cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

LECTURE 11

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

CHAPTER 3 INTEGER FUNCTIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

PART1: Floors and Ceilings

PART 2: Floors and Ceilings Applications

PART 1 Floors and Ceilings

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Floor and Ceiling Definitions

Floor Definition

For any $x \in R$ we define $\lfloor x \rfloor$ = the greatest integer less than or equal to x

Ceiling Definition

For any $x \in \mathbb{R}$ we define [x] = the least (smallest) integer greater than or equal to x

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Floor and Ceiling Definitions

Definitions written Symbolicaly

Floor

$$\lfloor x \rfloor = max\{a \in Z : a \leq x\}$$

Ceiling

 $[x] = min\{a \in Z : a \ge x\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Floor and Ceiling Basics

Remark: we use, after the book the notion of max, min elements instead of the least(smallest) and greatest elements because for the Posets P_1 , P_2 we have that

 $P_1=(\{a \in Z : a \le x\}, \le)$ has unique max element that is the greatest and

 $P_2=(\{a \in Z : a \ge x\}, \ge)$ has unique min element that is the least (smallest)

(ロ) (同) (三) (三) (三) (○) (○)

Floor and Ceiling Basics

Fact 1 For any $x \in \mathbb{R}$ [x] and [x] exist and are unique

We define functions Floor

 $f_1: R \longrightarrow Z$

 $f_1(x) = \lfloor x \rfloor = max\{a \in Z : a \le x\}$

Ceiling

$$f_2: R \longrightarrow Z$$

 $f_2(x) = [x] = \min\{a \in Z : a \ge x\}$

Floor and Ceiling Basics

Graphs of f_1, f_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1. [x] = x if and only if $x \in Z$

2. [x] = x if and only if $x \in Z$

3. $x-1 < \lfloor x \rfloor \leq \lceil x \rceil < x+1$ $x \in R$

 $4. \quad \lfloor -x \rfloor = -\lceil x \rceil \quad x \in R$

5. $[-x] = -\lfloor x \rfloor$ $x \in R$

6. $[x] - [x] = [x \notin Z]$ characteristic function of $x \notin Z$

we re- write 6. as follows

7. $[x] - \lfloor x \rfloor = 0$ for $x \in Z$

 $\lceil x \rceil - \lfloor x \rfloor = 1$ for $x \notin Z$

8. |x| = n if and only if $n \le x < n+1$ for $x \in R$, $n \in Z$

9. |x| = n if and only if $x - 1 < n \le x$ for $x \in R$, $n \in Z$

10. [x] = n if and only if $n-1 < x \le n$ for $x \in R$, $n \in Z$

11. [x] = n if and only if $x \le n < x+1$ for $x \in R$, $n \in Z$

12. $\lfloor x + n \rfloor = \lfloor x \rfloor + n$ and $\lceil x + n \rceil = \lceil x \rceil + n$ for $x \in R, n \in Z$

Some Proofs

Proof of

12. $\lfloor x + n \rfloor = \lfloor x \rfloor + n$ for $x \in R$, $n \in \mathbb{Z}$

Directly from definition we have that

 $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$

Adding n to all sides we get

 $\lfloor x \rfloor + n \leq x + n < \lfloor x \rfloor + n + 1$

Applying

8. [x] = m if and only if $m \le x < m+1$ for $x \in R$, $m \in Z$

for m = |x| + n we get |x + n| = m, i.e.

 $\lfloor x+n \rfloor = \lfloor x \rfloor + n$

Some Proofs

Observe that it is **not true** that for all $x \in R$, $n \in Z$

 $\lfloor nx \rfloor = n \lfloor x \rfloor$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Take n = 2, $x = \frac{1}{2}$ and we get that $\left\lfloor 2 \cdot \frac{1}{2} \right\rfloor = 1 \neq 2 \left\lfloor \frac{1}{2} \right\rfloor = 0$

In all properties $x \in R$, $n \in Z$

13. x < n if and only if $\lfloor x \rfloor < n$

14. n < x if and only if $n < \lceil x \rceil$

15. $x \le n$ if and only if $[x] \le n$

16. $n \le x$ if and only if $n \le \lfloor x \rfloor$

Some Proofs

Proof of 13. x < n if and only if |x| < nLet x < nWe know that $|x| \le x$ so $|x| \le x < n$ and hence |x| < nLet |x| < nBy property **3.** $x - 1 < |x| \le [x] < x + 1, x \in R$ x-1 < |x|, i.e x < |x|+1But |x| < n, so |x| + 1 < n and

 $x < \lfloor x \rfloor + 1 \le n$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hence x < n what ends the proof

Fractional Part of x

Definition

We define: $\{x\} = x - \lfloor x \rfloor$

 $\{x\}$ is called a **fractional** part of x $\lfloor x \rfloor$ is called the **integer** part of x By definition

 $0 \le \{x\} < 1$

and we write

 $x = \lfloor x \rfloor + \{x\}$

(ロ) (同) (三) (三) (三) (○) (○)

Fractional Part of x

Fact 2 IF $x = n + \Theta$, $n \in Z$ and $0 \le \Theta < 1$ THEN $n = \lfloor x \rfloor$ and $\Theta = \{x\}$

Proof

Let $x = n + \Theta$, $\Theta \in [0, 1)$. We get by 12. $\lfloor x \rfloor = \lfloor n + \Theta \rfloor = n + \lfloor \Theta \rfloor = n$ and

 $x = n + \Theta = \lfloor x \rfloor + \Theta = \lfloor x \rfloor + \{x\}$

so $\Theta = \{x\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Properties

We have proved in 12.

|x+n| = |x|+n for $x \in R$, $n \in Z$

Question: What happens when we consider

 $\lfloor x + y \rfloor$ where $x \in R$ and $y \in R$

Is it possible (and when it is possible) that for any $x, y \in R$

 $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$

A D F A 同 F A E F A E F A Q A

Properties

Consider

$$x = \lfloor x \rfloor + \{x\}$$
, and $y = \lfloor y \rfloor + \{y\}$

We evaluate using **12.** $\lfloor x + n \rfloor = \lfloor x \rfloor + n$

 $\lfloor x + y \rfloor = \lfloor \lfloor x \rfloor + \lfloor y \rfloor + \{x\} + \{y\} \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + \lfloor \{x\} + \{y\} \rfloor$

By definition $0 \le \{x\} < 1$ and $0 \le \{y\} < 1$ so we have that

 $0 \le \{x\} + \{y\} < 2$

A D F A 同 F A E F A E F A Q A

Hence we have proved the following property

Properties

Fact 3 For any $x, y \in R$ $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ when $0 \le \{x\} + \{y\} < 1$ and

 $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$ when $1 \le \{x\} + \{y\} < 2$

Examples

Example 1

Find $\lceil log_2 35 \rceil$ Observe that $2^5 < 35 \le 2^6$ Taking log with respect to base 2 , we get

 $5 < log_2 \, 35 \leq 6$

We use property

10. [x] = n if and only if $n - 1 < x \le n$

and get

 $\lceil \log_2 35 \rceil = 6$

Examples

Example 2 Find $\lceil log_2 32 \rceil$ Observe that $2^4 < 32 \le 2^5$ Taking log with respect to base 2 , we get

 $4 < log_2 \, 32 \leq 5$

We use property 10. and get

 $\lceil \log_2 32 \rceil = 5$

(ロ) (同) (三) (三) (三) (○) (○)

Examples

Example 3

Find $\lfloor \log_2 35 \rfloor$ Observe that $2^5 \le 35 < 2^6$ Taking log with respect to base 2 , we get

 $5 \leq log_2 \, 32 < 6$

We use property

8. $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$

and we get

$$\lfloor \log_2 32 \rfloor = 5 = \lceil \log_2 32 \rceil$$

Observation

Observe that 35 has 6 digits in its binary representation $35 = (1000011)_2$ and $\lceil \log_2 35 \rceil = 6$

Question

Is the number of digits in binary representation of n always equal $\lceil \log_2 n \rceil$?

Answer: NO, it is not true Consider $32 = (100000)_2$ 32 has 6 digits in its binary representation but

 $\lceil \log_2 32 \rceil = 5 \neq 6$

(ロ) (同) (三) (三) (三) (○) (○)

Small Problem

Question: Can we develop a connection (formula) between $\lfloor \log_2 n \rfloor$ and number of digits (m) in the binary representation of n (n > 0)?

(日)

Answer: YES

Small Problem Solution

Let $n \neq 0$, $n \in N$ be such such that it has m bits in binary representation

Hence, by definition we have

$$n = a_{m-1}2^{m-1} + \ldots + a_0$$

and

$$2^{m-1} \le n < 2^m$$

So we get solution

 $m-1 \leq \log_2 n < m$ if and only if $|\log_2 n| = m-1$

Small Fact and Exercise

We have proved the following

Fact 4

For any $n \neq 0$, $n \in N$ such such that it has m bits in **binary representation** we have that

 $\lfloor \log_2 n \rfloor = m - 1$

Example

Take n = 35, m = 6 so $\lfloor \log_2 35 \rfloor = 6 - 1 = 5$

Take n = 32, m = 6 so we get $\lfloor \log_2 32 \rfloor = 6 - 1 = 5$

A D F A 同 F A E F A E F A Q A

Exercise Develop similar formula for $\lceil \log_2 n \rceil$

Another Small Fact

Fact 5

For any $x \in \mathbb{R}, x \ge 0$ the following property holds $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor$

Proof Take $\lfloor \sqrt{\lfloor x \rfloor} \rfloor$ We proceed as follows First we get rid of the outside $\lfloor \rfloor$ and then of the square root and of the inside $\lfloor \rfloor$

Proof

Let $m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$ By property

8. $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$

we get that

$$m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$$
 if and only if $m \le \sqrt{\lfloor x \rfloor} < m + 1$

Squaring all sides of the inequality we get

(*)
$$m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$$
 if and only if $m^2 \le \lfloor x \rfloor < (m+1)^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof

We proved that

(*) $m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$ if and only if $m^2 \le \lfloor x \rfloor < (m+1)^2$

Using property

16. $n \le x$ if and only if $n \le |x|$

on the left of inequality in (\star) and property

13. x < n if and only if $\lfloor x \rfloor < n$ on the right side of inequality in (\star) we get

(**) $m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$ if and only if $m^2 \le x < (m+1)^2$

Proof

We already proved that

 $(\star\star)$ $m = \left|\sqrt{\lfloor x \rfloor}\right|$ if and only if $m^2 \le x < (m+1)^2$

Now we retrace our steps backwards. First taking \sqrt{x} on all sides of inequality (**) (all components are ≥ 0), we get

$$m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$$
 if and only if $m \le \sqrt{x} < m + 1$

We use now the property

8.
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n+1$

and get

$$m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$$
 if and only if $\lfloor \sqrt{x} \rfloor = m$

and hence

$$\left\lfloor \sqrt{\lfloor \mathbf{X} \rfloor} \right\rfloor = \lfloor \sqrt{\mathbf{X}} \rfloor$$

It ends the proof

Exercise

Write a proof of

$$\left\lceil \sqrt{\lceil x \rceil} \right\rceil = \left\lceil \sqrt{x} \right\rceil$$

Question

How can we GENERALIZE our just proven properties for other functions then $f(x) = \sqrt{x}$?

For which functions f = f(x) (class of which functions?) the following holds

 $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$

and

 $\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil$

(ロ) (同) (三) (三) (三) (○) (○)

Generalization

Here is a proper generalization of the Fact 4 Fact 5

Let $f: R' \longrightarrow R$ where $R' \subseteq R$ is the domain of f **IF** f = f(x) is continuous, monotonically increasing on its domain R', and additionally has the following property **P**

P if
$$f(x) \in Z$$
 then $x \in Z$

THEN for all $x \in R'$ for which the property **P** holds we have that

 $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$

and

 $\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil$

Fact 5 Proof

Proof

We want to show that under assumption that f is continuous, monotonic, increasing on its domain R' the property

 $\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil$

holds for all $x \in R'$ for which the property **P** holds

```
Case 1 take x = \lceil x \rceil
```

We get

$\lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is trivial as in this case we have that $x \in Z$

Fact 5 Proof

Case 2 take $x \neq \lceil x \rceil$ By definition $x < \lceil x \rceil$ and function f is monotonically increasing so we have

 $f(x) < f(\lceil x \rceil)$

By the fact that [] is non-decreasing, i.e.

If x < y then $\lceil x \rceil \leq \lceil y \rceil$

we get

$\lceil f(x) \rceil \leq \lceil f(\lceil x \rceil) \rceil$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Now we show that < is impossible

Hence we will have =

Fact 5 Proof

Assume

$\lceil f(x) \rceil < \lceil f(\lceil x \rceil) \rceil$

Since f is continuous, then there is y, such that

 $f(y) = \lceil f(x) \rceil$

and

$$(\star) \quad x \leq y < \lceil x \rceil$$

But $f(y) = \lceil f(x) \rceil$, i.e. $f(y) \in Z$ hence by property **P** we get

 $(\star\star)$ $y \in Z$

Observe that (\star) and $(\star\star)$ are **contradictory** as there is no $y \in Z$ between x and [x] and this **ends the proof**

Exercises

Exercise 1

Prove the first part of the Fact 5, i.e.

$$\left\lfloor \sqrt{\lfloor f(x) \rfloor} \right\rfloor = \left\lfloor \sqrt{f(x)} \right\rfloor$$

Exercise 2

Prove that for any $x \in R$, $n, m \in Z$

1.
$$\left\lfloor \frac{x+m}{n} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor + m}{n} \right\rfloor$$

and

2.
$$\left\lceil \frac{x+m}{n} \right\rceil = \left\lceil \frac{\lceil x \rceil + m}{n} \right\rceil$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise 2 Solution

Let's prove

$$\left\lfloor \frac{x+m}{n} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor + m}{n} \right\rfloor$$

Proof for [] is carried similarly and is left as an exercise Take a function

$$f(x)=\frac{x+m}{n}$$

for $n, m \in Z, x \in R$

Observe that

$$f(x) = \frac{x+m}{n} = \frac{x}{n} + \frac{m}{n}$$

is a line f(x) = ax + b and hence is continuous, monotonically increasing

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Exercise 2 Solution

We have to check now if the property P

P if
$$f(x) \in Z$$
 then $x \in Z$

holds for it, i.e. to check if all assumptions of the **Fact 5** are fulfilled

Then by the Fact 5 we will get that

 $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$

i.e.

$$\left\lfloor \frac{\lfloor x \rfloor + m}{n} \right\rfloor = \left\lfloor \frac{x + m}{n} \right\rfloor$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise 2 Solution

Poof that the property P holds for

$$f(x) = \frac{x+m}{n}$$

Assume $f(x) \in Z$, i.e. there is $k \in Z$ such that

$$\frac{x+m}{n} = k$$

It means that

x + m = nk

and

$$x = nk - m \in Z$$
 as $n, k, m \in Z$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Intervals

Standard Notation and definition of a Closed Interval

$[\alpha, \beta] = \{x \in R : \alpha \le x \le \beta\}$

Book Notation

$$[\alpha \dots \beta] = \{ x \in \mathbf{R} : \alpha \le x \le \beta \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We use book notation, because [P(x)] denotes in the book the characteristic function of P(x)

Intervals

Closed Interval

 $[\alpha, \beta] = \{x \in R : \alpha \le x \le \beta\} = [\alpha \dots \beta]$

Open Interval

 $(\alpha, \beta) = \{x \in \mathbf{R} : \alpha < x < \beta\} = (\alpha \dots \beta)$

Half Open Interval

$$[\alpha, \beta) = \{x \in \mathbf{R} : \alpha \le x < \beta\} = [\alpha \dots \beta)$$

Half Open Interval

 $(\alpha, \beta] = \{x \in R : \alpha < x \le \beta\} = (\alpha \dots \beta]$

A D F A 同 F A E F A E F A Q A

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Problem

How many integers are there in the intervals?

In other words, for

 $A = \{ x \in Z : \alpha \le x \le \beta \}$ $A = \{ x \in Z : \alpha < x \le \beta \}$ $A = \{ x \in Z : \alpha \le x < \beta \}$ $A = \{ x \in Z : \alpha < x < \beta \}$

We want to find | A |

Solution

We bring our [], [] properties **13. - 16.**

13.
$$x < n$$
 if and only if $\lfloor x \rfloor < n$

14. n < x if and only if $n < \lceil x \rceil$

15.
$$x \le n$$
 if and only if $\lceil x \rceil \le n$

16. $n \le x$ if and only if $n \le \lfloor x \rfloor$

and we get for $\alpha, \beta \in R$ and $n \in Z$

 $\alpha \le n < \beta$ if and only if $\lceil \alpha \rceil \le n < \lceil \beta \rceil$

 $\alpha < n \le \beta$ if and only if $|\alpha| \le n < |\beta|$

Solution

 $\begin{array}{l} [\alpha...\beta] \quad \text{contains exactly} \quad \lceil \beta \rceil - \lceil \alpha \rceil \quad \text{integers} \\ (\alpha...\beta] \quad \text{contains exactly} \quad \lfloor \beta \rfloor - \lfloor \alpha \rfloor \quad \text{integers} \\ [\alpha...\beta] \quad \text{contains exactly} \quad \lfloor \beta \rfloor - \lceil \alpha \rceil + 1 \quad \text{integers} \\ \text{We must assume} \quad \alpha \neq \beta \quad \text{to evaluate} \end{array}$

 $(\alpha ... \beta)$ contains exactly $\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$ integers We

because $(\alpha ... \alpha) = \emptyset$ and can't contain -1 integers

INTERVAL	Number of INTEGERS	RESTRICTIONS
[αβ]	$\lfloor \beta \rfloor - \lceil \alpha \rceil + 1$	$lpha \leq eta$
$[\alpha\beta)$	$\lceil \beta \rceil - \lceil \alpha \rceil$	$lpha \leq eta$
(αβ]	$\lfloor \beta \rfloor - \lfloor \alpha \rfloor$	$lpha \leq eta$
$(\alpha \beta)$	$\lceil \beta ceil - \lfloor lpha ceil - 1$	lpha < eta

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Casino Problem

Casino Problem

Casino Problem

There is a roulette wheel with 1,000 slots numbered $1 \dots 1,000$

IF the number **n** that comes up on a spin is divisible by $\lfloor \sqrt[3]{n} \rfloor$ what we write as

$\left\lfloor \sqrt[3]{n} \right\rfloor \mid n$

THEN n is the winner

Reminder

We **define divisibility** | in a standard way: $k \mid n$ if and only if there exists $m \in Z$ such that n = km

Average Winnings

In the game Casino pays \$5 if you are the **winner**; but the **loser** has to pay \$1

Can we expect to make money if we play this game?

Let's compute average winnings, i.e. the amount we win (or lose) per play

Denote

- W number of winners
- L number of **losers** and L = 1000 W

Strong Rule: each number comes once during 1000 plays

Casino Winnings

Under the **Strong Rule** we win 5W and lose L dollars and the average winnings in 1000 plays is

Casino Winnings

Answer

IF there is 167 or more winners and we play under the

Strong Rule: each number comes once during 1000 plays

THEN we have the advantage, otherwise Casino wins

Number of Winners

Problem

How to count the number of winners among 1 to 1000

Method

Use summation

$$W = \sum_{n=1}^{1000} [n \text{ is a winner}]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Casino Problem

Reminder of Casino Problem

There is a roulette wheel with 1,000 slots numbered $1 \dots 1,000$

IF the number **n** that comes up on a spin is divisible by $\lfloor \sqrt[3]{n} \rfloor$, i.e. $\sqrt[3]{n} \rfloor \mid n$

THEN n is the winner

The summations becomes

$$W = \sum_{n=1}^{1000} [n \text{ is a winner }] = \sum_{n=1}^{1000} \left[\lfloor \sqrt[3]{n} \rfloor \mid n \right]$$

where we **define divisibility** | in a standard way $k \mid n$ if and only if there exists $m \in Z$ such that n = km

Book Solution

SQC.

Class Problem

Here are the **BOOK comments**

1. This derivation merits careful study

2. The only "difficult" maneuver is the decision between lines **3** and **4** to treat n = 1000 as a special case

3. The inequality $k^3 \le n < (k+1)^3$ does not combine easily with $1 \le n \le 1000$ when k=10

Book Solution Comments

Class Problem

Write down explanation of each step with detailed justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

$$W = \sum_{n=1}^{1000} \left[\left\lfloor \sqrt[3]{n} \right\rfloor \mid n \right] = 172$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This problem can also appear on your tests

Here are **questions** to answer about the steps in the BOOK solution

1 W =
$$\sum_{n=1}^{1000} [n \text{ is a winner }] = \sum_{n=1}^{1000} [\lfloor \sqrt[3]{n} \rfloor \mid n]$$

Q1 Explain why $[n \text{ is a winner }] = [\lfloor \sqrt[3]{n} \rfloor | n]$

2 W =
$$\sum_{k,n} [k = \lfloor \sqrt[3]{n} \rfloor] [k|n] [1 \le n \le 1000]$$

Q2 Explain why and how we have changed a sum $\sum_{n=1}^{1000}$ into a sum $\sum_{k,n}$ and

 $\sum_{n=1}^{1000} \left[\lfloor \sqrt[3]{n} \rfloor \mid n \right] = \sum_{k,n} \left[k = \lfloor \sqrt[3]{n} \rfloor \right] \left[k \mid n \right] \left[1 \le n \le 1000 \right]$

3
$$W = \sum_{k,n,m} \left[k^3 \le n < (k+1)^3 \right] [n = km] [1 \le n \le 1000]$$

Q3 Explain why

 $\begin{bmatrix} k = \lfloor \sqrt[3]{n} \end{bmatrix} \begin{bmatrix} k|n \end{bmatrix} = \begin{bmatrix} k^3 \le n < (k+1)^3 \end{bmatrix} \begin{bmatrix} n = km \end{bmatrix}$ Explain why and how we have changed sum $\sum_{k,n,m}$ into a sum $\sum_{k,n,m}$

4 W = 1 +
$$\sum_{k,m} \left[k^3 \le km < (k+1)^3 \right] [1 \le k < 10]$$

Q4 There are three sub-questions; the last one is one of the book questions

1. Explain why

$$\left[k^{3} \leq n < (k+1)^{3}\right] [n = km] [1 \leq n \leq 1000] =$$

 $\left[k^{3} \leq km < (k+1)^{3}\right] [1 \leq k < 10]$

2. Explain why and how we have changed sum $\sum_{k,n,m}$ into

a sum $\sum_{k,m}$

3. Explain HOW and why we have got $1 + \sum_{k,m}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

5 W = 1 +
$$\sum_{k,m} \left[m \in \left[k^2 \dots \frac{(k+1)^3}{k} \right] \right] [1 \le k < 10]$$

Q5 Explain transition $\left[k^3 \le km < (k+1)^3\right] = \left[m \in \left[k^2 \dots \frac{(k+1)^3}{k}\right]\right]$

6 W = 1 +
$$\sum_{1 \le k < 10} \left(\lceil k^2 + 3k + 3 + \frac{1}{k} \rceil - \lceil k^2 \rceil \right)$$

Q6 Explain (prove) why

$$\sum_{k,m} \left[m \in \left[k^2 \dots \frac{(k+1)^3}{k} \right] \right] \left[1 \le k < 10 \right] = \sum_{1 \le k < 10} \left(\left\lceil k^2 + 3k + 3 + \frac{1}{k} \right\rceil - \left\lceil k^2 \right\rceil \right)$$

Observe that $\left[m \in \left[k^2 \dots \frac{(k+1)^3}{k}\right]\right]$ is a characteristic function and $\left(\left\lceil k^2 + 3k + 3 + \frac{1}{k} \right\rceil - \left\lceil k^2 \right\rceil\right)$ is an integer

7 W = 1 +
$$\sum_{1 \le k < 10} (3k+4) = 1 + \frac{7+31}{2}9 = 172$$

Q7 Explain (prove) why

 $\left(\lceil k^2 + 3k + 3 + \frac{1}{k}\rceil - \lceil k^2\rceil\right) = (3k+4)$

Before we giving answers to Q1 - Q7 we need to review some of the SUMS material