cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 11

CHAPTER 3 INTEGER FUNCTIONS

PART1: Floors and Ceilings

PART 2: Floors and Ceilings Applications

PART 1
 Floors and Ceilings

Floor and Ceiling Definitions

Floor Definition

For any $x \in R$ we define
$\lfloor x\rfloor=$ the greatest integer less than or equal to x

Ceiling Definition

For any $x \in \mathrm{R}$ we define
$\lceil x\rceil=$ the least (smallest) integer greater than or equal to x

Floor and Ceiling Definitions

Definitions written Symbolicaly

Floor

$$
\lfloor x\rfloor=\max \{a \in Z: \quad a \leq x\}
$$

Ceiling

$$
\lceil x\rceil=\min \{a \in Z: \quad a \geq x\}
$$

Floor and Ceiling Basics

Remark: we use, after the book the notion of max, min elements instead of the least(smallest) and greatest elements because for the Posets P_{1}, P_{2} we have that
$P_{1}=(\{\mathrm{a} \in \mathrm{Z}: \mathrm{a} \leq \mathrm{x}\}, \leq)$ has unique max element that is the greatest and
$P_{2}=(\{\mathrm{a} \in \mathrm{Z}: \mathrm{a} \geq \mathrm{x}\}, \geq)$ has unique min element that is the least (smallest)

Floor and Ceiling Basics

Fact 1
For any $x \in R$
$\lfloor x\rfloor$ and $\lceil x\rceil$ exist and are unique

We define functions
Floor

$$
\begin{gathered}
f_{1}: R \longrightarrow Z \\
f_{1}(x)=\lfloor x\rfloor=\max \{a \in Z: \quad a \leq x\}
\end{gathered}
$$

Ceiling

$$
\begin{gathered}
f_{2}: \quad R \longrightarrow Z \\
f_{2}(x)=\lceil x\rceil=\min \{a \in Z: \quad a \geq x\}
\end{gathered}
$$

Floor and Ceiling Basics

Graphs of f_{1}, f_{2}

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

1. $\lfloor x\rfloor=x$ if and only if $x \in Z$
2. $\lceil x\rceil=x$ if and only if $x \in Z$
3. $x-1<\lfloor x\rfloor \leq\lceil x\rceil<x+1 \quad x \in R$
4. $\lfloor-x\rfloor=-\lceil x\rceil \quad x \in R$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

$$
\text { 5. }\lceil-x\rceil=-\lfloor x\rfloor \quad x \in R
$$

6. $\lceil x\rceil-\lfloor x\rfloor=[x \notin Z] \quad$ characteristic function of $x \notin Z$
we re- write 6. as follows
7. $\lceil x\rceil-\lfloor x\rfloor=0$ for $x \in Z$

$$
\lceil x\rceil-\lfloor x\rfloor=1 \text { for } x \notin Z
$$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

8. $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$ for $x \in R, n \in Z$
9. $\lfloor x\rfloor=n$ if and only if $x-1<n \leq x$ for $x \in R, n \in Z$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

10. $\lceil x\rceil=n$ if and only if $n-1<x \leq n$ for $x \in R, n \in Z$
11. $\lceil x\rceil=n$ if and only if $x \leq n<x+1$ for $x \in R, n \in Z$
12. $\lfloor x+n\rfloor=\lfloor x\rfloor+n$ and $\lceil x+n\rceil=\lceil x\rceil+n$ for $x \in R, n \in Z$

Some Proofs

Proof of

$$
\text { 12. }\lfloor x+n\rfloor=\lfloor x\rfloor+n \text { for } x \in R \text {, } n \in Z
$$

Directly from definition we have that

$$
\lfloor x\rfloor \leq x<\lfloor x\rfloor+1
$$

Adding n to all sides we get

$$
\lfloor x\rfloor+n \leq x+n<\lfloor x\rfloor+n+1
$$

Applying
8. $\lfloor x\rfloor=m$ if and only if $m \leq x<m+1$ for $x \in R, m \in Z$ for $m=\lfloor x\rfloor+n$ we get $\lfloor x+n\rfloor=m$, i.e.

$$
x+n\rfloor=\lfloor x\rfloor+n
$$

Some Proofs

Observe that it is not true that for all $x \in R, n \in Z$

$$
\lfloor n x\rfloor=n\lfloor x\rfloor
$$

Take $n=2, x=\frac{1}{2}$ and we get that

$$
\left\lfloor 2 \cdot \frac{1}{2}\right\rfloor=1 \neq 2\left\lfloor\frac{1}{2}\right\rfloor=0
$$

More Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

In all properties $\quad x \in R, n \in Z$
13. $x<n$ if and only if $\lfloor x\rfloor<n$
14. $n<x$ if and only if $n<\lceil x\rceil$
15. $x \leq n$ if and only if $\lceil x\rceil \leq n$
16. $n \leq x$ if and only if $n \leq\lfloor x\rfloor$

Some Proofs

Proof of 13. $x<n$ if and only if $\lfloor x\rfloor<n$

Let $x<n$
We know that $\lfloor x\rfloor \leq x$ so $\lfloor x\rfloor \leq x<n$ and hence $\lfloor x\rfloor<\mathrm{n}$
Let $\lfloor x\rfloor<\mathrm{n}$
By property 3. $x-1<\lfloor x\rfloor \leq\lceil x\rceil<x+1, x \in R$

$$
x-1<\lfloor x\rfloor \text {, i.e } x<\lfloor x\rfloor+1
$$

But $\lfloor x\rfloor<n$, so $\lfloor x\rfloor+1 \leq n$ and

$$
x<\lfloor x\rfloor+1 \leq n
$$

Hence $x<n$ what ends the proof

Fractional Part of x

Definition

We define: $\quad\{x\}=x-\lfloor x\rfloor$
$\{x\}$ is called a fractional part of x
$\lfloor x\rfloor$ is called the integer part of \mathbf{x}
By definition

$$
0 \leq\{x\}<1
$$

and we write

$$
x=\lfloor x\rfloor+\{x\}
$$

Fractional Part of x

Fact 2

IF $x=n+\Theta, n \in Z$ and $0 \leq \Theta<1$
THEN $n=\lfloor x\rfloor$ and $\Theta=\{x\}$

Proof

Let $x=n+\Theta, \Theta \in[0,1)$. We get by 12 .
$\lfloor x\rfloor=\lfloor n+\Theta\rfloor=n+\lfloor\Theta\rfloor=n$ and

$$
x=n+\Theta=\lfloor x\rfloor+\Theta=\lfloor x\rfloor+\{x\}
$$

so $\Theta=\{x\}$

Properties

We have proved in 12.

$$
\lfloor x+n\rfloor=\lfloor x\rfloor+n \text { for } x \in R, n \in Z
$$

Question: What happens when we consider

$$
\lfloor x+y\rfloor \text { where } x \in R \text { and } y \in R
$$

Is it possible (and when it is possible) that for any $x, y \in R$

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor
$$

Properties

Consider

$$
x=\lfloor x\rfloor+\{x\}, \text { and } \quad y=\lfloor y\rfloor+\{y\}
$$

We evaluate using 12. $\lfloor x+n\rfloor=\lfloor x\rfloor+n$

$$
\lfloor x+y\rfloor=\lfloor\lfloor x\rfloor+\lfloor y\rfloor+\{x\}+\{y\}\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+\lfloor\{x\}+\{y\}\rfloor
$$

By definition $0 \leq\{x\}<1$ and $0 \leq\{y\}<1$ so we have that

$$
0 \leq\{x\}+\{y\}<2
$$

Hence we have proved the following property

Properties

Fact 3

For any $\quad x, y \in R$

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor \quad \text { when } \quad 0 \leq\{x\}+\{y\}<1
$$

and

$$
\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+1 \quad \text { when } \quad 1 \leq\{x\}+\{y\}<2
$$

Examples

Example 1

Find $\left\lceil\log _{2} 35\right\rceil$
Observe that $\quad 2^{5}<35 \leq 2^{6}$
Taking log with respect to base 2 , we get

$$
5<\log _{2} 35 \leq 6
$$

We use property
10. $\lceil x\rceil=n$ if and only if $n-1<x \leq n$
and get

$$
\left\lceil\log _{2} 35\right\rceil=6
$$

Examples

Example 2

Find $\left\lceil\log _{2} 32\right\rceil$
Observe that $\quad 2^{4}<32 \leq 2^{5}$
Taking log with respect to base 2 , we get

$$
4<\log _{2} 32 \leq 5
$$

We use property 10. and get

$$
\left\lceil\log _{2} 32\right\rceil=5
$$

Examples

Example 3

Find $\left\lfloor\log _{2} 35\right\rfloor$
Observe that $\quad 2^{5} \leq 35<2^{6}$
Taking log with respect to base 2 , we get

$$
5 \leq \log _{2} 32<6
$$

We use property

$$
\text { 8. }\lfloor x\rfloor=n \text { if and only if } n \leq x<n+1
$$

and we get

$$
\left\lfloor\log _{2} 32\right\rfloor=5=\left\lceil\log _{2} 32\right\rceil
$$

Observation

Observe that 35 has 6 digits in its binary representation $35=(1000011)_{2}$ and $\left\lceil\log _{2} 35\right\rceil=6$

Question

Is the number of digits in binary representation of n always equal $\left\lceil\log _{2} n\right\rceil$?

Answer: NO, it is not true
Consider $32=(1000000)_{2}$
32 has 6 digits in its binary representation but

$$
\left\lceil\log _{2} 32\right\rceil=5 \neq 6
$$

Small Problem

Question: Can we develop a connection (formula) between $\left\lfloor\log _{2} n\right\rfloor$ and number of digits (m) in the binary representation of $\mathrm{n}(n>0)$?

Answer: YES

Small Problem Solution

Let $n \neq 0, n \in N$ be such such that it has m bits in binary representation
Hence, by definition we have

$$
n=a_{m-1} 2^{m-1}+\ldots+a_{0}
$$

and

$$
2^{m-1} \leq n<2^{m}
$$

So we get solution

$$
m-1 \leq \log _{2} n<m \quad \text { if and only if } \quad\left\lfloor\log _{2} n\right\rfloor=m-1
$$

Small Fact and Exercise

We have proved the following

Fact 4

For any $n \neq 0, n \in N$ such such that it has m bits in binary representation we have that

$$
\left\lfloor\log _{2} n\right\rfloor=m-1
$$

Example

Take $n=35, m=6$ so $\left\lfloor\log _{2} 35\right\rfloor=6-1=5$
Take $n=32, m=6$ so we get $\left\lfloor\log _{2} 32\right\rfloor=6-1=5$

Exercise Develop similar formula for $\left\lceil\log _{2} n\right\rceil$

Another Small Fact

Fact 5

For any $x \in R, x \geq 0$ the following property holds

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

Proof

Take
We proceed as follows
First we get rid of the outside \rfloor and then of the square root and of the inside \rfloor

Proof

Let $m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor$
By property

$$
\text { 8. }\lfloor x\rfloor=n \text { if and only if } n \leq x<n+1
$$

we get that

$$
m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if } \quad m \leq \sqrt{\lfloor x\rfloor}<m+1
$$

Squaring all sides of the inequality we get
(*) $m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor$ if and only if $m^{2} \leq\lfloor x\rfloor<(m+1)^{2}$

Proof

We proved that

$$
\text { (} \star \text {) } m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if } m^{2} \leq\lfloor x\rfloor<(m+1)^{2}
$$

Using property
16. $n \leq x$ if and only if $n \leq\lfloor x\rfloor$
on the left of inequality in (\star) and property

13. $x<n$ if and only if $\lfloor x\rfloor<n$

on the right side of inequality in (\star) we get

$$
\text { (**) } \quad m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if } m^{2} \leq x<(m+1)^{2}
$$

Proof

We already proved that

$$
\text { (**) } m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if } m^{2} \leq x<(m+1)^{2}
$$

Now we retrace our steps backwards. First taking \sqrt{x} on all sides of inequality ($* *$) (all components are ≥ 0), we get

$$
m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if } m \leq \sqrt{x}<m+1
$$

We use now the property

$$
\text { 8. }\lfloor x\rfloor=n \text { if and only if } n \leq x<n+1
$$

and get

$$
m=\lfloor\sqrt{\lfloor x\rfloor}\rfloor \text { if and only if }\lfloor\sqrt{x}\rfloor=m
$$

and hence

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

It ends the proof

Exercise

Write a proof of

$$
\lceil\sqrt{\lceil x\rceil}\rceil=\lceil\sqrt{x}\rceil
$$

Question

How can we GENERALIZE our just proven properties for other functions then $f(x)=\sqrt{x}$?
For which functions $f=f(x)$ (class of which functions?) the following holds

$$
\lfloor f(\lfloor x\rfloor)\rfloor=\lfloor f(x)\rfloor
$$

and

$$
\lceil f(\lceil x\rceil)\rceil=\lceil f(x)\rceil
$$

Generalization

Here is a proper generalization of the Fact 4

Fact 5

Let $f: \quad R^{\prime} \longrightarrow R$ where $R^{\prime} \subseteq R$ is the domain of f
IF $f=f(x)$ is continuous, monotonically increasing on its domain R', and additionally has the following property \mathbf{P}

$$
\mathbf{P} \quad \text { if } f(x) \in Z \text { then } \quad x \in Z
$$

THEN for all $x \in R^{\prime}$ for which the property \mathbf{P} holds we have that

$$
\lfloor f(\lfloor x\rfloor)\rfloor=\lfloor f(x)\rfloor
$$

and

$$
\lceil f(\lceil x\rceil)\rceil=\lceil f(x)\rceil
$$

Fact 5 Proof

Proof

We want to show that under assumption that f is continuous, monotonic, increasing on its domain R ' the property

$$
\lceil f(\lceil x\rceil)\rceil=\lceil f(x)\rceil
$$

holds for all $x \in R^{\prime}$ for which the property \mathbf{P} holds Case 1 take $x=\lceil x\rceil$
We get

$$
\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil
$$

is trivial as in this case we have that $x \in Z$

Fact 5 Proof

Case 2 take $x \neq\lceil x\rceil$
By definition $x<\lceil x\rceil$ and function f is monotonically increasing so we have

$$
f(x)<f(\lceil x\rceil)
$$

By the fact that \rceil is non- decreasing, i.e.

$$
\text { If } \quad x<y \quad \text { then }\lceil x\rceil \leq\lceil y\rceil
$$

we get

$$
\lceil f(x)\rceil \leq\lceil f(\lceil x\rceil)\rceil
$$

Now we show that $<$ is impossible Hence we will have $=$

Fact 5 Proof

Assume

$$
\lceil f(x)\rceil<\lceil f(\lceil x\rceil)\rceil
$$

Since f is continuous, then there is y, such that

$$
f(y)=\lceil f(x)\rceil
$$

and

$$
(\star) \quad x \leq y<\lceil x\rceil
$$

But $f(y)=\lceil f(x)\rceil$, i.e. $f(y) \in Z$ hence by property \mathbf{P} we get

$$
(\star \star) \quad y \in Z
$$

Observe that (\star) and $(\star \star)$ are contradictory as there is no $y \in Z \quad$ between x and $\lceil x\rceil$ and this ends the proof

Exercises

Exercise 1

Prove the first part of the Fact 5, i.e.

$$
\lfloor\sqrt{\lfloor f(x)\rfloor}\rfloor=\lfloor\sqrt{f(x)}\rfloor
$$

Exercise 2
Prove that for any $x \in R, \quad n, m \in Z$

$$
\text { 1. }\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor
$$

and

$$
\text { 2. }\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil
$$

Exercise 2 Solution

Let's prove

$$
\text { 1. }\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor
$$

Proof for 「〕 is carried similarly and is left as an exercise Take a function

$$
f(x)=\frac{x+m}{n}
$$

for $n, m \in Z, x \in R$
Observe that

$$
f(x)=\frac{x+m}{n}=\frac{x}{n}+\frac{m}{n}
$$

is a line $f(x)=a x+b$ and hence is continuous, monotonically increasing

Exercise 2 Solution

We have to check now if the property \mathbf{P}

$$
\mathbf{P} \quad \text { if } f(x) \in Z \text { then } \quad x \in Z
$$

holds for it, i.e. to check if all assumptions of the Fact 5 are fulfilled
Then by the Fact 5 we will get that

$$
\lfloor f(\lfloor x\rfloor)\rfloor=\lfloor f(x)\rfloor
$$

i.e.

$$
\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor=\left\lfloor\frac{x+m}{n}\right\rfloor
$$

Exercise 2 Solution

Poof that the property \mathbf{P} holds for

$$
f(x)=\frac{x+m}{n}
$$

Assume $f(x) \in Z$, i.e. there is $k \in Z$ such that

$$
\frac{x+m}{n}=k
$$

It means that

$$
x+m=n k
$$

and

$$
x=n k-m \in Z \quad \text { as } n, k, m \in Z
$$

Integers in the Intervals

Intervals

Standard Notation and definition of a Closed Interval

$$
[\alpha, \beta]=\{x \in R: \quad \alpha \leq x \leq \beta\}
$$

Book Notation

$$
[\alpha \ldots \beta]=\{x \in R: \quad \alpha \leq x \leq \beta\}
$$

We use book notation, because $[P(x)]$ denotes in the book the characteristic function of $\mathrm{P}(\mathrm{x})$

Intervals

Closed Interval

$$
[\alpha, \beta]=\{x \in R: \quad \alpha \leq x \leq \beta\}=[\alpha \ldots \beta]
$$

Open Interval

$$
(\alpha, \beta)=\{x \in R: \quad \alpha<x<\beta\}=(\alpha \ldots \beta)
$$

Half Open Interval

$$
[\alpha, \beta)=\{x \in R: \quad \alpha \leq x<\beta\}=[\alpha \ldots \beta)
$$

Half Open Interval

$$
(\alpha, \beta]=\{x \in R: \quad \alpha<x \leq \beta\}=(\alpha \ldots \beta]
$$

Integers in the Intervals

Problem

How many integers are there in the intervals?
In other words, for
$A=\{x \in Z: \alpha \leq x \leq \beta\}$
$A=\{x \in Z: \alpha<x \leq \beta\}$
$A=\{x \in Z: \alpha \leq x<\beta\}$
$A=\{x \in Z: \alpha<x<\beta\}$

We want to find $|A|$

Integers in the Intervals

Solution

We bring our $\rceil,\lfloor \rfloor$ properties 13. - 16.
13. $x<n$ if and only if $\lfloor x\rfloor<n$
14. $n<x$ if and only if $n<\lceil x\rceil$
15. $x \leq n$ if and only if $\lceil x\rceil \leq n$
16. $n \leq x$ if and only if $n \leq\lfloor x\rfloor$
and we get for $\alpha, \beta \in R$ and $n \in Z$

$$
\alpha \leq n<\beta \quad \text { if and only if } \quad\lceil\alpha\rceil \leq n<\lceil\beta\rceil
$$

$\alpha<n \leq \beta \quad$ if and only if $\quad\lfloor\alpha\rfloor \leq n<\lfloor\beta\rfloor$

Integers in the Intervals

Solution

$[\alpha \ldots \beta)$ contains exactly $\lceil\beta\rceil-\lceil\alpha\rceil$ integers
($\alpha \ldots \beta]$ contains exactly $\lfloor\beta\rfloor-\lfloor\alpha\rfloor$ integers
[$\alpha \ldots \beta]$ contains exactly $\lfloor\beta\rfloor-\lceil\alpha\rceil+1$ integers
We must assume $\alpha \neq \beta$ to evaluate
($\alpha \ldots \beta$) contains exactly $\lceil\beta\rceil-\lfloor\alpha\rfloor-1$ integers
We because $(\alpha \ldots \alpha)=\emptyset$ and can't contain -1 integers

Integers in the Intervals

INTERVAL Number of INTEGERS RESTRICTIONS

$[\alpha \ldots \beta]$	$\lfloor\beta\rfloor-\lceil\alpha\rceil+1$	$\alpha \leq \beta$
$[\alpha \ldots \beta)$	$\lceil\beta\rceil-\lceil\alpha\rceil$	$\alpha \leq \beta$
$(\alpha \ldots \beta]$	$\lfloor\beta\rfloor-\lfloor\alpha\rfloor$	$\alpha \leq \beta$
$(\alpha \ldots \beta)$	$\lceil\beta\rceil-\lfloor\alpha\rfloor-1$	$\alpha<\beta$

Casino Problem

Casino Problem

Casino Problem

There is a roulette wheel with 1,000 slots numbered 1 ... 1,000
IF the number n that comes up on a spin is divisible by $\lfloor\sqrt[3]{n}\rfloor$ what we write as

$$
\lfloor\sqrt[3]{n}\rfloor \mid n
$$

THEN n is the winner

Reminder
We define divisibility | in a standard way:
$k \mid n$ if and only if there exists $m \in Z$ such that $n=k m$

Average Winnings

In the game Casino pays $\$ 5$ if you are the winner; but the loser has to pay $\$ 1$
Can we expect to make money if we play this game?

Let's compute average winnings, i.e. the amount we win (or lose) per play
Denote
W - number of winners
L - number of losers and $L=1000-W$

Strong Rule: each number comes once during 1000 plays

Casino Winnings

Under the Strong Rule we win 5W and lose L dollars and the average winnings in 1000 plays is

$$
\frac{5 W-L}{1000}=\frac{5 W-(1000-W)}{1000}=\frac{6 W-1000}{1000}
$$

We have advantage if

$$
6 W>1000
$$

i.e. when

$$
W>167
$$

Casino Winnings

Answer

IF there is 167 or more winners and we play under the

Strong Rule: each number comes once during 1000 plays

THEN we have the advantage, otherwise Casino wins

Number of Winners

Problem

How to count the number of winners among 1 to 1000

Method

Use summation

$$
W=\sum_{n=1}^{1000}[n \text { is a winner }]
$$

Casino Problem

Reminder of Casino Problem

There is a roulette wheel with 1,000 slots numbered
1 ... 1,000
IF the number n that comes up on a spin is divisible by $\lfloor\sqrt[3]{n}\rfloor$, i.e. $\sqrt[3]{n}\rfloor \mid n$
THEN n is the winner
The summations becomes

$$
W=\sum_{n=1}^{1000}[\mathrm{n} \text { is a winner }]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]
$$

where we define divisibility | in a standard way
$k \mid n$ if and only if there exists $m \in Z$ such that $n=k m$

Book Solution

Here are 7 steps of our BOOK solution
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$
$3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]$
$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
$6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
$7 \mathrm{~W}=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$

Class Problem

Here are the BOOK comments

1. This derivation merits careful study
2. The only "difficult" maneuver is the decision between lines 3 and 4 to treat $n=1000$ as a special case
3. The inequality $k^{3} \leq n<(k+1)^{3}$ does not combine easily with $1 \leq n \leq 1000$ when $k=10$

Book Solution Comments

Class Problem

Write down explanation of each step with detailed justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

$$
W=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=172
$$

This problem can also appear on your tests

QUESTIONS about Book Solution

Here are questions to answer about the steps in the BOOK solution
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
Q1 Explain why $[n$ is a winner $]=[\lfloor\sqrt[3]{n}\rfloor \mid n]$
$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$

Q2 Explain why and how we have changed a sum $\sum_{n=1}^{1000}$ into a sum $\sum_{k, n}$ and
$\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$

QUESTIONS about Book Solution

$$
3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]
$$

Q3 Explain why

$$
[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n]=\left[k^{3} \leq n<(k+1)^{3}\right][n=k m]
$$

Explain why and how we have changed sum $\sum_{k, n}$ into a sum $\sum_{k, n, m}$

QUESTIONS about Book Solution

$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
Q4 There are three sub- questions; the last one is one of the book questions

1. Explain why

$$
\begin{aligned}
& {\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]=} \\
& {\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]}
\end{aligned}
$$

2. Explain why and how we have changed sum $\sum_{k, n, m}$ into
a sum $\sum_{k, m}$
3. Explain HOW and why we have got $1+\sum_{k, m}$

QUESTIONS about Book Solution

$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
Q5 Explain transition

$$
\left[k^{3} \leq k m<(k+1)^{3}\right]=\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right]
$$

QUESTIONS about Book Solution

$$
6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)
$$

Q6 Explain (prove) why
$\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]=$
$\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
Observe that $\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right]$ is a characteristic function and $\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$ is an integer

QUESTIONS about Book Solution

$7 W=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$
Q7 Explain (prove) why
$\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)=(3 k+4)$

Before we giving answers to Q1-Q7 we need to review some of the SUMS material

