cseb47, math547
DISCRETE MATHEMATICS

Professor Anita Wasilewska



LECTURE 11



CHAPTER 3
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PART 2: Floors and Ceilings Applications



PART 1
Floors and Ceilings



Floor and Ceiling Definitions

Floor Definition
Forany x € R we define
| x | =the greatest integer less than or equal to x

Ceiling Definition
Forany x € R we define
[ x | =the least (smallest) integer greater than or equal to x



Floor and Ceiling Definitions

Definitions written Symbolicaly

Floor
| x |=max{aeZ: a<x}

Ceiling
[x|=minfacZ: a> x}



Floor and Ceiling Basics

Remark: we use, after the book the notion of max, min
elements instead of the least( smallest) and greatest
elements because for the Posets Py, P> we have that

Pi=({acZ:a <x},<) hasuniqgue max elementthatis
the greatest and

Po=({ac Z:a>x},>) hasunique min element that is
the least (smallest)



Floor and Ceiling Basics

Fact 1
Forany xc R
| x| and [ x | exist and are unique

We define functions
Floor

Ceiling



Floor and Ceiling Basics
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Properties of | x| and [x]

1. [x]=x ifandonlyif xeZ

2. [x]=x ifandonlyif xeZ

3. x—1 < [x] < [x]<x+1 x€R

4, [ x|=—[x] x€R



Properties of | x| and [x]

5. [-x]|=—|x] xe€R

6. [x]|—|x|=[x¢Z] characteristic functionof x ¢ Z

we re- write 6. as follows

7. [x]—|x|=0 for xeZ

(x| —[x]=1for x¢Z



Properties of | x| and [x]

8. | x|=n ifandonlyif n<x<n+1 for xeR, neZ

9. |x|]=n ifandonlyif x—1<n<x for xe R, ncZ



Properties of | x| and [x]

10. [x|=n ifandonlyif n—1<x<n for xeR, ncZ

11. [x]|=n ifandonlyif x<n<x+1 for xe R, necZ

12. [x+n|=|x|+n and [x+n|=[x]|+n for xe R, necZ



Some Proofs

Proof of
12. [x+n|=|x|+n for xe R, ncZ
Directly from definition we have that
x| < x <|x]+1
Adding n to all sides we get
IX|+n < x+n < |x|+n+1
Applying
8. [x|=mifandonlyif m<x<m+1forxeR, meZ
for m=|x|+n weget | x+n|=m,ie.

[x+n]=|x]+n



Some Proofs
Observe that it is not true thatforallxe R, ne Z
[nx] = n| x|

Take n=2, x =} and we get that

if-reel -



More Properties of | x| and [x]

In all properties xc€ R, ncZ

13.

14.

15.

16.

x<n

n<x

ifandonly if |x| <n

if and only if n < [x]

ifand only if [x] <n

ifand only if n<|x]



Some Proofs

Proof of 13. x <n ifandonlyif |x|<n

Let x<n

We know that x| <x so |x|<x<n

and hence |x| <n

Let |[x] <n

By property 3. x—1 < |x| < [x]< x+1, xeR
x—1<|x], i.e x<|x|+1

But x| <n,so [x|]+1<n and

x<|[x]+1<n

Hence x < n what ends the proof



Fractional Part of x

Definition
We define:  {x} =x—|x]

{x} is called a fractional part of x
| x| is called the integer part of x
By definition
0<{x}<1
and we write
x = [x]+{x}



Fractional Part of x

Fact 2
IF x=n+0©,neZ and 0 <O <1
THEN n=|[x| and © = {x}

Proof
Let x=n+0O, ©<[0,1). We get by 12.
x| =|n+0©]=n+|©] =n and

X=n+0=|x|+0=|x]+{x}

so © ={x}



Properties

We have proved in 12.

| x+n|=[x|]+n for xe R neZ
Question: What happens when we consider

I x+y| where xc R and ye R

Is it possible (and when it is possible) that for any x,y € R

x+y]=[x]+y]



Properties

Consider

x=|x|+{x}, and y=|y|+{y}

We evaluate using 12. [x+n| = |x|+n

Ity =1+ )+ G +{yH = Dd+ )+ Hxd -+ {y)

By definition 0 < {x} <1 and 0<{y} <1 sowe have
that

0<{x}+{y}<2

Hence we have proved the following property



Properties

Fact 3
Forany x,yeR

x+yl=[x]+1yl when 0<{xj+{y}<1

and

IXx+y|=|x]+]y]+1 when 1<{x}+{y}<2



Examples

Example 1

Find [log,35]

Observe that 2% <35 <26

Taking log with respect to base 2 , we get

5<log,35<6
We use property
10. [x|=n ifandonlyif n—1<x<n

and get
[log,35] =6



Examples

Example 2

Find [log,32]

Observe that 2% <32 <2°

Taking log with respect to base 2 , we get

4 <log,32<5
We use property 10. and get

llog,32] =5



Examples

Example 3

Find |log,35|

Observe that 2% <35 <26

Taking log with respect to base 2 , we get

5<log,32 <6
We use property
8. | x|=n ifandonlyif n<x<n+1

and we get
|log,32] =5 = [log, 32]



Observation

Observe that 35 has 6 digits in its binary representation
35=(1000011), and [log,35] =6

Question

Is the number of digits in binary representation of n always
equal [log, n| ?

Answer: NO, itis nottrue
Consider 32 = (1000000)>
32 has 6 digits in its binary representation but



Small Problem

Question: Can we develop a connection (formula)
between |log,n| and number of digits (m) in the binary
representation of n (n>0)?

Answer: YES



Small Problem Solution

Let n+0, ne N be such such that it has m bits in
binary representation

Hence, by definition we have
n=am12™ '+ ... + a

and
2m—1 < pn<om

So we get solution

m—1<log,n<m ifandonlyif |log,n|=m-—1



Small Fact and Exercise

We have proved the following
Fact 4

Forany n+#0, ne N such such thatit has m bits in
binary representation we have that

|log,n| =m—1

Example
Take n=235, m=6 so |log,35]=6—-1=5
Take n=232, m=6 so weget|[log,32|=6—-1=5

Exercise Develop similar formula for [log, n]



Another Small Fact

Fact 5

Forany x e R, x > 0 the following property holds
| VIXI| = | vx]

Proof

Take L [x JJ

We proceed as follows

First we getrid of the outside | | and then of the
square root and of the inside | |



Proof

Let m= { [x JJ
By property
8. |x|=n ifandonlyif n<x<n+1
we get that
m= L LXJJ ifandonly if m< /[x| <m+1
Squaring all sides of the inequality we get

(%) m:{ LxJJ if and only if m? < x| < (m+1)2



Proof

We proved that
(*) m= L LxJJ ifand only if m? < |x| < (m+1)?
Using property
16. n<x ifandonlyif n<|x|

on the left of inequality in (x) and property

13. x<n ifandonlyif |[x|<n

on the right side of inequality in (x) we get

() m=|/[x]| itandonlyif m®<x<(m+1)



Proof
We already proved that
(%) m= L LXJJ ifand only if m? < x < (m+1)?

Now we retrace our steps backwards. First taking /x on
all sides of inequality (*x) (all components are >0), we
get

m:L qu ifand only if m< v/x <m+1
We use now the property
8. | x|=n ifandonlyif n<x<n+1
and get
m:L LXJJ if and only if | Vx| =m

and hence
| VIXI| = LX)

It ends the proof



Exercise

Write a proof of

[ VIXT] = vx]
Question

How can we GENERALIZE our just proven properties for
other functions then f(x)= /x ?

For which functions f = f(x) (class of which functions?)
the following holds

and



Generalization

Here is a proper generalization of the Fact 4
Fact 5
Let f: R — R where R"CR isthe domain of f

IF f=1{(x) is continuous, monotonically increasing on its
domain R’ , and additionally has the following property P

P if f(x)eZ then xeZ

THEN for all x € R" for which the property P holds we
have that

and



Fact 5 Proof

Proof

We want to show that under assumption that fis
continuous, monotonic, increasing on its domain R’ the

property
[F(IxT) 1= Tf(x) ]
holds for all x € R" for which the property P holds
Case 1 take x = [ x|
We get
[0 = TH[x1)]

is trivial as in this case we have that x € Z



Fact 5 Proof

Case 2 take x # [x]

By definition x < [x]| and function f is monotonically
increasing so we have

f(x) <f([x1)
By the fact that [ | is non- decreasing, i.e.
If x<y then [x]|<]y]

we get

[T < TH(1x1)]
Now we show that < is impossible
Hence we will have =



Fact 5 Proof

Assume
OO <[ A([xT) 1

Since f is continuous, then there is y , such that

and
() x<y<[x]

But f(y)=[f(x)],i.e. f(y)< Z hence by property P we
get
() yeZ

Observe that (x) and (xx) are contradictory as there is
noyeZ betweenx and [x]| and this ends the proof



Exercises

Exercise 1
Prove the first part of the Fact 5, i.e.

Exercise 2
Prove thatforany xc R, nmeZ

-

n n

and

o [ [

n n



Exercise 2 Solution

Let’s prove

n n

1 {ermJ _ {ij+mJ

Proof for [ | is carried similarly and is left as an exercise

Take a function
_X+m

f(x)= -

for nmeZ, xeR

Observe that
o X+m_x m

f(X) n n n

isaline f(x)=ax-+b and henceis continuous,
monotonically increasing




Exercise 2 Solution

We have to check now if the property P
P if f(x)eZ then xeZ

holds for it, i.e. to check if all assumptions of the Fact 5
are fulfilled

Then by the Fact 5 we will get that
LF(Lx]) | = Lf(x)]

2] |5




Exercise 2 Solution

Poof that the property P holds for

X+m
- n

f(x)

Assume f(x)e Z,i.e. thereis k € Z such that

X+m
P

k

It means that
X+ m= nk

and
X=nk—-meZ as nkmeZ



Integers in the Intervals



Intervals

Standard Notation and definition of a Closed Interval
[, Bl={xeR: a<x<PB}
Book Notation

[@..Bl={xeR: a<x<p}

We use book notation, because [P(x)|] denotes inthe
book the characteristic function of P(x)



Intervals

Closed Interval

[a, B]={x€R:

Open Interval

(a, B)={xeR:

Half Open Interval

[a, B)={xe€R:

Half Open Interval

(a, Bl={x€R:

a<x<B} =la...

oa<x<B} =(a...

a<x<p} =a...

a<x<B} =(a..

Bl

=

-B]



Integers in the Intervals

Problem

How many integers are there in the intervals?
In other words, for

A={xeZ:a<x<B}
A={xeZ:a<x<p}

A={xeZ: a<x<B}
A={xeZ:a<x<p}

We wantto find | A|



Integers in the Intervals
Solution
We bring our [], || properties 13. - 16.
13. x<n ifandonlyif |[x|<n

14. n<x ifandonlyif n<|x]
15. x<n ifandonlyif [x]<n
16. n<x ifandonlyif n<|x]|

andwe getfor v, Rand neZ

a<n<p ifandonlyif [a]<n<][B]

a<n<pB ifandonlyif |a|<n<|[B]



Integers in the Intervals

Solution
[a...) containsexactly [B] — [«] integers

(o...p] containsexactly |B] — |a| integers
[a...p] containsexactly |B| — [a]+1 integers
We must assume o # 3 to evaluate

(a...p) contains exactly [B] — |a|—1 integers

We
because (o...) =0 and can’t contain -1 integers



Integers in the Intervals

INTERVAL Number of INTEGERS RESTRICTIONS

[or...B] [BJ-Tee] +1 xa<p

[o:...B) [B1-[o] a<p

(o...B] 1B]-lo] a<p
]

(a...B) [B]-la] —1 a<pf



Casino Problem



Casino Problem

Casino Problem

There is a roulette wheel with 1,000 slots numbered
1...1,000

IF the number n that comes up on a spin is divisible by
| V/n| what we write as

| Vn| |n
THEN n is the winner
Reminder

We define divisibility | in a standard way:
k| n if and only if there exists m e Z such that n=km



Average Winnings

In the game Casino pays $5 if you are the winner; but
the loser has to pay $1

Can we expect to make money if we play this game?

Let’s compute average winnings, i.e. the amount we win
(or lose) per play

Denote
W - number of winners
L - number of losers and L =1000-W

Strong Rule: each number comes once during 1000 plays



Casino Winnings

Under the Strong Rule we win 5W and lose L dollars
and the average winnings in 1000 plays is
5W - L 5W — (1000—-W) 6W—-1000
1000 1000 1000
We have advantage if

6W > 1000

i.e. when
W > 167



Casino Winnings

Answer
IF thereis 167 or more winners and we play under the

Strong Rule: each number comes once during 1000 plays

THEN we have the advantage, otherwise Casino wins



Number of Winners

Problem
How to count the number of winners among 1 to 1000
Method
Use summation
1000

W= Y [nis a winner]
n=1



Casino Problem

Reminder of Casino Problem

There is a roulette wheel with 1,000 slots numbered
1...1,000

IF the number n that comes up on a spin is divisible by
|/nl,ie. ¥/n||n

THEN n is the winner

The summations becomes

1000 1000
W= [nis a winner]= Y [[Vn]]|n]
n=1 n=1
where we define divisibility | in a standard way
k| n ifand only if there exists m e Z such that n= km



Book Solution

Here are 7 steps of our BOOK solution
1000 1000

1 W= Z [nis awinner| = Z [LV/n]|n]

n=

2 W= Z — | ¥n)] [k|n][1<n<1000]
3 W= [ks_ (k+1)3][n:km][1§n§1000]

[kSSkm<(k+1)3} [1<k<10]
5 W=1+ [me [k2(k+k1)3)] [1<k<10]

6 W=1+ <[k2+3k+3+;1—[k21>

7+319: 179

7 W=1+ (Bk+4) =1+



Class Problem
Here are the BOOK comments
1. This derivation merits careful study

2. The only "difficult” maneuver is the decision between
lines 3 and 4 to treat N =1000 as a special case

3. Theinequality k* <n< (k+1)° does not combine
easily with 1 <n <1000 when k=10



Book Solution Comments
Class Problem

Write down explanation of each step with detailed
justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

1000

W=y [|¥n] |n]=172
n=1

This problem can also appear on your tests



QUESTIONS about Book Solution

Here are questions to answer about the steps in the
BOOK solution

1 W=yx19%nisawinner] =y [| V/n] | n]
Q1 Explainwhy [nisawinner]=[|V/n]|n]
2 W=y, [k=|¥n][Kin[ <n<1000]

Q2 Explain why and how we have changed a sum 0%
intoasum Y., and

1000 Q011 /n) | n| =Xkn[k=|¥n]][kIn][1 < n<1000]



QUESTIONS about Book Solution
3 W=Yinm [k3 <n< (k+1)3} [n= km][1 < n < 1000]
Q3 Explain why

[k = LYn]] Kn] = [K® < n < (k+1)°| [n = k]
Explain why and how we have changed sum ), , intoa
sum Yk nm



QUESTIONS about Book Solution

4 W=1 +Z[k35km<(k+1)3} [1< k< 10]
k,m

Q4 There are three sub- questions; the last one is one of
the book questions

1. Explain why

[k3 <n< (k+1)3} [n=km][1 < n < 1000] =

[k3 < km < (k+1)3} [1<k<10]

2. Explain why and how we have changed sum Y, ,
into

asum Zk,m

3. Explain HOW and why we have got 1+ ) ,



QUESTIONS about Book Solution

5 W-=1 +k72m{me [k?..mk”sﬂn <k <10]

Q5 Explain transition
[k3 < km < (k+1)3} = [me [kZW)}



QUESTIONS about Book Solution

1
_ 2 i
6 W_1+1<kz <[k +3k+3+ ] [k})
<k<10

Q6 Explain (prove) why
Y [me [kZWH [1<k<10]=

k,m

1
K2+ 3k+3+—1—[k?
1<k2<10(( FOk+34 1] w)

Observe that [m € {kz e @)} is a characteristic
function and ([k?+3k+3+4]—[k?]) is aninteger



QUESTIONS about Book Solution

7+31

7T W1+ Y (Bk+4)=1+—

1<k<10

9=172

Q7 Explain (prove) why
([k2+3k+3+ 4] —[k?]) = (3k +4)

Before we giving answers to Q1 - Q7 we need to review
some of the SUMS material



