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CHAPTER 3
INTEGER FUNCTIONS

PART1: Floors and Ceilings

PART 2: Floors and Ceilings Applications



PART 2
Floors and Ceilings Applications



Casino Problem

Reminder of Casino Problem
There is a roulette wheel with 1,000 slots numbered
1 . . . 1,000
IF the number n that comes up on a spin is divisible by
b 3√nc, i.e. 3√nc | n
THEN n is the winner
The summations becomes

W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
where we define divisibility | in a standard way
k | n if and only if there exists m ∈ Z such that n = km



Book Solution

Here are 7 steps of our BOOK solution

1 W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
2 W = ∑

k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]

3 W = ∑
k ,n,m

[
k3 ≤ n < (k +1)3

]
[n = km] [1≤ n ≤ 1000]

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k +1)3

]
[1≤ k < 10]

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k +1)3

k

)]
[1≤ k < 10]

6 W = 1 + ∑
1≤k<10

(
dk2 +3k +3+

1
k
e−dk2e

)
7 W = 1 + ∑

1≤k<10
(3k +4) = 1+

7+31
2

9 = 172



Class Problem

Here are the BOOK comments

1. This derivation merits careful study

2. The only ”difficult” maneuver is the decision between
lines 3 and 4 to treat n =1000 as a special case

3. The inequality k3 ≤ n < (k +1)3 does not combine
easily with 1≤ n ≤ 1000 when k=10



Book Solution Comments

Class Problem

Write down explanation of each step with detailed
justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

W =
1000

∑
n=1

[
⌊ 3√n

⌋
| n] = 172

This problem can also appear on your tests



QUESTIONS about Book Solution

Here are questions to answer about the steps in the
BOOK solution

1 W = ∑
1000
n=1 [n is a winner ] = ∑

1000
n=1

[
b 3√nc | n

]
Q1 Explain why [n is a winner ] =

[
b 3√nc | n

]
2 W = ∑k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]

Q2 Explain why and how we have changed a sum ∑
1000
n=1

into a sum ∑k ,n and

∑
1000
n=1

[
b 3√nc | n

]
= ∑k ,n

[
k = b 3√nc

]
[k |n] [1≤ n ≤ 1000]



QUESTIONS about Book Solution

3 W = ∑k ,n,m

[
k3 ≤ n < (k +1)3

]
[n = km] [1≤ n ≤ 1000]

Q3 Explain why

[
k = b 3√nc

]
[k |n] =

[
k3 ≤ n < (k +1)3

]
[n = km]

Explain why and how we have changed sum ∑k ,n into a
sum ∑k ,n,m



QUESTIONS about Book Solution

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k +1)3

]
[1≤ k < 10]

Q4 There are three sub- questions; the last one is one of
the book questions
1. Explain why[
k3 ≤ n < (k +1)3

]
[n = km] [1≤ n ≤ 1000] =[

k3 ≤ km < (k +1)3
]
[1≤ k < 10]

2. Explain why and how we have changed sum ∑k ,n,m
into
a sum ∑k ,m

3. Explain HOW and why we have got 1+ ∑k ,m



QUESTIONS about Book Solution

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k +1)3

k

)]
[1≤ k < 10]

Q5 Explain transition[
k3 ≤ km < (k +1)3

]
=
[
m ∈

[
k2 . . . (k+1)3

k

)]



QUESTIONS about Book Solution

6 W = 1 + ∑
1≤k<10

(
dk2 +3k +3+

1
k
e−dk2e

)
Q6 Explain (prove) why

∑
k ,m

[
m ∈

[
k2 . . .

(k +1)3

k

)]
[1≤ k < 10] =

∑
1≤k<10

(
dk2 +3k +3+

1
k
e−dk2e

)
Observe that

[
m ∈

[
k2 . . . (k+1)3

k

)]
is a characteristic

function and
(
dk2 +3k +3+ 1

k e−dk
2e
)

is an integer



QUESTIONS about Book Solution

7 W = 1 + ∑
1≤k<10

(3k +4) = 1+
7+31

2
9 = 172

Q7 Explain (prove) why

(
dk2 +3k +3+ 1

k e−dk
2e
)
= (3k +4)

Before we giving answers to Q1 - Q7 we need to review
some of the SUMS material



SUMS - a Short Review



Definition 1

Definition 1

∑
P(k)

ak = ∑
k∈K

ak = ∑
k
[P(k)] ak = ∑

k
[k ∈ K ] ak

where K = {k ∈ N : P(k) } and K is FINITE

and [P(k)] is a characteristic function of P(k)

[P(k)] =

{
1 P(k) true

0 P(k) false



Property 1

Let’s take a particular case when the sequence ak = 1 for
all k ∈ N
Directly from the Definition 1 we get the following
Property 1

∑
k
[P(k)] = ∑

k∈K
1 = | K |

where | K | denotes the number of elements of the set K
We re-write is also as

∑
k
[P(k)] = ∑

P(k)
1 =| P(k) |



Definition 2

Definition 2
In a case of multiple sums (here a double sum) we define

∑
k∈K ,m∈M

ak ,m = ∑
P(k),Q(m)

ak ,m = ∑
Q(m)

∑
P(k)

ak ,m = ∑
P(k)

∑
Q(m)

ak ,m

and
∑

P(k),Q(m)

ak ,m = ∑
k ,m

ak ,m[P(k)][Q(m)]

where
K = {k ∈ N : P(k) } and M = {m ∈ N : Q(m) }
Triple and many-multiple sums definitions are similar



Property 2

Let’s take a particular case when the sequence
ak ,m = 1 for all k ,m ∈ N
Directly from the Definition 2 and Property 1 we get the
following
Property 2

∑
k ,m

[P(m)] [Q(k)] = ∑
Q(k)

∑
P(m)

1 = ∑
Q(k)
| P(m) |

where we denote for short

| P(m) | = | {m ∈ N : P(m) } |



Characteristic Functions

We have proved the following properties of characteristic
functions
F1 For any predicates P(k), Q(k)

[P(k)∩Q(k)] = [P(k)][Q(k)]

F2 For any predicates P(k), Q(k)

[P(k)∪Q(k)] = [P(k)] + [Q(k)] − [P(k)∩Q(k)]



Property 3

From Property 1 and F2 we get directly the following
Property 3

∑
k
[P(k)∪Q(k)] = ∑

k
[P(k)] + ∑

k
[Q(k)] −∑

k
[P(k)∩Q(k)]

where
k ∈ K and K = K1×K2 · · ·×Ki for 1≤ i ≤ n
Observe that the above formula represents single ( i =1)
or multiple (i > 1) sums
It is a particular case of the Combined Domains Property
(next slide) - just a reminder!



Combined Domains Property

Here is the Combined Domains Property
Property 4

∑
Q(k)∪R(k)

ak = ∑
Q(k)

ak + ∑
R(k)

ak − ∑
Q(k)∩R(k)

ak

where, as before,
k ∈ K and K = K1×K2 · · ·×Ki for 1≤ i ≤ n
and the above formula represents single ( i =1) and
multiple (i > 1) sums



Book Solution Step 1

Here are the answers to the questions about the steps in
the BOOK solution

1 W =
1000

∑
n=1

[n is a winner ] =
1000

∑
n=1

[
b 3√nc | n

]
Answer 1
Definition of the winner in the Casino Problem



Book Solution Step 2

2 W = ∑
k ,n

[k = b 3√nc] [k |n] [1≤ n ≤ 1000]

Answer 2 Take P(n) ≡ b 3√nc | n
We transform P(n) introducing a new variable k

P(n)≡ b 3√nc | n ≡ (k = b 3√nc) ∩ (k | n)

We use it to transform the one variable sum to a two
variable sum as follows

1000

∑
n=1

[
b 3√nc | n

]
= ∑

k ,n
[(k = b 3√nc) ∩ (k | n)] [1≤ n ≤ 1000]

Hence we get



Book Solution Step 2

We use the property F1 of Characteristic Functions

[P(k)∩Q(k)] = [P(k)][Q(k)]

and we get 2.

1000

∑
n=1

[
b 3√nc | n

]
= ∑

k ,n
[(k = b 3√nc)] [(k | n)] [1≤ n ≤ 1000]



Book Solution Step 2

We use the definition of divisibility to further transform
P(n,k)≡ (k = b 3√nc) ∩ (k | n) and and introduce
another variable m

P(n,k)≡ (b 3√nc) ∩ (k | n) ≡ (k = b 3√nc)∩ (n = km)

We use it and the property F1 of Characteristic Functions
to transform the two variable sum 2 to a three variable
sum

∑
k ,n

[k = b 3√nc] [k | n] [1≤ n ≤ 1000] =

= ∑
k ,n,m

[k = b 3√nc] [n = km] [1≤ n ≤ 1000]



Book Solution Step 3

3 W = ∑
k ,n,m

[
k3 ≤ n < (k +1)3

]
[n = km] [1≤ n ≤ 1000]

Answer 3
We have already transformed 2 to a three variable sum
∑

k ,n,m
[k = b 3√nc] [n = km] [1≤ n ≤ 1000]

Now we use the property 8.
b x c= n if and only if n ≤ x < n+1 to k = b 3√nc and
we get

b 3√nc= k if and only if k ≤ 3√n < k +1

and also

k ≤ 3√n < k +1 if and only if k3 ≤ n < (k +1)3



Book Solution Step 3

We replace k = b 3√nc by k3 ≤ n < (k +1)3 in already
transformed 2

∑
k ,n,m

[k = b 3√nc] [n = km] [1≤ n ≤ 1000]

and obtain

∑
k ,n,m

[k3 ≤ n < (k +1)3] [n = km] [1≤ n ≤ 1000]

and so we proved 3



Book Solution Step 4

4 W = 1 + ∑
k ,m

[
k3 ≤ km < (k +1)3

]
[1≤ k < 10]

Answer 4
We have proved that

W = ∑
k ,n,m

[k3 ≤ n < (k +1)3] [n = km] [1≤ n ≤ 1000]

We want now to transform limits of the sum to contain only
k, m, i.e. we want to eliminate n



Book Solution Step 4

Let’s analyze the sum predicate

P ≡ (k3 ≤ n < (k +1)3)∩ (n = km)∩ (1≤ n ≤ 1000)

Observe that when (k +1)3 = 1000, k +1 = 10,k = 9
and 1≤ k < 10
We almost eliminated n - we miss n = 1000
It means we get

P ≡ ((k3 ≤ n < (k +1)3)∩ (n = km)∩ (1≤ k < 10) )∪ (n = 1000)

and hence

[k3 ≤ n < (k +1)3] [n = km] [1≤ n ≤ 1000]

= [((k3 ≤ km < (k +1)3)∩ (1≤ k < 10) )∪ (km = 1000)]



Book Solution Step 4

So now we get

W = ∑
k ,m

[((k3≤ km< (k+1)3)∩(1≤ k <10) )∪(km=1000)]

We use now the Property 3

∑
k ,m

[P ∪Q] = ∑
k ,m

[P] + ∑
k ,m

[Q] − ∑
k ,m

[P ∩Q]

for P ≡ ((k3 ≤ km < (k +1)3)∩ (1≤ k < 10) ) and
Q ≡ (km = 1000)



Book Solution Step 4

Denote P ≡ ((k3 ≤ km < (k +1)3)∩ (1≤ k < 10) ) and
Q ≡ (km = 1000)
We get

W = ∑
k ,m

[P] + ∑
k ,m

[km = 1000] − ∑
k ,m

[P ∩Q]

where

∑
k ,m

[P] = ∑
k ,m

[(k3 ≤ km < (k +1)3)] [1≤ k < 10]

The Property 1 says

∑
k
[P(k)] = ∑

P(k)
1 =| P(k) |

so we get that

∑
k ,m

[km = 1000] =| {n : n= km=1000} |=| {n : n=1000} |=1



Book Solution Step 4

We proved that

W = 1+ ∑
k ,m

[P] + − ∑
k ,m

[P ∩Q]

Now we have to evaluate P ∩Q

P ∩Q≡ ((k3≤ km < (k +1)3)∩(1≤ k < 10) )∩(km = 1000)

P ∩Q ≡ (k3 ≤ 1000 < (k +1)3)∩ (1≤ k ≤ 9 )

CONTRADICTION : 93 ≤ 1000 < 103

This means that ∑
k ,m

[P ∩Q] = 0 and

W = 1+ ∑
k ,m

[k3 ≤ km < (k +1)3] [1≤ k < 10]

what ends the proof of 4



Book Solution Step 5

Consider the Step 5

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k +1)3

k

)]
[1≤ k < 10]

Answer 5
Missing steps are as follows
First let’s look again at the Step 4

W = 1+ ∑
k ,m

[k3 ≤ km < (k +1)3] [1≤ k < 10]

Dividing all sides of the inequality k3 ≤ km < (k +1)3 by
k ≥ 1 we get

k3 ≤ km < (k +1)3 iff k2 ≤m <
(k +1)3

k
and by the definition of the interval

k2 ≤m <
(k +1)3

k
iff m ∈ [k2 . . .

(k +1)3

k
)



Book Solution Step 5

We have proved that

k3 ≤ km < (k +1)3 iff m ∈
[
k2 . . .

(k +1)3

k

)
and hence proved the transformation of the Step 4 into
the Step 5 i.e. we proved

5 W = 1 + ∑
k ,m

[
m ∈

[
k2 . . .

(k +1)3

k

)]
[1≤ k < 10]



Book Solution Step 6

Consider now

6 W = 1 + ∑
1≤k<10

(
dk2 +3k +3+

1
k
e−dk2e

)
Let’s now write all steps of transformation of the Step 5
into the Step 6
Observe that the transformation consists of proving that

∑
k ,m

[m ∈ [k2 . . .
(k +1)3

k
) ] [1≤ k < 10] =

∑
1≤k<10

(dk2 +3k +3+
1
k
e−dk2e)



Book Solution Step 6

Consider the sum

∑
k ,m

[m ∈ [k2 . . .
(k +1)3

k
)] [1≤ k < 10]

We apply the Property 2

∑
k ,m

[P(m)][Q(k)] = ∑
Q(k)

∑
P(m)

1 = ∑
Q(k)
| P(m) |

to it for Q(k)≡ 1≤ k < 10 and

P(m)≡ m ∈ [k2 . . . (k+1)3

k )



Book Solution Step 6

Observe that | P(m) | = number of integers in the interval
[k2 . . . (k+1)3

k ) and so by the the fact that interval [α . . .β )
has dβe−dαe elements we get

| P(m) |=
⌈
(k +1)3

k

⌉
−
⌈
k2
⌉
=

⌈
k2 +3k +3+

1
k

⌉
−
⌈
k2
⌉

and the sum

∑
Q(k)
| P(m) | = ∑

1≤k<10
(

⌈
k2 +3k +3+

1
k

⌉
−
⌈
k2
⌉
)

This ends the transformation of Step 5 into Step 6 - and
hence the proof of correctness (other then the fact it is
printed in the BOOK!) of the Step 6



Book Solution Step 7

This is Step 7

7 W = 1 + ∑
1≤k<10

(3k +4) = 1+
7+31

2
9 = 172

Pretty obvious step but still need to pay attention to a small
detail!
We need to bring back property

12. bx +nc= bxc+n and dx +ne= dxe+n

to evaluate, as k ≥ 1⌈
k2 +3k +3+

1
k

⌉
−
⌈
k2
⌉
= k2+3k +3+

⌈
1
k

⌉
−k2 = 3k +4



Casino Problem Revisisted

Observe that the Casino Problem is just a dressed - up
version of the following mathematical question :
Question

How many integers n, where 1≤ n ≤ 1000, satisfy the
property b 3√nc|n ?

Genaralized Question
How many integers n, where 1≤ n ≤ k , satisfy the
property b 3√nc|n ? for k any natural number and
k ≥ 1000
Homework Problem: write a detailed solution to the
Genaralized Question



Spectrum Partitions



Spectrum

Definition
For any α ∈ R we define a SPECTRUM of α as

Spec(α) = {bαc,b2αc,b3αc · · ·}

Remark
For some α ∈ R, the spectrum Spec(α) is a multiset i.e,
it can contain repeating elements.
Examples
Let’s look at some examples, to see how it works.



Spectrum Examples

Example 1 α = 1
2

bαc= 0, b2αc= 1, b3αc= b3
2
c= 1, b4αc= b4

2
c= 2, · · ·

Spec(α) = Spec(
1
2
) = {0,1,1,2,2,3,3,4,4,5, · · ·}

Observe that Spec(1
2) is a multi set



Spectrum Examples

Example 2 α =
√

2

bαc= b
√

2c= 1, b2αc= b2
√

2c= b2.8c= 2

b3αc= b3
√

2c= b4.2c= 4, b4αc= b5.6c= 5 · · ·

Spec(
√

2) = {b
√

2c,b2
√

2c, b3
√

2c, . . .}

Spec(
√

2) = {1,2,4,5,7,8,9,11,12,14,15,16, · · ·}

Spec(2+
√

2) = {b2+
√

2c,b2(2+
√

2)c, b3(2+
√

2)c, . . .}

Spec(2+
√

2) = {b2+
√

2c,b4+2
√

2c, b6+3
√

2c, . . .}

Spec(2+
√

2) == {3,6,10,13,17,20, · · ·}



Spectrum Observations

Observations
1. Spec(

√
2) and Spec(2+

√
2) are non-empty sets,

not multisets
2. Spec(

√
2) and Spec(2+

√
2) don’t seem to share

any elements with each other
3. The set union of Spec(

√
2) and Spec(2+

√
2) seem

to contain all of the natural numbers n ≥ 1

This is interesting: if these properties are proved to be
true then we can say that
Spec(

√
2) and Spec(2+

√
2) form a partition of the

natural numbers n ≥ 1



Spectrum Partition Theorem

More formally, for Spec(
√

2) and Spec(2+
√

2) to be a
partition of the natural numbers greater equal 1, i.e. to
be a partition of the set N−{0} the following conditions
must hold
Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2+

√
2) , ∅

2. Spec(
√

2)∩Spec(2+
√

2) = ∅
3. Spec(

√
2)∪Spec(2+

√
2) = N−{0}

The proof is not straight forward.
We first discuss a proof included in the Book and discuss
its relationship to the Infinite Spectra
Finally we provide a correct proof



Finite Partition Theorem

First, we define certain finite subsets An, Bn of
Spec(

√
2) and Spec(2+

√
2), respectively

Definition

An = {m ∈ Spec(
√

2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) m ≤ n}

Remember
An and Bn are subsets of {1,2, . . .n} for n ∈ N−{0}



Finite Partition Theorem

Given sets
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}
Finite Spectrum Partition Theorem

1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}



Examples

We defined
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}
Example n = 8
We evaluate A8 = {1,2,4,5,7,8}, B8 = {3,6}
Observe that properties of the partition of the set
{m ∈ Z+−{0} : m ≤ 8} hold
1. A8 , ∅ and B8 , ∅
2. A8∩B8 = ∅
3. A8∪B8 = {1, · · · ,8}= {m ∈ N−{0} : m ≤ 8}
Observe that |A8|+ |B8|= 8
This property is an example of the general property
proved in the book



Examples

We defined
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}
Example n = 15
We evaluate
A15 = {1,2,4,5,7,8,9,11,12,14,15}, B15 = {3,6,10,13}
Again, that properties of the partition of the set
{m ∈ N−{0} : m ≤ 15} hold
1. A15 , ∅ and B15 , ∅
2. A15∩B15 = ∅
3. A15∪B15 = {1, · · · ,15}= {m ∈ N−{0} : m ≤ 15}
Observe that |A15|+ |B15|= 15
This property is again an example of the general property
proved in the book



Finite Fact

Given sets
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) m ≤ n}
Finite Fact
For all n ∈ N−{0}

|An|+ |Bn|= n

The book proves only this, and says that this is the
Spectrum Partition Theorem for infinite Spectrum sets
Spec(

√
2), Spec(2+

√
2)

Not so obvious!



Counting Elements

Before trying to prove the Finite Fact we first look for a
closed formula to count the number of elements in
subsets of a finite size of any spectrum
Given a spectrum Spec(α)

Denote by N(α,n) the number of elements in the
Spec(α) that are ≤ n, i.e.

N(α,n) = | {m ∈ Spec(α) : m ≤ n} |



Counting Elements

We recall definition

Spec(α) = {bαc,b2αc,b3αc, · · ·}

We get immediately

m ∈ Spec(α) iff m = bkαc for α ∈ R, k ∈ N−{0}

We re-write definition
N(α,n) = | {m ∈ Spec(α) : m ≤ n} | as

N(α,n) =| {m : m = bkαc∩m ≤ n ∩k > 0} |

Hence

N(α,n) =| {bkαc : bkαc ≤ n ∩ k > 0} | n,k ∈ N−{0}



Counting Elements

We have

N(α,n) =| {bkαc : bkαc ≤ n ∩ k > 0} | for n,k ∈ N−{0}

Denote P(k)≡ bkαc ≤ n and Q(k)≡ k > 0
We have that

N(α,n) =| P(k)∩Q(k) |

Recall re-write Property 1 as two properties in a way we
are going to use them

P1 | R(k) |= ∑
k
[R(k)]

P2 ∑
k
[R(k)] = ∑

R(k)
1 =| R(k) |



Counting Elements

We use property P1 to N(α,n) =| P(k)∩Q(k) | for
R(k)≡ P(k)∩Q(k) and we get

N(α,n) =| P(k)∩Q(k) |= ∑
k
[P(k)∩Q(k)]

Now we evaluate N(α,n) as follows

N(α,n) = ∑
k
[P(k)][Q(k)] = ∑

Q(k)
[P(k)] = ∑

k>0
[bkαc ≤ n]

We use now two known properties

m ≤ n iff m < n+1 and bxc< n iff x < n

to transform bkαc ≤ n



Counting Elements

We have by the listed above properties

bkαc ≤ n iff bkαc< n+1 iff kα < n+1 iff k <
n+1

α

This justifies the following steps of computation

N(α,n)= ∑
k>0

[bkαc≤ n] = ∑
k>0

[bkαc< n+1] = ∑
k>0

[k <
n+1

α
]

and we get

N(α,n) = ∑
k>0

[
k <

n+1
α

]



Counting Elements

We re-write the last sum using definition and property P2

N(α,n) = ∑
k>0

[
k <

n+1
α

]
= ∑

k

[
k <

n+1
α

]
[k > 0]

= ∑
k

[
0 < k <

n+1
α

]
= ∑

0<k< n+1
α

1

Using property P2 again we get

N(α,n) =| 0 < k <
n+1

α
|



General Formula

Reminder | 0 < k < n+1
α
| = number of integers in the

interval (0 . . . n+1
α

) and so by the the fact that interval
(α . . .β ) has dβe−dαe−1 elements we evaluate

N(α,n) =| 0 < k <
n+1

α
|=
⌈

n+1
α

⌉
−0−1 =

⌈
n+1

α

⌉
−1

We have proved the following
General Formula
For any α ∈ R and a spectrum Spec(α) the number
N(α,n) of elements in the Spec(α) that are ≤ n is given
by the formula

N(α,n) =
⌈

n+1
α

⌉
−1



Finite Fact Proof

Finite Fact

|An|+ |Bn|= n for any n ∈ N−{0}

where
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}
Proof
Observe that we defined N(α,n) as
N(α,n) = | {m ∈ Spec(α) : m ≤ n} |
and so we have that

|An|= N(
√

2,n) and |Bn|= N(2+
√

2, n)

We hence have to prove that

N(
√

2, n)+N(2+
√

2, n) = n



Finite Fact Proof

We use the General Formula N(α,n) =
⌈n+1

α

⌉
−1 for

α1 =
√

2 and α2 = 2+
√

2 and evaluate by using
property dxe−1 = bxc for x < Z

N(α1,n)+N(α2,n)) =
⌈

n+1√
2

⌉
−1+

⌈
n+1

2+
√

2

⌉
−1

=

⌊
n+1√

2

⌋
+

⌊
n+1

2+
√

2

⌋
Now we use property bxc= x−{x}, where {x} is a
fractional part of x and get

N(α1,n)+N(α2,n))=
n+1√

2
−
{

n+1√
2

}
+

n+1
2+
√

2
−
{

n+1
2+
√

2

}



Finite Fact Proof

We continue evaluation using identity 1√
2
+ 1

2+
√

2
= 1

N(α1,n)+N(α2,n))=
n+1√

2
+

n+1
2+
√

2
−
{

n+1√
2

}
−
{

n+1
2+
√

2

}

= (n+1)
(

1√
2
+

1
2+
√

2

)
−
({

n+1√
2

}
+

{
n+1

2+
√

2

})

= (n+1)−
({

n+1√
2

}
+

{
n+1

2+
√

2

})

Observe that if we show that
{

n+1√
2

}
+
{

n+1
2+
√

2

}
= 1

then we have succeeded to prove the Finite Fact



Finite Fact Proof

We have proved as a part of our computations that

n+1√
2

+
n+1

2+
√

2
= n+1

and now we can use it to prove{
n+1√

2

}
+

{
n+1

2+
√

2

}
= 1

We prove more general Special Property and get our
property as a particular case



Special Property Proof

Special Property
For any x1,x2 < Z

If x1 +x2 = n+1 then {x1}+{x2}= 1

Proof
Let x1 = bx1c+{x1} and x2 = bx2c+{x2}
Assume that

x1 +x2 = bx1c+{x1}+ bx2c+{x2}= n+1

Since x1,x2 < Z we get that {x1} , 0, {x2} , 0 and so

0 < {x1}< 1 and 0 < {x2}< 1

Adding the above inequalities we get

0 < {x1}+{x2}< 2



Special Property Proof

Observe that bx1c+ bx2c= m ∈ Z
Denote {x1}+{x2}= θ

We assumed

n+1 = bx1c+{x1}+ bx2c+{x2}

so we have

n+1 = m+θ for 0 < θ < 2 and m ∈ Z

Hence it must be that θ ∈ Z
But 0 < θ < 2 and it is possible only when θ = 1, i.e.
{x1}+{x2}= 1
This ends the proof



Finite Fact

Put x1 =
n+1√

2
, x2 =

n+1
2+
√

2

By Special Property we have that{
n+1√

2

}
+

{
n+1

2+
√

2

}
= 1

It ends the proof of our
Finite Fact

|An|+ |Bn|= n for any n ∈ N−{0}

where
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}



Book Statement

The Book proves the Finite Fact and states on page 78
” A PARTITION IT IS”
The meaning of this is that the Finite Fact implies
obviously without any additional proof the following
Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2+

√
2) , ∅

2. Spec(
√

2)∩Spec(2+
√

2) = ∅
3. Spec(

√
2)∪Spec(2+

√
2) = N−{0}

We are going to show now that it is not so obvious even in
the case of Finite Spectrum Partition
The infinite case will be discussed after
Let’s analyze what we have!



Finite Spectrum Partition

Given sets
An = {m ∈ Spec(

√
2) : m ≤ n}

Bn = {m ∈ Spec(2+
√

2) : m ≤ n}

Finite Spectrum Partition Theorem - to be proved
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}

Finite Fact - just proved

|An|+ |Bn|= n for any n ∈ N−{0}

Question Is it possible to prove Finite Spectrum
Partition Theorem from the Finite Fact?



Finite Partition

Definition Finite Partition
Let X be a non-empty, finite set; i.e X , ∅ and |X |= n
for some n ∈ N−{0}
We say that sets A,B ⊆ X such that A , B form a finite
partition of the set X when the following conditions are
satisfied
1. A , ∅ and B , ∅
2. A∩B = ∅
3. A∪B = X
Sets Finite Fact |A|+ |B|= |X |
When |X |= n we write it as |A|+ |B|= n

Let’s now examine the relationship between the Finite
Partition and Sets Finite Fact



Finite Partition and Sets Finite Fact

We show now that the Finite Partition implies the Sets
Finite Fact, i.e. we prove the following
Fact P1
If sets A, B form a finite partition of the finite set X ,
then |A|+ |B|= |X |
Proof
Assume that A, B form a finite partition then by condition
1. and 3. A∪B = X , A , ∅ and B , ∅
So |A∪B|= |X | and |X | ≥ 1
The sets A, B are finite, hence

|A∪B|= |A|+ |B|− |A∩B|

but by 2. A∩B = ∅ and so |A∩B|= 0 and
|A∪B|= |A|+ |B| and as |A∪B|= |X | we have that

|A|+ |B|= |X |



Counter-Examples

We show now that the Sets Finite Fact does not always
imply the Finite Partition, i.e. we give the following
following counter-examples covering all cases
Counter-Example 1
Take the sets X = {1,2,3,4}, A = {2}, B = {1, 2, 3}
We have that

|A|+ |B|= 1+3 = 4 = |X | and A∩B = {2} , ∅

and condition 2. of Finite Partition does not hold



Counter-Examples

Counter-Example 2
We also have for the same sets
X = {1,2,3,4}, A = {2}, B = {1, 2, 3} that the condition
3. of Finite Partition does not hold as

|A|+ |B|= 4 = |X | and A∪B = {1,2,3} , X

Counter-Example 3 Take the sets
X = {1}, A = {1}, B = ∅, or B = {1}, A = ∅
We have that

|A|+ |B|= 1 = |X | and A = ∅ or B = ∅

and condition 1. of Finite Partition does not hold



Useful Facts

We are going to prove two useful facts that relate to our
Question Is it possible to prove Finite Spectrum
Partition Theorem from the Sets Finite Fact?
Fact P2
If |A|+ |B|= |X | and A , ∅, B , ∅ and A∩B = ∅
then the sets A,B form a finite partition of X
Proof
We prove the condition 3. by contradiction
Let |A|+ |B|= |X | and A∪B , X , i.e. |A∪B| , |X |
We evaluate
|A∪B|= |X |= |A|+ |B|− |A∩B|= |A|+ |B| and get a
contradiction

|A∪B|= |X | and |A∪B| , |X |



Useful Facts

Fact P3
If |A|+ |B|= |X | and A , ∅, B , ∅ and A∪B = X
then the sets A,B form a finite partition of the set X
Proof
We prove the condition 2.
Let |A|+ |B|= |X | and A∪B = X , i.e. |A∪B|= |X |
We evaluate

|A∪B|= |X |= |A|+ |B|− |A∩B|= |A|+ |B|

and

|A|+ |B|− |A∩B|= |A|+ |B| iff A∩B = ∅

This proves that the condition 2. holds



Back to Finite Spectrum Partition Theorem

Facts P2, and P3 say:
if the sets A,B are non-empty, disjoint, or A∪B = X then
Finite Fact implies Finite Partition
Take now

X = {1,2 . . .n}, A = An, B = Bn

The Finite Partition becomes
Finite Spectrum Partition Theorem
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}



Question and Answers

The Sets Finite Fact becomes
Finite Fact |An|+ |Bn|= n, for n ∈ N−{0}

We are now ready to answer our
Question Does the Sets Finite Fact implies as the
Book states, the Finite Spectrum Partition Theorem?

Answer YES, but only under conditions specified in the
Facts P2, and P3



Question and Answers

Observe that An , ∅ and Bn , ∅
Hence, by the Fact P2 we have to prove that

An∩Bn = ∅

in order to have that the Finite Spectrum Partition
Theorem holds
or by the Fact P2 we have to prove that

An∪Bn = {1,2, . . .n}

We now choose to to use Fact P2 and to prove that
An∩Bn = ∅



Spectrum Fact

Reminder

An ⊆ Spec(
√

2) and Bn ⊆ Spec(2+
√

2)

We hence prove now a more general fact (always do it
when you can!)
Spectrum Fact

Spec(
√

2)∩Spec(2+
√

2) = ∅

We recall definition

Spec(α) = {bαc,b2αc,b3αc, · · ·}

We get immediately

m ∈ Spec(α) iff m = bkαc



Spectrum Fact Proof

Proof
We prove this fact by contradiction
Assume that Spec(

√
2)∩Spec(2+

√
2) , ∅

By definition it means that there is n ∈ N−{0} such that

n ∈ Spec(
√

2) and n ∈ Spec(2+
√

2)

i.e. there are k1,k2 ∈ N−{0} such that

n = bk1
√

2c and n = bk2(2+
√

2)c

We use now property

8. b x c= n if and only if n ≤ x < n+1 for x ∈R, n ∈ Z



Spectrum Fact Proof

By 8. convert these two equalities to two inequalities

n ≤ k1
√

2 < n+1 (1)
n ≤ k2(2+

√
2) < n+1 (2)

Now we can drop the equality condition in the inequalities
(1) and (2) because n ∈N−{0}, but k1

√
2 and k2(2+

√
2)

are two irrational numbers
Thus we get

n < k1
√

2 < n+1 (3)
n < k2(2+

√
2) < n+1 (4)



Spectrum Fact Proof

We divide (3) by
√

2 and (4) by k2(2+
√

2)

n√
2
< k1 <

n+1√
2

(5)

n
2+
√

2
< k2 <

n+1
2+
√

2
(6)

Now we add (5) and (6) together, to get:

n√
2
+

n
2+
√

2
< k1 +k2 <

n+1√
2

+
n+1

2+
√

2

Grouping for n and n+1

n(
1√
2
+

1
2+
√

2
)< k1 +k2 < (n+1)(

1√
2
+

1
2+
√

2
)



Spectrum Fact Proof

The two factors for n and n+1 are equal
Let’s evaluate them

1√
2
+

1
2+
√

2
=

2+2
√

2√
2(2+

√
2)

=
2+2

√
2

2
√

2+
√

2
√

2
=

2+2
√

2
2
√

2+2
=1

This simplifies our inequality to

n < k1 +k2 < n+1

But this is a contradiction:
n and n+1 are two consecutive integers, so no other
integer k1 +k2 can belong to the interval



Finite Spectrum Partition Theorem

We get as a collolary that An∩Bn = ∅
We have hence by Fact P2 finally proved the
Finite Spectrum Partition Theorem
1. An , ∅ and Bn , ∅
2. An∩Bn = ∅
3. An∪Bn = {1,2, . . .n}
It was a LONG WAY! but we are not finished yet!
All we got is the Finite Spectrum Partition Theorem not the
”full” Spectrum Partition Theorem



Spectrum Partition Theorem Proof

Spectrum Partition Theorem
1. Spec(

√
2) , ∅ and Spec(2+

√
2) , ∅

2. Spec(
√

2)∩Spec(2+
√

2) = ∅
3. Spec(

√
2)∪Spec(2+

√
2) = N−{0}

Proof
1. holds by definition of the spectrum, as always
bαc ∈ Spec(α)bαc
2. holds by just proved Spectrum Fact
3. - the proof follows
Observe that

S Spec(
√

2) =
⋃

n≥1

An and Spec(2+
√

2) =
⋃

n≥1

Bn



Spectrum Partition Theorem Proof

From the Finite Spectrum Partition Theorem we have that
for all n ∈ N−{0}

An∪Bn = {1,2, . . .n}

Hence by ⋃
n≥1

(An∪Bn) =
⋃

n≥1

{1,2, . . .n}= N−{0}

But by above the general sums distributivity law we get the
following ⋃

n≥1

(An∪Bn) =
⋃

n≥1

An∪
⋃

n≥1

Bn = N−{0}



Spectrum Partition Theorem Proof

But by definition S

S Spec(
√

2) =
⋃

n≥1

An and Spec(2+
√

2) =
⋃

n≥1

Bn

we get

Spec(
√

2)∪Spec(2+
√

2) = N−{0}

THIS ENDS THE PFOOF!!



General Spectrum Partition Theorem

We are going now to give a proof of our Spectrum Partition
Theorem that is independent of the BOOK

It is simple and elegant and . . . does not use the SUMS!

Do do so, we GENERALIZE the problem a bit, prove the
generalization and get our Theorem as a particular case
Here it is!



Generalization

General Spectrum Partition Theorem
Let α > 0, β > 0, α, β ∈ R−Q be such that

1
α
+

1
β

= 1

Then the sets

A = {bnαc : n ∈ N−{0}}= Spec(α)

B = {bnβc : n ∈ N−{0}}= Spec(β )

form a partition of Z+ = N−{0}, i.e.
1. A , ∅ and B , ∅
2. A∩B = ∅
3. A∪B = Z+



Proof

Proof
1. A , ∅ and B , ∅ holds as bαc ∈ A and bβc ∈ B
We prove this fact by contradiction
Assume that A∩B , ∅
By definition it means that there is k ∈ Z+ such that

k ∈ A and k ∈ B

i.e. there are i , j ∈ Z+ such that

k = biαc and k = bjβc

We use now property

8. b x c= k if and only if k ≤ x < k +1 for x ∈R, n∈Z+



Proof

By 8. convert these two equalities to two inequalities

k ≤ iα < k +1 (7)
k ≤ jβ < k +1 (8)

Now we can drop the equality condition in the inequalities
(7) and (8) because k ∈ Z+, but α, β ∈ R−Q, so iα, jβ
can’t be integers
Thus we get

k < iα < k +1 (9)
k < jβ < k +1 (10)



Proof

We divide (9) by α and (10) by β - we can do it as
α > 0, β > 0 and we get

k
α

< i <
k +1

α
(11)

k
β

< j <
k +1

β
(12)

Now we add (11) and (12) together, to get:

k
α
+

k
β

< i + j <
k +1

α
+

k +1
β

Grouping for k and k +1

k(
1
α
+

1
β
)< i + j < (k +1)(

1
α
+

1
β
)



Proof

The two factors for k and k +1 are equal by the Theorem
assumption

1
α
+

1
β

= 1

This simplifies our inequality to

k < i + j < k +1

But this is a contradiction:
k and k +1 are two consecutive positive integers, so
no other positive integer i + j can belong to the interval

Haven’t you seen a similar proof before???



Proof

Now as the last step we prove
3. A∪B = Z+

We carry proof by contradiction
Assume that A∪B , Z+

It means that there is k ∈ Z+ such that

k < A and k < B

By definition of sets A, B we have

k < A iff k , bnαc for all n ∈ Z+

k < B iff k , bnβc for all n ∈ Z+



Proof

Observe that if k , bnαc for all n ∈ Z+, then as
bnαc , k , b(n+1)αc , k , and bnαc< b(n+1)αc there
exist i0, j0 ∈ Z+ such that

(?) bi0αc< k and b(i0 +1)αc ≥ k +1

and similarly

(??) bj0βc< k and b(j0 +1)βc ≥ k +1

We now transform (?) and (??) by using he properties

13. bxc< n if and only if x < n

16. x ≥ bnc if and only if x ≥ n



Proof

Now we can drop the equality condition applying the
inequality 16. because with k ∈ Z+ and α, β ∈ R−Q, we
have that (i0 +1)α, (j0 +1)β can’t be integers
We get hence that

(1) i0α < k and (i0 +1)α > k +1

(2) j0β < k and (j0 +1)β > k +1

We re-write (1), (2) respectively as follows

α <
k
i0

and α >
k +1
(i0 +1)

β <
k
j0

and β >
k +1
(j0 +1)



Proof

We know that for any a,b ∈ Z+,

a < b iff
1
a
>

1
b

We hence re-write (1), (2) further as

1
α

>
i0
k

and
1
α

<
i0 +1
k +1

i.e
(3)

i0
k
<

1
α

<
i0 +1
k +1

and similarly we get

(4)
j0
k
<

1
β

<
j0 +1
k +1



Proof

Adding (3) and (4) and using the assumption

1
α
+

1
β

= 1

we get that
i0 + j0

k
< 1 <

i0 + j0 +2
k +1

This is equivalent to

i0 + j0
k

< 1 and 1 <
i0 + j0 +2

k +1

i0 + j0 < k and k +1 < i0 + j0 +2

Hence
i0 + j0 < k < i0 + j0 +1

Contradiction! as i0, j0,k ∈ Z+

This ends the proof



Floor and Ceilings Sums

Example Evaluate

∑
0≤k<n

b
√

kc

Hint: use

∑
0≤k<n

b
√

kc= ∑
0≤k<n

∑
m≥0, m=b

√
kc

m

We evaluate

∑
0≤k<n

b
√

kc= ∑
0≤k<n

∑
m≥0

m [m = b
√

kc]

= ∑
m≥0

∑
k≥0

m [k < n][m = b
√

kc]



Floor and Ceilings Sums

We use now property and get

8. b x c= n if and only if n ≤ x < n+1

and we get

∑
0≤k<n

b
√

kc= ∑
m≥0, k≥0

m[k < n][m ≤
√

k < m+1]

= ∑
m≥0, k≥0

m[k < n ∩ m2 ≤ k < (m+1)2]

Let’s look now at

P(k ,m,n)≡ k < n ∩ m2 ≤ k < (m+1)2



Floor and Ceilings Sums

We evaluate P(k ,m,n)≡ k < n ∩ m2 ≤ k < (m+1)2

≡m2 ≤ k < n < (m+1)2 ∪ m2 ≤ k < (m+1)2 ≤ n

i.e. P(k ,m,n)≡Q∪R and we know that

∑
m,k

[Q∪R] = ∑
m,k

[Q]+ ∑
m,k

[R]−∑
m,k

[Q∩R]

and here Q∩R is false, i.e. ∑
m,k

[Q∩R] = 0 and we get

∑
0≤k<n

b
√

kc= ∑
m,k≥0

m [m2 ≤ k < n < (m+1)2]

+ ∑
m,k≥0

m [m2 ≤ k < (m+1)2 ≤ n]



Floor and Ceilings Sums

Assume now n = a2 for certain a ∈ N, i.e. n is a perfect
square
The first sum becomes

∑
m,k≥0

m [m2 ≤ k < a2 < (m+1)2] = 0

because the statement

m2 ≤ k < a2 < (m+1)2

is FALSE as there is no a ∈ N such that m < a < m+1



Floor and Ceilings Sums

We proved that

∑
0≤k<n

b
√

kc= ∑
m,k≥0

m [m2 ≤ k < (m+1)2 ≤ a2]

Evaluate now

m2≤ k < (m+1)2≤ a2 ≡ m2≤ k < (m+1)2 ∩ (m+1)2≤ a2

≡ m2 ≤ k < (m+1)2 ∩ (m+1)≤ a

∑
0≤k<n

b
√

kc= ∑
m,k≥0

m [m2 ≤ k < (m+1)2] [(m+1)≤ a]



Floor and Ceilings Sums

We evaluate

∑
m,k≥0

m [m2 ≤ k < (m+1)2] [(m+1)≤ a]

= ∑
m≥0

∑
k≥0

m [(m+1)≤ a] [m2 ≤ k < (m+1)2]

= ∑
m≥0

m [(m+1)≤ a] ∑
k≥0

[m2 ≤ k < (m+1)2]

= ∑
m≥0

m [(m+1)≤ a] ∑
k≥0

[k ∈ [m2 . . .(m+1)2)]



Floor and Ceilings Sums

We recall the properties

∑
k
[R(k)] = ∑

R(k)
1 =| R(k) |

[α...β ) contains exactly dβe − dαe integers

and get

∑
k≥0

[k ∈ [m2 . . .(m+1)2)] = 2m+1

Hence

∑
m≥0

m [(m+1)≤ a] ∑
k≥0

[k ∈ [m2 . . .(m+1)2)]

= ∑
m≥0

m(2m+1) [(m+1)≤ a] = ∑
m≥0

(2m2 +m) [(m+1)≤ a]



Floor and Ceilings Sums

We have hence proved that

∑
0≤k<n

b
√

kc= ∑
m≥0

(2m2 +m) [(m+1)≤ a]

Recall that x2 = x(x−1) = x2−x and x1 = x
Evaluate

2m2+m=2m2−2m+2m+m=2m(m−1)+3m=2m2 +3m1

Also we have that m+1≤ a iff m < a, so now

∑
0≤k<n

b
√

kc= ∑
m≥0

(2m2 +3m1)[m < a]



Floor and Ceilings Sums

Last steps

∑
m≥0

(2m2 +3m1)[m < a] = ∑
0≤m<a

(2m2 +3m1)

= ∑
a
0(2m2 +3m1)δm = (2

m3

3
+3

m2

2
)
∣∣∣a
0

=
2
3

m(m−1)(m−2)+
3
2

m(m−1)
∣∣∣a
0
=

1
6
(a−1)a(a+1)

and

∑
0≤k<n

b
√

kc= 1
6
(a−1)a(a+1)

Homework: do the case (page 87) a = b
√

kc
END of CHAPTER 3


