
cse547
DISCRETE MATHEMATICS

Professor Anita Wasilewska



LECTURE 1



INTRODUCTION



Course Web Page
www.cs.stonybrook.edu/˜ cse547

The webpage contains:

detailed lectures slides;

very detailed slides of solutions to homework problems;

some previous tests;

all to be used for study



Course Text Book

Concrete Mathematics

A Foundations for Computer Science

R. Graham, D. Knuth, O. Patashnik,

Second or Third Edition

Course has been taught annually at Stanford University since

1970 and we will follow the book very closely and providing

some additional material for better understanding



Concrete and Discrete Mathematics

The Concrete Mathematics book was written

as an antidote to what authors call an Abstract Mathematics

The Abstract Mathematics is is now called

Discrete Mathematics and was developed as a part of building

the Foundations of Mathematics

Both Concrete and Discrete Mathematics play crucial role in

building the Foundations of Computer Science



Concrete and Discrete Mathematics

The classical Discrete Mathematics approach includes

development of such mathematics fields as Set Theory,

Model Theory, Theory of Boolean Algebras, as well as

Classical and Non-classical Logics, Number Theory

or Graph Theory and many others

We introduce some basic notions of the classical Discrete

Mathematics in our Lectures as and when needed



What is Concrete Mathematic?
Book Definition

Concrete Mathematics is a controlled manipulation of

some mathematical formulas using a collection of techniques

developed for solving problems

We will learn various techniques to evaluate horrendously
looking finite sums, to solve complex recurrences, and
specific manipulations methods for certain classes of them

The. original text of the book was an extension of the chapter
”Mathematical Preliminaries” of Knuth’s classic book

”Art of Computer Programming”



Concrete and Discrete Mathematics

Concrete Mathematics is supposed (and hopefully will) to help

you in the art of writing programs

Discrete Mathematics is supposed to help you to think about

the art and correctness of programming



CHAPTER 1
Recurrent Problems

Three examples

Tower of Hanoi

Lines in the plane

Josephus Problem

Recurrent Problems in General

We follow the following steps

Abstraction: find a mathematical model for a problem

Recursion: find a recurrent formula describing the problem

Closed Form Formula: find it for a given recurrent one

(if exists) and prove their equivalency



CHAPTER 1
PART ONE: Tower of Hanoi



The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883

His formulation involved three pegs and eight distinctly-sized

disks stacked on one of the pegs from the biggest on the

bottom to the smallest on the top



The GOAL

The puzzle goal is to move the stack of disks to one of the
other pegs with the following rule:

L - rule

must move one disk at a time

a larger disk cannot be on top of any smaller disks at any time

do it in as few moves as possible

Lucas furnished his puzzle with a romantic legend about
Tower of Brahma (64 disks) with monks, gold, diamond
needles etc...



The Tower of Hanoi GENERALIZED

Tower has now n disks, all stacked in decreasing order from
bottom to top on one of three pegs,

Question
what is the minimum number of (legal) moves needed to
move the stack to one of the other pegs?

Plan
1. we start by expressing the minimum number of moves
required to move a stack of n disks as a recurrence relation,
i.e. we find and prove a recursive (recurrent) formula

2. we find a closed-form formula for the number of moves
required;

3. we prove that the closed-form and recurrent formulas
are equivalent



The Tower of Hanoi GENERALIZED to n disks

We denote by

Tn - the minimum number of moves that will transfer n disks
from one peg to another under the

L - rule:

must move one disk at a time;

a larger disk cannot be on top of any smaller disks at any time

do it in as few moves as possible

n = 1 - we have 1 disk- and 1 move, i.e. T1 = 1

n = 2 - we have 2 disks- and 3 moves: top (smaller) disk from
peg 1 to peg 2, remaining (larger) disk from peg 1 to peg 3,
the disk from peg 2 (smaller) on the top of the disk (larger) on
peg 3 so L - rule holds and hence T2 = 3



A Strategy for n = 3 disks

1. transfer top 2 disks as in previous case for n = 2 – we use
T2 moves;

2. move remaining (largest) disk to empty peg – we use 1
move;

3. bring the 2 disks to the top of the largest disk as in previous
case for n = 2 – we use T2 moves;

together we have

T2 + T2 + 1 = 3 + 3 + 1 = 7 moves



Recurrent Strategy to evaluate Tn

1. In order to move the bottom disk, we need to move all the
n − 1 disks above it to a empty peg first

2. Then we can move the bottom disk to the remaining empty
peg, and

3. move the n − 1 smaller disks back on top of it



Recurrent Strategy to evaluate Tn

1. we move all the n − 1 disks above bottom disk to a different
(empty) peg - we do it in Tn−1 moves;

2. we move the bottom disk to the remaining empty peg - we
do it in 1 moves

3. we move n − 1 disks from peg resulting in 1. to the peg
resulting in 2. - another Tn−1 moves;

How many moves? together we have at most
Tn−1 + Tn−1 + 1 = 2Tn−1 + 1 moves i.e we have that

Tn ≤ 2Tn−1 + 1, where n ≥ 1



Recursive Formula for Tn

We have proven that Tn ≤ 2Tn−1 + 1.

We show (next slide) that there is no better way, i.e. that

Tn ≥ 2Tn−1 + 1

and hence we get the Recursive Formula that gives us the
solution for the minimum number of moves Tn required to
move a tower with n disks to another peg.

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.



Recursive Formula for Tn - end of the proof

Observe that in order to move the largest bottom disk
anywhere, we have to first get the n − 1 smaller disks on top
of it onto one of the other pegs.

This will take at least Tn−1 moves.

Once this is done, we have to move the bottom disk at least
once; we may move it more than once!

After we’re done moving the bottom disk, we have to move
the n − 1 other disks back on top of it eventually, which will
take again at least Tn−1 moves;

all together we get that Tn ≥ 2Tn−1 + 1 and hence we proved
our Recursive Formula

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.



From Recursive Formula to Closed Form Formula

Often the problem with a recurrent solution is in its
computational complexity;

Observe that for any recursive formula Rn, in order to
calculate its value for a certain n one needs to calculate
(recursively) all values for Rk , k = 1, . . . , n − 1.

It’s easy to see that for large n, this can be quite complex.

So we would like to find (if possible) a non- recursive
function with a formula f(n),

Such formula is called a Closed Form Formula

Provided that the Closed Form Formula computes the same
function as our original recursive one.



From Recursive Formula to Closed Form Formula

A big part of the course is to examine classes of Recursive
Formula functions for which it is possible to find
corresponding equivalent Closed Form Formula function.

Of course we have always prove that Recursive Formula
functions and Closed Form Formula functions we have found
are equal, i.e. their corresponding formulas are equivalent.



Definition of Equality of Functions

Given two functions f and g such that

f : A −→ B and g : A −→ B

we say that f and g are equal, or their formulas are equivalent
and write symbolically as

f = g if and only if f(a) = g(a), for all a ∈ A , i.e.

∀a∈A f(a) = g(a)



Proving Equality of Functions

Observe that when the domain of f and g are natural
numbers N (or a subset of N), i.e.

f : N −→ B and g : N −→ B

then proving that they are equal, or their formulas are
equivalent means proving that

∀n∈N f(n) = g(n)

We usually carry such proofs by Mathematical Induction over
the common domain of both functions.



Back to Tower of Hanoi

We proved that the solution for the Tower of Hanoi is given by
a Recursive Formula

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.

Mathematically it means that we have defined a function

T : N −→ N

such that

T(0) = 0, T(n) = 2T(n − 1) + 1, for all n > 0



From Recursive Formula to Closed Form Formula

For functions with natural numbers N as the domain we use,
as in a case of any sequences a notation T(n) = Tn

We write our recursively defined function T : N −→ N

T(0) = 0, T(n) = 2T(n − 1) + 1, for all n > 0

as
T0 = 0, Tn = 2Tn−1 + 1, for all n > 0

and call it, for short a recursive formula

Our goal now is to find a Closed Form Formula equivalent
to the obove recursive formula

One way to get such a solution is to first come up with a
guess, and then prove that the guess is in fact a correct
solution



From Recursive Formula to Closed Form Formula

Given our Recursive Formula

RF : T0 = 0, Tn = 2Tn−1 + 1, for n > 0

We evaluate few values for Tn:
T0 = 0, T1 = 1, T2 = 3, T3 = 7, T4 = 15, T5 = 31, T6 = 63, . . .
It is easy to observe that values of Tn follows the pattern

Tn = 2n − 1, for all n ≥ 0

We hence guess that Tn = 2n − 1 is a Closed Form Formula
CF equivalent to our Recursive Formula RF .



Proving RF = CF

We use, after the book, that same ”name” (in this case Tn ) for
both functions representing Recursive Formula RF and
Closed Form Formula CF.

We distinguish them here and in the future investigations by
using different colors and notation: RF and CF, respectively.

As both functions has the natural numbers N as their common
domain, we carry the proof here (and in the future
investigations) by Mathematical Induction over the domain of
the functions (always a subset of N).



Proof of RF = CF for Tower of Hanoi Solution

RF: T0 = 0, Tn = 2Tn−1 + 1, n > 0

CF: Tn = 2n − 1, n ≥ 0

We prove by Mathematical Induction that RF = CF, i.e. that

∀n∈N Tn = Tn = 2n − 1

Base Case n = 0

We verify: T0 = 0, T0 = 20 − 1 = 0 and we get that Base
Case is true: T0 = T0



Proof of RF = CF for Tower of Hanoi Solution

RF: T0 = 0, Tn = 2Tn−1 + 1, n > 0

CF: Tn = 2n − 1, n ≥ 0

Inductive Assumption: Tn−1 = Tn−1 = 2n−1 − 1

Inductive Thesis: Tn = Tn = 2n − 1

Proof:

Tk =def 2Tk−1 + 1

=ind 2(2k−1 − 1) + 1

= 2k − 2 + 1

= 2k − 1 = Tk



Another Proof of RF = CF for Tower of Hanoi Solution

Here is an interesting way to find a closed-form solution
without having to guess that the solution is Tn = 2n − 1.
Consider what happens when we add 1 to the recursive
formula RF

Tn + 1 =

 1 , if n = 0;

2Tn−1 + 2 = 2(Tn−1 + 1) , if n > 0.

Now, letting Un = Tn + 1, we get the following recurrence:

Un =

 1 , if n = 0;

2Un−1 , if n > 0.

It’s pretty easy (in any case easier than for the Tn) to see that
the solution (proof by Mathematical Induction) to this
recurrence is Un = 2n. Since Un = Tn + 1, we get

Tn = Un − 1 = 2n − 1.



CHAPTER 1
PART TWO: Lines in Plane



Lines in the Plane

The problem of Lines in the Plane was posed by JACOB
STEINER, Swiss mathematician in 1826

PROBLEM: what’s the maximum number of regions Ln that
can be defined in the plane by n lines?

For n = 0, it’s easy to see that there’s only one region i.e.
L0 = 1.

For n = 1 there’re two regions no matter how the line’s
oriented - L1 = 2.



Lines in the Plane

If n = 2, then the maximum number of regions we can define
is L2 = 4

Four regions is the best we can do with two lines because the
lines must either cross or not cross; if they cross, then the
lines define four regions, and if they don’t cross they define
three.



Lines in the Plane

Since we have L0 = 1, L1 = 2, and L2 = 4, one might be led
to conjecture that Ln = 2n.

This immediately breaks down when we consider 3 lines -
n = 3.

No matter how the third line is placed, we can only split at
most three pre-existing regions, i.e. we can add at most three
new regions using the third line and L3 = 7



Lines in the Plane

The argument for n = 3 can be generalized as follows.

Suppose that n − 1 lines have already been drawn.

First of all, note that adding a new line adds k new regions if
and only if the new line crosses k of the old regions.

Also, the new line crosses k of the old regions if and only if it
hits the old lines in k − 1 different places



Lines in the Plane

Observe that if the new line crosses k old regions, then since
each of the old regions is bounded by an old line, the new line
must have hit k − 1 boundaries, i.e. k − 1 old lines.

Conversely, if the new line hits k − 1 of the old lines, then pick
a direction along the new line and start from ”infinitely far
away” and proceed towards the first hit encountered in that
direction.

Each time the new line crosses an old line, the new line
crosses into a new region.

Hence after k − 1 hits the new line has crossed over from the
first old region into k − 1 other old regions, i.e. the total
number of regions the new line lies in is 1 + k − 1 = k .



Recurrent Solution RF

Since two lines can intersect in at most one point, the new line
can hit the n − 1 old lines in at most n − 1 distinct points.

This means that adding a new line can add at most n regions,
i.e. we have that

Ln ≤ Ln−1 + n, for n > 0.



Recursive Formula RF

Actually, we also have

Ln ≥ Ln−1 + n, for n > 0.

One can argue it as follows.

First, suppose n = 1

Then the inequality holds (trivially), since
L1 = 1 = 0 + 1 = L0 + 1.

Next, suppose we’ve already drawn n − 1 lines in a way that
defines Ln−1 regions.

Note that if we were to draw the nth line such that it’s parallel
to one of the old lines, then we’d miss out on intersecting that
line; hence draw the nth line such that it is not parallel to any
of the n − 1 old lines.



Recursive Formula RF

Also, we make sure that the new line doesn’t intersect two old
lines at the same point, i.e. it doesn’t hit any intersection
points between the old lines.

A new line placed in this way then hits n − 1 old lines inn − 1
distinct points, which means that the new line has added n
new regions to Ln−1, i.e we proved that

Ln ≤ Ln−1 + n and Ln ≥ Ln−1 + n.

Hence we have the following recurrent solution RF to the
problem:

Ln =

 1 if n = 0;

Ln−1 + n if n > 0.



From RF to Closed Form Formula CF

For our recursive formula RF, i.e. a function

L : N −→ N

defined by a recursive formula RF

L(0) = L0 = 0, L(n) = Ln = Ln−1 + n

we evaluate now its first few terms:

L0 = 1, L1 = 2, L2 = 4, L3 = 7, L4 = 11, L5 = 16, . . .

It is hard to see a general pattern based on first few terms, so
we now try ”unfolding” the recurrent solution RF instead.



From RF to Closed Form Formula CF

Ln= Ln−1 + n

= Ln−2 + (n − 1) + n

= Ln−3 + (n − 2) + (n − 1) + n
...

= L0 + 1 + 2 + · · ·+ (n − 2) + (n − 1) + n

= 1 +
n∑

i=1

i

= 1 +
n(n + 1)

2
.



Proof: RF = CF

We prove by Mathematical Induction that for all n ∈ N,

Ln = Ln = 1 +
n(n + 1)

2

BASE STEP: n = 0

L0 = 1 and L0 = 1 +
0(0+1)

2 = 1, and L0= L0



Proof: RF = CF

INDUCTIVE ASSUMPTION: Lk = Lk = 1 +
k(k+1)

2 , for all
k = 1, 2, ..., n − 1

INDUCTIVE THESIS: Ln = Ln = 1 +
n(n+1)

2

OBSERVE that we use here a different FORM of
Mathematical Induction then the last time!



Proof: RF = CF

PROOF:

Ln =def Ln−1 + n

=ind 1 +
(n − 1)n

2
+ n

= 1 +
1
2

n2 −
1
2

n + n

= 1 +
1
2

n2 +
1
2

n

= 1 +
n(n + 1)

2
= Ln



Using Lines with a Single Bend

Let’s now consider a slight variation of the original problem

What happens if instead of using lines, we use lines with a
single bend in them

Remark: in the following investigations we will use term bent
line for a line with a single bend



Using Lines with a Single Bend

Problem

What is the maximum number of regions Zn in the plane that
can be defined with n bent lines?

Intuitively, we can get more regions with fewer lines, because
the bend can capture extra regions; for example, Z2 = 7



Recurrent Formula Zn

A key observation: a single bent line is like two intersecting
straight lines, except that the parts of the lines on one side of
their intersection have been ”chopped off”.

Hence, for example, the maximum number of regions that can
be defined using a single bent line is equal to L2 − 2,

where Ln is the maximum number of regions that can be
defined using two straight lines, and n = 2

It turns out (see pg. 8 and Exercise 18 in Chapter 1) that the
recurrent formula RF is

Zn = L2n − 2n, for n ≥ 0.



Closed Form Formula Zn

We use the closed-form solution we got for Ln and get the
following

the closed form solution Zn

Zn =RF L2n − 2n

=CF 1 +
2n(2n + 1)

2
− 2n

= 2n2 − n + 1

= Zn



Ln and Zn

Observe that for large n,

since the dominating term in Ln is 1
2n2

and the dominating term in Zn is 2n2,

we can get about 2
1/2 = 4 times as many regions using bent

lines compared to using straight lines.


