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PART 1
Floors and Ceilings



Floor and Ceiling Definitions

Floor Definition
For any x ∈ R we define
b x c = the greatest integer less than or equal to x

Ceiling Definition
For any x ∈ R we define
d x e = the least (smallest) integer greater than or equal to x



Floor and Ceiling Definitions

Definitions written Symbolicaly

Floor
b x c= max{a ∈ Z : a≤ x}

Ceiling
d x e= min{a ∈ Z : a≥ x}



Floor and Ceiling Basics

Remark: we use, after the book the notion of max, min
elements instead of the least( smallest) and greatest
elements because for the Posets P1, P2 we have that

P1=({ a∈ Z : a ≤ x },≤) has unique max element that is
the greatest and

P2=({ a∈ Z : a ≥ x },≥) has unique min element that is
the least (smallest)



Floor and Ceiling Basics

Fact 1
For any x∈ R
b x c and d x e exist and are unique

We define functions
Floor

f1 : R −→ Z

f1(x) = b x c= max{a ∈ Z : a≤ x}

Ceiling
f2 : R −→ Z

f2(x) = d x e= min{a ∈ Z : a≥ x}



Floor and Ceiling Basics

Graphs of f1, f2



Properties of bxc and dxe

1. bxc= x if and only if x ∈ Z

2. dxe= x if and only if x ∈ Z

3. x−1 < bxc ≤ dxe< x + 1 x ∈ R

4. b−xc=−dxe x ∈ R



Properties of bxc and dxe

5. d−xe=−bxc x ∈ R

6. dxe−bxc= [x < Z ] characteristic function of x < Z

we re- write 6. as follows

7. dxe−bxc= 0 for x ∈ Z

dxe−bxc= 1 for x < Z



Properties of bxc and dxe

8. b x c= n if and only if n ≤ x < n + 1 for x ∈ R, n ∈ Z

9. bxc= n if and only if x−1 < n ≤ x for x ∈ R, n ∈ Z



Properties of bxc and dxe

10. dxe= n if and only if n−1 < x ≤ n for x ∈ R, n ∈ Z

11. dxe= n if and only if x ≤ n < x + 1 for x ∈ R, n ∈ Z

12. bx + nc= bxc+ n and dx + ne= dxe+ n for x ∈ R, n ∈ Z



Some Proofs

Proof of

12. bx + nc= bxc+ n for x ∈ R, n ∈ Z

Directly from definition we have that

bxc ≤ x < bxc+ 1

Adding n to all sides we get

bxc+ n ≤ x + n < bxc+ n + 1

Applying

8. b x c= m if and only if m ≤ x < m + 1 for x ∈R, m ∈ Z

for m = bxc+ n we get b x + n c= m , i.e.

b x + n c= bxc+ n



Some Proofs

Observe that it is not true that for all x ∈ R, n ∈ Z

bnxc= nbxc

Take n = 2, x = 1
2 and we get that⌊

2 · 1
2

⌋
= 1 , 2

⌊
1
2

⌋
= 0



More Properties of bxc and dxe

In all properties x ∈ R, n ∈ Z

13. x < n if and only if bxc< n

14. n < x if and only if n < dxe

15. x ≤ n if and only if dxe ≤ n

16. n ≤ x if and only if n ≤ bxc



Some Proofs

Proof of 13. x < n if and only if bxc< n
Let x < n
We know that bxc ≤ x so bxc ≤ x < n
and hence bxc < n
Let bxc < n
By property 3. x−1 < bxc ≤ dxe< x + 1, x ∈ R
x−1 < bxc, i.e x < bxc+ 1

But bxc< n , so bxc+ 1≤ n and

x < bxc+ 1≤ n

Hence x < n what ends the proof



Fractional Part of x

Definition
We define: {x}= x−bxc

{x} is called a fractional part of x
bxc is called the integer part of x
By definition

0≤ {x}< 1

and we write
x = bxc+{x}



Fractional Part of x

Fact 2
IF x = n + Θ, n ∈ Z and 0 ≤Θ < 1
THEN n = bxc and Θ = {x}

Proof
Let x = n + Θ, Θ ∈ [0,1). We get by 12.
bxc= bn + Θc= n + bΘc= n and

x = n + Θ = bxc+ Θ = bxc+{x}

so Θ ={x}



Properties

We have proved in 12.

bx + nc= bxc+ n for x ∈ R, n ∈ Z

Question: What happens when we consider

bx + yc where x ∈ R and y ∈ R

Is it possible (and when it is possible) that for any x ,y ∈ R

bx + yc= bxc+ byc



Properties

Consider

x = bxc+{x}, and y = byc+{y}

We evaluate using 12. bx + nc= bxc+ n

bx + yc= bbxc+ byc+{x}+{y}c= bxc+ byc+ b{x}+{y}c

By definition 0≤ {x}< 1 and 0≤ {y}< 1 so we have
that

0≤ {x}+{y}< 2

Hence we have proved the following property



Properties

Fact 3
For any x ,y ∈ R

bx + yc= bxc+ byc when 0≤ {x}+{y}< 1

and

bx + yc= bxc+ byc+ 1 when 1≤ {x}+{y}< 2



Examples

Example 1
Find dlog2 35e
Observe that 25 < 35≤ 26

Taking log with respect to base 2 , we get

5 < log2 35≤ 6

We use property

10. dxe= n if and only if n−1 < x ≤ n

and get
dlog2 35e= 6



Examples

Example 2
Find dlog2 32e
Observe that 24 < 32≤ 25

Taking log with respect to base 2 , we get

4 < log2 32≤ 5

We use property 10. and get

dlog2 32e= 5



Examples

Example 3
Find blog2 35c
Observe that 25 ≤ 35 < 26

Taking log with respect to base 2 , we get

5≤ log2 32 < 6

We use property

8. b x c= n if and only if n ≤ x < n + 1

and we get
blog2 32c= 5 = dlog2 32e



Observation

Observe that 35 has 6 digits in its binary representation
35 = (1000011)2 and dlog2 35e= 6
Question
Is the number of digits in binary representation of n always
equal dlog2 ne ?

Answer: NO, it is not true
Consider 32 = (1000000)2

32 has 6 digits in its binary representation but

dlog2 32e= 5 , 6



Small Problem

Question: Can we develop a connection (formula)
between blog2 nc and number of digits (m) in the binary
representation of n (n > 0)?

Answer: YES



Small Problem Solution

Let n , 0, n ∈ N be such such that it has m bits in
binary representation
Hence, by definition we have

n = am−12m−1 + . . . + a0

and
2m−1 ≤ n < 2m

So we get solution

m−1≤ log2 n < m if and only if blog2 nc= m−1



Small Fact and Exercise

We have proved the following
Fact 4
For any n , 0, n ∈ N such such that it has m bits in
binary representation we have that

blog2 nc= m−1

Example
Take n = 35, m = 6 so blog2 35c= 6−1 = 5
Take n = 32, m = 6 so we get blog2 32c= 6−1 = 5

Exercise Develop similar formula for dlog2 ne



Another Small Fact

Fact 5
For any x ∈ R, x ≥ 0 the following property holds⌊√

bxc
⌋

=
⌊√

x
⌋

Proof
Take

⌊√
bxc
⌋

We proceed as follows
First we get rid of the outside b c and then of the
square root and of the inside b c



Proof

Let m =
⌊√
bxc
⌋

By property

8. b x c= n if and only if n ≤ x < n + 1

we get that

m =
⌊√
bxc
⌋

if and only if m ≤
√
bxc< m + 1

Squaring all sides of the inequality we get

(?) m =
⌊√
bxc
⌋

if and only if m2 ≤ bxc< (m + 1)2



Proof

We proved that

(?) m =
⌊√
bxc
⌋

if and only if m2 ≤ bxc< (m + 1)2

Using property

16. n ≤ x if and only if n ≤ bxc

on the left of inequality in (?) and property

13. x < n if and only if bxc< n

on the right side of inequality in (?) we get

(??) m =
⌊√
bxc
⌋

if and only if m2 ≤ x < (m + 1)2



Proof

We already proved that

(??) m =
⌊√
bxc
⌋

if and only if m2 ≤ x < (m + 1)2

Now we retrace our steps backwards. First taking
√

x on
all sides of inequality (??) (all components are ≥0), we
get

m =
⌊√
bxc
⌋

if and only if m ≤
√

x < m + 1

We use now the property

8. b x c= n if and only if n ≤ x < n + 1

and get

m =
⌊√
bxc
⌋

if and only if b
√

xc= m

and hence ⌊√
bxc
⌋

= b
√

xc

It ends the proof



Exercise

Write a proof of ⌈√
dxe
⌉

=
⌈√

x
⌉

Question
How can we GENERALIZE our just proven properties for
other functions then f (x) =

√
x ?

For which functions f = f (x) (class of which functions?)
the following holds

bf (bxc) c= bf (x)c

and
df (dxe) e= df (x) e



Generalization

Here is a proper generalization of the Fact 4
Fact 5
Let f : R′ −→ R where R′ ⊆ R is the domain of f
IF f = f(x) is continuous, monotonically increasing on its
domain R’ , and additionally has the following property P

P if f (x) ∈ Z then x ∈ Z

THEN for all x ∈ R′ for which the property P holds we
have that

bf (bxc) c= bf (x)c

and
df (dxe) e= df (x) e



Fact 5 Proof

Proof
We want to show that under assumption that f is
continuous, monotonic, increasing on its domain R’ the
property

df (dxe) e= df (x) e

holds for all x ∈ R′ for which the property P holds
Case 1 take x = dxe
We get

df (x)e= df (dxe)e

is trivial as in this case we have that x ∈ Z



Fact 5 Proof

Case 2 take x , dxe
By definition x < dxe and function f is monotonically
increasing so we have

f (x) < f (dxe)

By the fact that d e is non- decreasing , i.e.

If x < y then dxe ≤ dye

we get
df (x)e ≤ df (dxe)e

Now we show that < is impossible
Hence we will have =



Fact 5 Proof

Assume
df (x)e< d f (dxe) e

Since f is continuous, then there is y , such that

f (y) = df (x)e

and
(?) x ≤ y < dxe

But f (y) = df (x)e, i.e. f (y) ∈ Z hence by property P we
get

(??) y ∈ Z

Observe that (?) and (??) are contradictory as there is
no y ∈ Z between x and dxe and this ends the proof



Exercises

Exercise 1
Prove the first part of the Fact 5, i.e.⌊√

bf (x)c
⌋

=
⌊√

f (x)
⌋

Exercise 2
Prove that for any x ∈ R, n,m ∈ Z

1.
⌊

x + m
n

⌋
=

⌊
bxc+ m

n

⌋
and

2.
⌈

x + m
n

⌉
=

⌈
dxe+ m

n

⌉



Exercise 2 Solution

Let’s prove

1.
⌊

x + m
n

⌋
=

⌊
bxc+ m

n

⌋
Proof for d e is carried similarly and is left as an exercise
Take a function

f (x) =
x + m

n
for n,m ∈ Z , x ∈ R
Observe that

f (x) =
x + m

n
=

x
n

+
m
n

is a line f (x) = ax + b and hence is continuous,
monotonically increasing



Exercise 2 Solution

We have to check now if the property P

P if f (x) ∈ Z then x ∈ Z

holds for it, i.e. to check if all assumptions of the Fact 5
are fulfilled
Then by the Fact 5 we will get that

bf (bxc) c= bf (x)c

i.e. ⌊
bxc+ m

n

⌋
=

⌊
x + m

n

⌋



Exercise 2 Solution

Poof that the property P holds for

f (x) =
x + m

n

Assume f (x) ∈ Z , i.e. there is k ∈ Z such that

x + m
n

= k

It means that
x + m = nk

and
x = nk −m ∈ Z as n,k ,m ∈ Z



Integers in the Intervals



Intervals

Standard Notation and definition of a Closed Interval

[α, β ] = {x ∈ R : α ≤ x ≤ β}

Book Notation

[α . . .β ] = {x ∈ R : α ≤ x ≤ β}

We use book notation, because [P(x)] denotes in the
book the characteristic function of P(x)



Intervals

Closed Interval

[α, β ] = {x ∈ R : α ≤ x ≤ β} = [α . . .β ]

Open Interval

(α, β ) = {x ∈ R : α < x < β} = (α . . .β )

Half Open Interval

[α, β ) = {x ∈ R : α ≤ x < β} = [α . . .β )

Half Open Interval

(α, β ] = {x ∈ R : α < x ≤ β} = (α . . .β ]



Integers in the Intervals

Problem
How many integers are there in the intervals?
In other words, for
A = { x ∈ Z : α ≤x≤ β }
A = { x ∈ Z : α <x≤ β }
A = { x ∈ Z : α ≤x< β }
A = { x ∈ Z : α <x< β }

We want to find | A |



Integers in the Intervals

Solution
We bring our de, bc properties 13. - 16.

13. x < n if and only if bxc< n

14. n < x if and only if n < dxe

15. x ≤ n if and only if dxe ≤ n

16. n ≤ x if and only if n ≤ bxc

and we get for α,β ∈ R and n ∈ Z

α ≤ n < β if and only if dαe ≤ n < dβe

α < n ≤ β if and only if bαc ≤ n < bβc



Integers in the Intervals

Solution

[α...β ) contains exactly dβe − dαe integers

(α...β ] contains exactly bβc − bαc integers

[α...β ] contains exactly bβc − dαe+ 1 integers

We must assume α , β to evaluate

(α...β ) contains exactly dβe − bαc−1 integers

We
because (α...α) = ∅ and can’t contain -1 integers



Integers in the Intervals

INTERVAL Number of INTEGERS RESTRICTIONS

[α...β ] bβc-dαe+ 1 α ≤ β

[α...β ) dβe-dαe α ≤ β

(α...β ] bβc-bαc α ≤ β

(α...β ) dβe-bαc−1 α < β



Casino Problem



Casino Problem

Casino Problem
There is a roulette wheel with 1,000 slots numbered
1 . . . 1,000
IF the number n that comes up on a spin is divisible by
b 3√nc what we write as ⌊ 3√n

⌋
| n

THEN n is the winner

Reminder
We define divisibility | in a standard way:
k | n if and only if there exists m ∈ Z such that n = km



Average Winnings

In the game Casino pays $5 if you are the winner; but
the loser has to pay $1
Can we expect to make money if we play this game?

Let’s compute average winnings, i.e. the amount we win
(or lose) per play
Denote
W - number of winners
L - number of losers and L = 1000 - W

Strong Rule: each number comes once during 1000 plays



Casino Winnings

Under the Strong Rule we win 5W and lose L dollars
and the average winnings in 1000 plays is

5W − L
1000

=
5W − (1000−W )

1000
=

6W −1000
1000

We have advantage if

6W > 1000

i.e. when
W > 167



Casino Winnings

Answer
IF there is 167 or more winners and we play under the

Strong Rule: each number comes once during 1000 plays

THEN we have the advantage, otherwise Casino wins



Number of Winners

Problem

How to count the number of winners among 1 to 1000

Method

Use summation

W =
1000

∑
n=1

[n is a winner ]



Casino Problem

Reminder of Casino Problem
There is a roulette wheel with 1,000 slots numbered
1 . . . 1,000
IF the number n that comes up on a spin is divisible by
b 3√nc, i.e. 3√nc | n
THEN n is the winner
The summations becomes

W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
where we define divisibility | in a standard way
k | n if and only if there exists m ∈ Z such that n = km



Book Solution

Here are 7 steps of our BOOK solution

1 W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
2 W = ∑

k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]

3 W = ∑
k ,n,m

[
k3 ≤ n < (k + 1)3

]
[n = km] [1≤ n ≤ 1000]

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k + 1)3

]
[1≤ k < 10]

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k + 1)3

k

)]
[1≤ k < 10]

6 W = 1 + ∑
1≤k<10

(
dk2 + 3k + 3 +

1
k
e−dk2e

)
7 W = 1 + ∑

1≤k<10
(3k + 4) = 1 +

7 + 31
2

9 = 172



Class Problem

Here are the BOOK comments

1. This derivation merits careful study

2. The only ”difficult” maneuver is the decision between
lines 3 and 4 to treat n =1000 as a special case

3. The inequality k3 ≤ n < (k + 1)3 does not combine
easily with 1≤ n ≤ 1000 when k=10



Book Solution Comments

Class Problem

Write down explanation of each step with detailed
justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

W =
1000

∑
n=1

[
⌊ 3√n

⌋
| n] = 172

This problem can also appear on your tests



QUESTIONS about Book Solution

Here are questions to answer about the steps in the
BOOK solution

1 W = ∑
1000
n=1 [n is a winner ] = ∑

1000
n=1

[
b 3√nc | n

]
Q1 Explain why [n is a winner ] =

[
b 3√nc | n

]
2 W = ∑k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]

Q2 Explain why and how we have changed a sum ∑
1000
n=1

into a sum ∑k ,n and

∑
1000
n=1

[
b 3√nc | n

]
= ∑k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]



QUESTIONS about Book Solution

3 W = ∑k ,n,m

[
k3 ≤ n < (k + 1)3

]
[n = km] [1≤ n ≤ 1000]

Q3 Explain why

[
k = b 3√nc

]
[k |n] =

[
k3 ≤ n < (k + 1)3

]
[n = km]

Explain why and how we have changed sum ∑k ,n into a
sum ∑k ,n,m



QUESTIONS about Book Solution

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k + 1)3

]
[1≤ k < 10]

Q4 There are three sub- questions; the last one is one of
the book questions
1. Explain why[
k3 ≤ n < (k + 1)3

]
[n = km] [1≤ n ≤ 1000] =[

k3 ≤ km < (k + 1)3
]

[1≤ k < 10]

2. Explain why and how we have changed sum ∑k ,n,m
into
a sum ∑k ,m

3. Explain HOW and why we have got 1+ ∑k ,m



QUESTIONS about Book Solution

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k + 1)3

k

)]
[1≤ k < 10]

Q5 Explain transition[
k3 ≤ km < (k + 1)3

]
=
[
m ∈

[
k2 . . . (k+1)3

k

)]



QUESTIONS about Book Solution

6 W = 1 + ∑
1≤k<10

(
dk2 + 3k + 3 +

1
k
e−dk2e

)
Q6 Explain (prove) why

∑
k ,m

[
m ∈

[
k2 . . .

(k + 1)3

k

)]
[1≤ k < 10] =

∑
1≤k<10

(
dk2 + 3k + 3 +

1
k
e−dk2e

)
Observe that

[
m ∈

[
k2 . . . (k+1)3

k

)]
is a characteristic

function and
(
dk2 + 3k + 3 + 1

k e−dk
2e
)

is an integer



QUESTIONS about Book Solution

7 W = 1 + ∑
1≤k<10

(3k + 4) = 1 +
7 + 31

2
9 = 172

Q7 Explain (prove) why

(
dk2 + 3k + 3 + 1

k e−dk
2e
)

= (3k + 4)

Before we giving answers to Q1 - Q7 we need to review
some of the SUMS material


