quad\lceil-x\rceil=-\lfloor x\rfloor \\
& \lceil x\rceil-\lfloor x\rfloor=0 \text { if } x \in Z, \quad\lceil x\rceil-\lfloor x\rfloor=1 \text { if } x \notin Z \\
& \lfloor x\rfloor=n \Longleftrightarrow n \leq x<n+1 \\
& \lfloor x\rfloor=n \Longleftrightarrow x-1<n \leq x \\
& \lceil x\rceil=n \Longleftrightarrow n-1<x \leq n \\
& \lceil x\rceil=n \Longleftrightarrow x \leq n<x+1 \\
& \lfloor x+n\rfloor=\lfloor x\rfloor+n \\
& x<n \Longleftrightarrow\lfloor x\rfloor<n \\
& n<x \Longleftrightarrow n<\lceil x\rceil \\
& x \leq n \Longleftrightarrow\lceil x\rceil \leq n \\
& n \leq x \Longleftrightarrow n \leq\lfloor x\rfloor \\
& {[\alpha \ldots \beta] \text { contains }\lfloor\beta\rfloor-\lceil\alpha\rceil+1 \text { integers, for } \alpha \leq \beta} \\
& {[\alpha \ldots \beta) \text { contains }\lceil\beta\rceil-\lceil\alpha\rceil \text { integers, for } \alpha \leq \beta} \\
& (\alpha \ldots \beta] \text { contains }\lfloor\beta\rfloor-\lfloor\alpha\rfloor \text { integers, for } \alpha \leq \beta \\
& (\alpha \ldots \beta) \text { contains }\lceil\beta\rceil-\lfloor\alpha\rfloor-1 \text { intergers, for } \alpha<\beta \\
& x=y\left\lfloor\frac{x}{y}\right\rfloor+x \bmod y
\end{aligned}
$$

