cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 11a

```
4ロ>4㽞〉4 三
```


CHAPTER 3 INTEGER FUNCTIONS

PART1: Floors and Ceilings

PART 2: Floors and Ceilings Applications

PART 2
 Floors and Ceilings Applications

Casino Problem

Reminder of Casino Problem

There is a roulette wheel with 1,000 slots numbered
1 ... 1,000
IF the number n that comes up on a spin is divisible by $\lfloor\sqrt[3]{n}\rfloor$, i.e. $\sqrt[3]{n}\rfloor \mid n$
THEN n is the winner
The summations becomes

$$
W=\sum_{n=1}^{1000}[\mathrm{n} \text { is a winner }]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]
$$

where we define divisibility | in a standard way
$k \mid n$ if and only if there exists $m \in Z$ such that $n=k m$

Book Solution

Here are 7 steps of our BOOK solution
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$
$3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]$
$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
$6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
$7 \mathrm{~W}=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$

Class Problem

Here are the BOOK comments

1. This derivation merits careful study
2. The only "difficult" maneuver is the decision between lines 3 and 4 to treat $n=1000$ as a special case
3. The inequality $k^{3} \leq n<(k+1)^{3}$ does not combine easily with $1 \leq n \leq 1000$ when $k=10$

Book Solution Comments

Class Problem

Write down explanation of each step with detailed justifications (Facts, definitions) why they are correct

By doing so fill all gaps in the proof that

$$
W=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=172
$$

This problem can also appear on your tests

QUESTIONS about Book Solution

Here are questions to answer about the steps in the BOOK solution
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
Q1 Explain why $[n$ is a winner $]=[\lfloor\sqrt[3]{n}\rfloor \mid n]$
$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$

Q2 Explain why and how we have changed a sum $\sum_{n=1}^{1000}$ into a sum $\sum_{k, n}$ and
$\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$

QUESTIONS about Book Solution

$$
3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]
$$

Q3 Explain why

$$
[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n]=\left[k^{3} \leq n<(k+1)^{3}\right][n=k m]
$$

Explain why and how we have changed sum $\sum_{k, n}$ into a sum $\sum_{k, n, m}$

QUESTIONS about Book Solution

$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
Q4 There are three sub- questions; the last one is one of the book questions

1. Explain why

$$
\begin{aligned}
& {\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]=} \\
& {\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]}
\end{aligned}
$$

2. Explain why and how we have changed sum $\sum_{k, n, m}$ into
a sum $\sum_{k, m}$
3. Explain HOW and why we have got $1+\sum_{k, m}$

QUESTIONS about Book Solution

$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
Q5 Explain transition

$$
\left[k^{3} \leq k m<(k+1)^{3}\right]=\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right]
$$

QUESTIONS about Book Solution

$$
6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)
$$

Q6 Explain (prove) why
$\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]=$
$\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
Observe that $\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right]$ is a characteristic function and $\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$ is an integer

QUESTIONS about Book Solution

$7 W=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$
Q7 Explain (prove) why
$\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)=(3 k+4)$

Before we giving answers to Q1-Q7 we need to review some of the SUMS material

SUMS - a Short Review

Definition 1

Definition 1

$$
\sum_{P(k)} a_{k}=\sum_{k \in K} a_{k}=\sum_{k}[P(k)] a_{k}=\sum_{k}[k \in K] a_{k}
$$

where $K=\{k \in N: P(k)\}$ and K is FINITE
and $[P(k)]$ is a characteristic function of $P(k)$

$$
[P(k)]= \begin{cases}1 & P(k) \text { true } \\ 0 & P(k) \text { false }\end{cases}
$$

Property 1

Let's take a particular case when the sequence $a_{k}=1$ for all $k \in N$
Directly from the Definition 1 we get the following

Property 1

$$
\sum_{k}[P(k)]=\sum_{k \in K} 1=|K|
$$

where $|K|$ denotes the number of elements of the set K We re-write is also as

$$
\sum_{k}[P(k)]=\sum_{P(k)} 1=|P(k)|
$$

Definition 2

Definition 2

In a case of multiple sums (here a double sum) we define
$\sum_{k \in K, m \in M} a_{k, m}=\sum_{P(k), Q(m)} a_{k, m}=\sum_{Q(m)} \sum_{P(k)} a_{k, m}=\sum_{P(k)} \sum_{Q(m)} a_{k, m}$
and

$$
\sum_{P(k), Q(m)} a_{k, m}=\sum_{k, m} a_{k, m}[P(k)][Q(m)]
$$

where
$K=\{k \in N: P(k)\}$ and $M=\{m \in N: Q(m)\}$
Triple and many-multiple sums definitions are similar

Property 2

Let's take a particular case when the sequence
$a_{k, m}=1 \quad$ for all $k, m \in N$
Directly from the Definition 2 and Property 1 we get the following
Property 2

$$
\sum_{k, m}[P(m)][Q(k)]=\sum_{Q(k)} \sum_{P(m)} 1=\sum_{Q(k)}|P(m)|
$$

where we denote for short

$$
|P(m)|=|\{m \in N: P(m)\}|
$$

Characteristic Functions

We have proved the following properties of characteristic functions
F1 For any predicates $\mathrm{P}(\mathrm{k}), \mathrm{Q}(\mathrm{k})$

$$
[P(k) \cap Q(k)]=[P(k)][Q(k)]
$$

F2 For any predicates $\mathrm{P}(\mathrm{k}), \mathrm{Q}(\mathrm{k})$

$$
[P(k) \cup Q(k)]=[P(k)]+[Q(k)]-[P(k) \cap Q(k)]
$$

Property 3

From Property 1 and F2 we get directly the following Property 3
$\sum_{k}[P(k) \cup Q(k)]=\sum_{k}[P(k)]+\sum_{k}[Q(k)]-\sum_{k}[P(k) \cap Q(k)]$
where
$k \in K$ and $K=K_{1} \times K_{2} \cdots \times K_{i}$ for $1 \leq i \leq n$
Observe that the above formula represents single ($\mathrm{i}=1$) or multiple ($i>1$) sums
It is a particular case of the Combined Domains Property (next slide) - just a reminder!

Combined Domains Property

Here is the Combined Domains Property
Property 4

$$
\sum_{Q(k) \cup R(k)} a_{k}=\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}-\sum_{Q(k) \cap R(k)} a_{k}
$$

where, as before,
$k \in K$ and $K=K_{1} \times K_{2} \cdots \times K_{i}$ for $1 \leq i \leq n$
and the above formula represents single ($\mathrm{i}=1$) and multiple ($i>1$) sums

Book Solution Step 1

Here are the answers to the questions about the steps in the BOOK solution
$1 \mathrm{~W}=\sum_{n=1}^{1000}[n$ is a winner $]=\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]$
Answer 1
Definition of the winner in the Casino Problem

Book Solution Step 2

$2 \mathrm{~W}=\sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]$
Answer 2 Take $P(n) \equiv\lfloor\sqrt[3]{n}\rfloor \mid n$
We transform $P(n)$ introducing a new variable k

$$
P(n) \equiv\lfloor\sqrt[3]{n}\rfloor \mid n \equiv(k=\lfloor\sqrt[3]{n}\rfloor) \cap(k \mid n)
$$

We use it to transform the one variable sum to a two variable sum as follows

$$
\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=\sum_{k, n}[(k=\lfloor\sqrt[3]{n}\rfloor) \cap(k \mid n)][1 \leq n \leq 1000]
$$

Hence we get

Book Solution Step 2

We use the property F1 of Characteristic Functions

$$
[P(k) \cap Q(k)]=[P(k)][Q(k)]
$$

and we get 2.

$$
\sum_{n=1}^{1000}[\lfloor\sqrt[3]{n}\rfloor \mid n]=\sum_{k, n}[(k=\lfloor\sqrt[3]{n}\rfloor)][(k \mid n)][1 \leq n \leq 1000]
$$

Book Solution Step 2

We use the definition of divisibility to further transform $P(n, k) \equiv(k=\lfloor\sqrt[3]{n}\rfloor) \cap(k \mid n)$ and and introduce another variable m

$$
P(n, k) \equiv(\lfloor\sqrt[3]{n}\rfloor) \cap(k \mid n) \equiv(k=\lfloor\sqrt[3]{n}\rfloor) \cap(n=k m)
$$

We use it and the property F1 of Characteristic Functions to transform the two variable sum 2 to a three variable sum

$$
\begin{aligned}
& \sum_{k, n}[k=\lfloor\sqrt[3]{n}\rfloor][k \mid n][1 \leq n \leq 1000]= \\
= & \sum_{k, n, m}[k=\lfloor\sqrt[3]{n}\rfloor][n=k m][1 \leq n \leq 1000]
\end{aligned}
$$

Book Solution Step 3

$3 W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]$
Answer 3
We have already transformed 2 to a three variable sum
$\sum_{k, n, m}[k=\lfloor\sqrt[3]{n}\rfloor][n=k m][1 \leq n \leq 1000]$
Now we use the property 8.
$\lfloor x\rfloor=n \quad$ if and only if $n \leq x<n+1$ to $k=\lfloor\sqrt[3]{n}\rfloor$ and we get

$$
\lfloor\sqrt[3]{n}\rfloor=k \text { if and only if } k \leq \sqrt[3]{n}<k+1
$$

and also

$$
k \leq \sqrt[3]{n}<k+1 \text { if and only if } k^{3} \leq n<(k+1)^{3}
$$

Book Solution Step 3

We replace $k=\lfloor\sqrt[3]{n}\rfloor$ by $k^{3} \leq n<(k+1)^{3}$ in already transformed 2

$$
\sum_{k, n, m}[k=\lfloor\sqrt[3]{n}\rfloor][n=k m][1 \leq n \leq 1000]
$$

and obtain

$$
\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]
$$

and so we proved 3

Book Solution Step 4

$4 \mathrm{~W}=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]$
Answer 4
We have proved that

$$
W=\sum_{k, n, m}\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]
$$

We want now to transform limits of the sum to contain only k, m, i.e. we want to eliminate n

Book Solution Step 4

Let's analyze the sum predicate

$$
P \equiv\left(k^{3} \leq n<(k+1)^{3}\right) \cap(n=k m) \cap(1 \leq n \leq 1000)
$$

Observe that when $(k+1)^{3}=1000, k+1=10, k=9$ and $1 \leq k<10$

We almost eliminated n - we miss $n=1000$
It means we get
$P \equiv\left(\left(k^{3} \leq n<(k+1)^{3}\right) \cap(n=k m) \cap(1 \leq k<10)\right) \cup(n=1000)$
and hence

$$
\begin{gathered}
{\left[k^{3} \leq n<(k+1)^{3}\right][n=k m][1 \leq n \leq 1000]} \\
=\left[\left(\left(k^{3} \leq k m<(k+1)^{3}\right) \cap(1 \leq k<10)\right) \cup(k m=1000)\right]
\end{gathered}
$$

Book Solution Step 4

So now we get

$$
W=\sum_{k, m}\left[\left(\left(k^{3} \leq k m<(k+1)^{3}\right) \cap(1 \leq k<10)\right) \cup(k m=1000)\right]
$$

We use now the Property 3

$$
\sum_{k, m}[P \cup Q]=\sum_{k, m}[P]+\sum_{k, m}[Q]-\sum_{k, m}[P \cap Q]
$$

for $P \equiv\left(\left(k^{3} \leq k m<(k+1)^{3}\right) \cap(1 \leq k<10)\right)$ and $Q \equiv(k m=1000)$

Book Solution Step 4

Denote $P \equiv\left(\left(k^{3} \leq k m<(k+1)^{3}\right) \cap(1 \leq k<10)\right)$ and $Q \equiv(k m=1000)$
We get

$$
W=\sum_{k, m}[P]+\sum_{k, m}[k m=1000]-\sum_{k, m}[P \cap Q]
$$

where

$$
\sum_{k, m}[P]=\sum_{k, m}\left[\left(k^{3} \leq k m<(k+1)^{3}\right)\right][1 \leq k<10]
$$

The Property 1 says

$$
\sum_{k}[P(k)]=\sum_{P(k)} 1=|P(k)|
$$

so we get that
$\sum_{k, m}[k m=1000]=|\{n: n=k m=1000\}|=|\{n: n=1000\}|=1$

Book Solution Step 4

We proved that

$$
W=1+\sum_{k, m}[P]+-\sum_{k, m}[P \cap Q]
$$

Now we have to evaluate $P \cap Q$

$$
\begin{gathered}
P \cap Q \equiv\left(\left(k^{3} \leq k m<(k+1)^{3}\right) \cap(1 \leq k<10)\right) \cap(k m=1000) \\
P \cap Q \equiv\left(k^{3} \leq 1000<(k+1)^{3}\right) \cap(1 \leq k \leq 9) \\
\text { CONTRADICTION : } 9^{3} \leq 1000<10^{3}
\end{gathered}
$$

This means that $\sum_{k, m}[P \cap Q]=0$ and

$$
W=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]
$$

what ends the proof of 4

Book Solution Step 5

Consider the Step 5
$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$
Answer 5
Missing steps are as follows
First let's look again at the Step 4

$$
W=1+\sum_{k, m}\left[k^{3} \leq k m<(k+1)^{3}\right][1 \leq k<10]
$$

Dividing all sides of the inequality $k^{3} \leq k m<(k+1)^{3}$ by $k \geq 1$ we get

$$
k^{3} \leq k m<(k+1)^{3} \quad \text { iff } \quad k^{2} \leq m<\frac{(k+1)^{3}}{k}
$$

and by the definition of the interval

$$
k^{2} \leq m<\frac{(k+1)^{3}}{k} \text { iff } m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)
$$

Book Solution Step 5

We have proved that

$$
k^{3} \leq k m<(k+1)^{3} \quad \text { iff } \quad m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)
$$

and hence proved the transformation of the Step 4 into the Step 5 i.e. we proved
$5 \mathrm{~W}=1+\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]$

Book Solution Step 6

Consider now
$6 \mathrm{~W}=1+\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$
Let's now write all steps of transformation of the Step 5 into the Step 6
Observe that the transformation consists of proving that
$\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]=$
$\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)$

Book Solution Step 6

Consider the sum

$$
\sum_{k, m}\left[m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)\right][1 \leq k<10]
$$

We apply the Property 2

$$
\sum_{k, m}[P(m)][Q(k)]=\sum_{Q(k)} \sum_{P(m)} 1=\sum_{Q(k)}|P(m)|
$$

to it for $\quad Q(k) \equiv 1 \leq k<10 \quad$ and
$P(m) \equiv m \in\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)$

Book Solution Step 6

Observe that $|P(m)|=$ number of integers in the interval $\left[k^{2} \ldots \frac{(k+1)^{3}}{k}\right)$ and so by the the fact that interval $[\alpha \ldots \beta)$ has $\lceil\beta\rceil-\lceil\alpha\rceil$ elements we get

$$
|P(m)|=\left\lceil\frac{(k+1)^{3}}{k}\right\rceil-\left\lceil k^{2}\right\rceil=\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil
$$

and the sum

$$
\sum_{Q(k)}|P(m)|=\sum_{1 \leq k<10}\left(\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil\right)
$$

This ends the transformation of Step 5 into Step 6 - and hence the proof of correctness (other then the fact it is printed in the BOOK!) of the Step 6

Book Solution Step 7

This is Step 7
$7 \mathrm{~W}=1+\sum_{1 \leq k<10}(3 k+4)=1+\frac{7+31}{2} 9=172$
Pretty obvious step but still need to pay attention to a small detail!
We need to bring back property

$$
\text { 12. }\lfloor x+n\rfloor=\lfloor x\rfloor+n \text { and }\lceil x+n\rceil=\lceil x\rceil+n
$$

to evaluate, as $k \geq 1$

$$
\left\lceil k^{2}+3 k+3+\frac{1}{k}\right\rceil-\left\lceil k^{2}\right\rceil=k^{2}+3 k+3+\left\lceil\frac{1}{k}\right\rceil-k^{2}=3 k+4
$$

Casino Problem Revisisted

Observe that the Casino Problem is just a dressed - up version of the following mathematical question :
Question

How many integers n, where $1 \leq n \leq 1000$, satisfy the property $\lfloor\sqrt[3]{n}\rfloor \mid n$?

Genaralized Question

How many integers n, where $1 \leq n \leq k$, satisfy the property $\lfloor\sqrt[3]{n}\rfloor \mid n$? for k any natural number and $k \geq 1000$
Homework Problem: write a detailed solution to the Genaralized Question

Spectrum Partitions

Spectrum

Definition

For any $\alpha \in R$ we define a SPECTRUM of α as

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor \cdots\}
$$

Remark

For some $\alpha \in R$, the spectrum $\operatorname{Spec}(\alpha)$ is a multiset i.e, it can contain repeating elements.

Examples

Let's look at some examples, to see how it works.

Spectrum Examples

Example $1 \quad \alpha=\frac{1}{2}$

$$
\begin{gathered}
\lfloor\alpha\rfloor=0, \quad\lfloor 2 \alpha\rfloor=1, \quad\lfloor 3 \alpha\rfloor=\left\lfloor\frac{3}{2}\right\rfloor=1, \quad\lfloor 4 \alpha\rfloor=\left\lfloor\frac{4}{2}\right\rfloor=2, \cdots \\
\operatorname{Spec}(\alpha)=\operatorname{Spec}\left(\frac{1}{2}\right)=\{0,1,1,2,2,3,3,4,4,5, \cdots\}
\end{gathered}
$$

Observe that $\operatorname{Spec}\left(\frac{1}{2}\right)$ is a multi set

Spectrum Examples

Example $2 \alpha=\sqrt{2}$

$$
\begin{gathered}
\lfloor\alpha\rfloor=\lfloor\sqrt{2}\rfloor=1, \quad\lfloor 2 \alpha\rfloor=\lfloor 2 \sqrt{2}\rfloor=\lfloor 2.8\rfloor=2 \\
\lfloor 3 \alpha\rfloor=\lfloor 3 \sqrt{2}\rfloor=\lfloor 4.2\rfloor=4, \quad\lfloor 4 \alpha\rfloor=\lfloor 5.6\rfloor=5 \cdots
\end{gathered}
$$

$$
\operatorname{Spec}(\sqrt{2})=\{\lfloor\sqrt{2}\rfloor,\lfloor 2 \sqrt{2}\rfloor,\lfloor 3 \sqrt{2}\rfloor, \ldots\}
$$

$$
\operatorname{Spec}(\sqrt{2})=\{1,2,4,5,7,8,9,11,12,14,15,16, \cdots\}
$$

$$
\operatorname{Spec}(2+\sqrt{2})=\{\lfloor 2+\sqrt{2}\rfloor,\lfloor 2(2+\sqrt{2})\rfloor,\lfloor 3(2+\sqrt{2})\rfloor, \ldots\}
$$

$$
\operatorname{Spec}(2+\sqrt{2})=\{\lfloor 2+\sqrt{2}\rfloor,\lfloor 4+2 \sqrt{2}\rfloor,\lfloor 6+3 \sqrt{2}\rfloor, \ldots\}
$$

$$
\operatorname{Spec}(2+\sqrt{2})==\{3,6,10,13,17,20, \cdots\}
$$

Spectrum Observations

Observations

1. $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ are non-empty sets, not multisets
2. $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ don't seem to share any elements with each other
3. The set union of $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ seem to contain all of the natural numbers $n \geq 1$

This is interesting: if these properties are proved to be true then we can say that
$\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the natural numbers $n \geq 1$

Spectrum Partition Theorem

More formally, for $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ to be a partition of the natural numbers greater equal 1, i.e. to be a partition of the set $N-\{0\}$ the following conditions must hold

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

The proof is not straight forward.
We first discuss a proof included in the Book and discuss its relationship to the Infinite Spectra
Finally we provide a correct proof

Finite Partition Theorem

First, we define certain finite subsets A_{n}, B_{n} of $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$, respectively
Definition

$$
\begin{aligned}
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): \quad m \leq n\} \\
& B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}) \quad m \leq n\}
\end{aligned}
$$

Remember

A_{n} and B_{n} are subsets of $\{1,2, \ldots n\}$ for $n \in N-\{0\}$

Finite Partition Theorem

Given sets
$A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\}$
$B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): m \leq n\}$
Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

Examples

We defined
$A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): \quad m \leq n\}$
$B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): \quad m \leq n\}$
Example $n=8$
We evaluate $\quad A_{8}=\{1,2,4,5,7,8\}, \quad B_{8}=\{3,6\}$
Observe that properties of the partition of the set $\left\{m \in Z^{+}-\{0\}: m \leq 8\right\}$ hold

1. $A_{8} \neq \emptyset$ and $B_{8} \neq \emptyset$
2. $A_{8} \cap B_{8}=\emptyset$
3. $A_{8} \cup B_{8}=\{1, \cdots, 8\}=\{m \in N-\{0\}: m \leq 8\}$

Observe that $\left|A_{8}\right|+\left|B_{8}\right|=8$
This property is an example of the general property proved in the book

Examples

We defined

$$
\begin{aligned}
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): \quad m \leq n\} \\
& B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): \quad m \leq n\}
\end{aligned}
$$

Example $n=15$
We evaluate
$A_{15}=\{1,2,4,5,7,8,9,11,12,14,15\}, \quad B_{15}=\{3,6,10,13\}$
Again, that properties of the partition of the set
$\{m \in N-\{0\}: m \leq 15\}$ hold

1. $A_{15} \neq \emptyset$ and $B_{15} \neq \emptyset$
2. $A_{15} \cap B_{15}=\emptyset$
3. $A_{15} \cup B_{15}=\{1, \cdots, 15\}=\{m \in N-\{0\}: m \leq 15\}$

Observe that $\left|A_{15}\right|+\left|B_{15}\right|=15$
This property is again an example of the general property proved in the book

Finite Fact

Given sets
$A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): \quad m \leq n\}$
$B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}) \quad m \leq n\}$
Finite Fact
For all $n \in N-\{0\}$

$$
\left|A_{n}\right|+\left|B_{n}\right|=n
$$

The book proves only this, and says that this is the Spectrum Partition Theorem for infinite Spectrum sets $\operatorname{Spec}(\sqrt{2}), \operatorname{Spec}(2+\sqrt{2})$

Not so obvious!

Counting Elements

Before trying to prove the Finite Fact we first look for a closed formula to count the number of elements in subsets of a finite size of any spectrum
Given a spectrum $\operatorname{Spec}(\alpha)$
Denote by $N(\alpha, n)$ the number of elements in the $\operatorname{Spec}(\alpha)$ that are $\leq n$, i.e.

$$
N(\alpha, n)=|\{m \in \operatorname{Spec}(\alpha): \quad m \leq n\}|
$$

Counting Elements

We recall definition

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \cdots\}
$$

We get immediately

$$
m \in \operatorname{Spec}(\alpha) \quad \text { iff } \quad m=\lfloor k \alpha\rfloor \text { for } \alpha \in R, \quad k \in N-\{0\}
$$

We re-write definition
$N(\alpha, n)=|\{m \in \operatorname{Spec}(\alpha): \quad m \leq n\}|$ as

$$
N(\alpha, n)=|\{m: m=\lfloor k \alpha\rfloor \cap m \leq n \cap k>0\}|
$$

Hence

$$
N(\alpha, n)=|\{\lfloor k \alpha\rfloor:\lfloor k \alpha\rfloor \leq n \cap k>0\}| \quad n, k \in N-\{0\}
$$

Counting Elements

We have
$N(\alpha, n)=|\{\lfloor k \alpha\rfloor:\lfloor k \alpha\rfloor \leq n \cap k>0\}|$ for $n, k \in N-\{0\}$
Denote $P(k) \equiv\lfloor k \alpha\rfloor \leq n$ and $Q(k) \equiv k>0$
We have that

$$
N(\alpha, n)=|P(k) \cap Q(k)|
$$

Recall re-write Property 1 as two properties in a way we are going to use them

$$
\text { P1 } \quad|R(k)|=\sum_{k}[R(k)]
$$

P2 $\quad \sum_{k}[R(k)]=\sum_{R(k)} 1=|R(k)|$

Counting Elements

We use property P1 to $N(\alpha, n)=|P(k) \cap Q(k)|$ for $R(k) \equiv P(k) \cap Q(k) \quad$ and we get

$$
N(\alpha, n)=|P(k) \cap Q(k)|=\sum_{k}[P(k) \cap Q(k)]
$$

Now we evaluate $N(\alpha, n)$ as follows

$$
N(\alpha, n)=\sum_{k}[P(k)][Q(k)]=\sum_{Q(k)}[P(k)]=\sum_{k>0}[\lfloor k \alpha\rfloor \leq n]
$$

We use now two known properties

$$
m \leq n \quad \text { iff } \quad m<n+1 \quad \text { and } \quad\lfloor x\rfloor<n \quad \text { iff } x<n
$$

to transform $\lfloor k \alpha\rfloor \leq n$

Counting Elements

We have by the listed above properties

$$
\lfloor k \alpha\rfloor \leq n \quad \text { iff }\lfloor k \alpha\rfloor<n+1 \quad \text { iff } \quad k \alpha<n+1 \quad \text { iff } \quad k<\frac{n+1}{\alpha}
$$

This justifies the following steps of computation

$$
N(\alpha, n)=\sum_{k>0}[\lfloor k \alpha\rfloor \leq n]=\sum_{k>0}[\lfloor k \alpha\rfloor<n+1]=\sum_{k>0}\left[k<\frac{n+1}{\alpha}\right]
$$

and we get

$$
N(\alpha, n)=\sum_{k>0}\left[k<\frac{n+1}{\alpha}\right]
$$

Counting Elements

We re-write the last sum using definition and property P2

$$
\begin{aligned}
N(\alpha, n) & =\sum_{k>0}\left[k<\frac{n+1}{\alpha}\right]=\sum_{k}\left[k<\frac{n+1}{\alpha}\right][k>0] \\
& =\sum_{k}\left[0<k<\frac{n+1}{\alpha}\right]=\sum_{0<k<\frac{n+1}{\alpha}} 1
\end{aligned}
$$

Using property P2 again we get

$$
N(\alpha, n)=\left|0<k<\frac{n+1}{\alpha}\right|
$$

General Formula

Reminder $\left|0<k<\frac{n+1}{\alpha}\right|=$ number of integers in the interval ($0 \ldots \frac{n+1}{\alpha}$) and so by the the fact that interval $(\alpha \ldots \beta)$ has $\lceil\beta\rceil-\lceil\alpha\rceil-1$ elements we evaluate

$$
N(\alpha, n)=\left|0<k<\frac{n+1}{\alpha}\right|=\left\lceil\frac{n+1}{\alpha}\right\rceil-0-1=\left\lceil\frac{n+1}{\alpha}\right\rceil-1
$$

We have proved the following

General Formula

For any $\alpha \in R$ and a spectrum $\operatorname{Spec}(\alpha)$ the number $N(\alpha, n)$ of elements in the $\operatorname{Spec}(\alpha)$ that are $\leq n$ is given by the formula

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1
$$

Finite Fact Proof

Finite Fact

$$
\left|A_{n}\right|+\left|B_{n}\right|=n \quad \text { for any } n \in N-\{0\}
$$

where
$A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\}$
$B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): m \leq n\}$
Proof
Observe that we defined $N(\alpha, n)$ as
$N(\alpha, n)=|\{m \in \operatorname{Spec}(\alpha): \quad m \leq n\}|$
and so we have that

$$
\left|A_{n}\right|=N(\sqrt{2}, n) \quad \text { and } \quad\left|B_{n}\right|=N(2+\sqrt{2}, n)
$$

We hence have to prove that

$$
N(\sqrt{2}, n)+N(2+\sqrt{2}, n)=n
$$

Finite Fact Proof

We use the General Formula $N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1$ for $\alpha_{1}=\sqrt{2}$ and $\alpha_{2}=2+\sqrt{2}$ and evaluate by using property $\lceil x\rceil-1=\lfloor x\rfloor$ for $x \notin Z$

$$
\begin{gathered}
\left.N\left(\alpha_{1}, n\right)+N\left(\alpha_{2}, n\right)\right)=\left\lceil\frac{n+1}{\sqrt{2}}\right\rceil-1+\left\lceil\frac{n+1}{2+\sqrt{2}}\right\rceil-1 \\
=\left\lfloor\frac{n+1}{\sqrt{2}}\right\rfloor+\left\lfloor\frac{n+1}{2+\sqrt{2}}\right\rfloor
\end{gathered}
$$

Now we use property $\lfloor x\rfloor=x-\{x\}$, where $\{x\}$ is a fractional part of x and get
$\left.N\left(\alpha_{1}, n\right)+N\left(\alpha_{2}, n\right)\right)=\frac{n+1}{\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{2+\sqrt{2}}\right\}$

Finite Fact Proof

We continue evaluation using identity $\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}=1$

$$
\begin{gathered}
\left.N\left(\alpha_{1}, n\right)+N\left(\alpha_{2}, n\right)\right)=\frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}-\left\{\frac{n+1}{2+\sqrt{2}}\right\} \\
=(n+1)\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)-\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right) \\
=(n+1)-\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right)
\end{gathered}
$$

Observe that if we show that $\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}=1$ then we have succeeded to prove the Finite Fact

Finite Fact Proof

We have proved as a part of our computations that

$$
\frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}=n+1
$$

and now we can use it to prove

$$
\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}=1
$$

We prove more general Special Property and get our property as a particular case

Special Property Proof

Special Property

For any $\quad x_{1}, x_{2} \notin Z$

$$
\text { If } \quad x_{1}+x_{2}=n+1 \quad \text { then } \quad\left\{x_{1}\right\}+\left\{x_{2}\right\}=1
$$

Proof
Let $x_{1}=\left\lfloor x_{1}\right\rfloor+\left\{x_{1}\right\}$ and $x_{2}=\left\lfloor x_{2}\right\rfloor+\left\{x_{2}\right\}$
Assume that

$$
x_{1}+x_{2}=\left\lfloor x_{1}\right\rfloor+\left\{x_{1}\right\}+\left\lfloor x_{2}\right\rfloor+\left\{x_{2}\right\}=n+1
$$

Since $x_{1}, x_{2} \notin Z$ we get that $\left\{x_{1}\right\} \neq 0, \quad\left\{x_{2}\right\} \neq 0$ and so

$$
0<\left\{x_{1}\right\}<1 \quad \text { and } \quad 0<\left\{x_{2}\right\}<1
$$

Adding the above inequalities we get

$$
0<\left\{x_{1}\right\}+\left\{x_{2}\right\}<2
$$

Special Property Proof

Observe that $\left\lfloor x_{1}\right\rfloor+\left\lfloor x_{2}\right\rfloor=m \in Z$
Denote $\left\{x_{1}\right\}+\left\{x_{2}\right\}=\theta$
We assumed

$$
n+1=\left\lfloor x_{1}\right\rfloor+\left\{x_{1}\right\}+\left\lfloor x_{2}\right\rfloor+\left\{x_{2}\right\}
$$

so we have

$$
n+1=m+\theta \quad \text { for } \quad 0<\theta<2 \text { and } m \in Z
$$

Hence it must be that $\theta \in Z$
But $0<\theta<2$ and it is possible only when $\theta=1$, i.e. $\left\{x_{1}\right\}+\left\{x_{2}\right\}=1$
This ends the proof

Finite Fact

Put $\quad x_{1}=\frac{n+1}{\sqrt{2}}, \quad x_{2}=\frac{n+1}{2+\sqrt{2}}$
By Special Property we have that

$$
\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}=1
$$

It ends the proof of our
Finite Fact

$$
\left|A_{n}\right|+\left|B_{n}\right|=n \quad \text { for any } n \in N-\{0\}
$$

where

$$
\begin{aligned}
& A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\} \\
& B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): m \leq n\}
\end{aligned}
$$

Book Statement

The Book proves the Finite Fact and states on page 78 " A PARTITION IT IS"
The meaning of this is that the Finite Fact implies obviously without any additional proof the following

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

We are going to show now that it is not so obvious even in the case of Finite Spectrum Partition
The infinite case will be discussed after
Let's analyze what we have!

Finite Spectrum Partition

Given sets
$A_{n}=\{m \in \operatorname{Spec}(\sqrt{2}): m \leq n\}$
$B_{n}=\{m \in \operatorname{Spec}(2+\sqrt{2}): m \leq n\}$

Finite Spectrum Partition Theorem - to be proved

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

Finite Fact - just proved

$$
\left|A_{n}\right|+\left|B_{n}\right|=n \quad \text { for any } n \in N-\{0\}
$$

Question Is it possible to prove Finite Spectrum Partition Theorem from the Finite Fact?

Finite Partition

Definition Finite Partition

Let X be a non-empty, finite set; i.e $X \neq \emptyset$ and $|X|=n$ for some $n \in N-\{0\}$
We say that sets $A, B \subseteq X$ such that $A \neq B$ form a finite partition of the set X when the following conditions are satisfied

1. $A \neq \emptyset$ and $B \neq \emptyset$
2. $A \cap B=\emptyset$
3. $A \cup B=X$

Sets Finite Fact $\quad|A|+|B|=|X|$
When $|X|=n$ we write it as $\quad|A|+|B|=n$

Let's now examine the relationship between the Finite Partition and Sets Finite Fact

Finite Partition and Sets Finite Fact

We show now that the Finite Partition implies the Sets Finite Fact, i.e. we prove the following
Fact P1
If sets A, B form a finite partition of the finite set X,
then $|A|+|B|=|X|$
Proof
Assume that A, B form a finite partition then by condition 1. and 3. $A \cup B=X, A \neq \emptyset$ and $B \neq \emptyset$

So $|A \cup B|=|X|$ and $|X| \geq 1$
The sets A, B are finite, hence

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

but by 2. $A \cap B=\emptyset$ and so $|A \cap B|=0$ and
$|A \cup B|=|A|+|B|$ and as $|A \cup B|=|X|$ we have that

$$
|A|+|B|=|X|
$$

Counter-Examples

We show now that the Sets Finite Fact does not always imply the Finite Partition, i.e. we give the following following counter-examples covering all cases
Counter-Example 1
Take the sets $X=\{1,2,3,4\}, \quad A=\{2\}, B=\{1,2,3\}$
We have that

$$
|A|+|B|=1+3=4=|X| \quad \text { and } \quad A \cap B=\{2\} \neq \emptyset
$$

and condition 2. of Finite Partition does not hold

Counter-Examples

Counter-Example 2

We also have for the same sets
$X=\{1,2,3,4\}, \quad A=\{2\}, B=\{1,2,3\}$ that the condition
3. of Finite Partition does not hold as

$$
|A|+|B|=4=|X| \quad \text { and } \quad A \cup B=\{1,2,3\} \neq X
$$

Counter-Example 3 Take the sets $X=\{1\}, \quad A=\{1\}, B=\emptyset$, or $B=\{1\}, \quad A=\emptyset$
We have that

$$
|A|+|B|=1=|X| \text { and } A=\emptyset \text { or } B=\emptyset
$$

and condition 1. of Finite Partition does not hold

Useful Facts

We are going to prove two useful facts that relate to our
Question Is it possible to prove Finite Spectrum Partition Theorem from the Sets Finite Fact?

Fact P2

If $|A|+|B|=|X|$ and $A \neq \emptyset, B \neq \emptyset$ and $A \cap B=\emptyset$
then the sets A, B form a finite partition of X
Proof
We prove the condition 3. by contradiction
Let $|A|+|B|=|X|$ and $A \cup B \neq X$, i.e. $|A \cup B| \neq|X|$
We evaluate
$|A \cup B|=|X|=|A|+|B|-|A \cap B|=|A|+|B|$ and get a contradiction

$$
|A \cup B|=|X| \quad \text { and } \quad|A \cup B| \neq|X|
$$

Useful Facts

Fact P3

If $\quad|A|+|B|=|X|$ and $A \neq \emptyset, B \neq \emptyset$ and $A \cup B=X$ then the sets A, B form a finite partition of the set X Proof

We prove the condition 2.
Let $|A|+|B|=|X|$ and $A \cup B=X$, i.e. $|A \cup B|=|X|$
We evaluate

$$
|A \cup B|=|X|=|A|+|B|-|A \cap B|=|A|+|B|
$$

and

$$
|A|+|B|-|A \cap B|=|A|+|B| \text { iff } \quad A \cap B=\emptyset
$$

This proves that the condition 2. holds

Back to Finite Spectrum Partition Theorem

Facts P2, and P3 say:
if the sets A, B are non-empty, disjoint, or $A \cup B=X$ then Finite Fact implies Finite Partition
Take now

$$
X=\{1,2 \ldots n\}, \quad A=A_{n}, \quad B=B_{n}
$$

The Finite Partition becomes
Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

Question and Answers

The Sets Finite Fact becomes
Finite Fact $\quad\left|A_{n}\right|+\left|B_{n}\right|=n$, for $n \in N-\{0\}$

We are now ready to answer our
Question Does the Sets Finite Fact implies as the Book states, the Finite Spectrum Partition Theorem?

Answer YES, but only under conditions specified in the Facts P2, and P3

Question and Answers

Observe that $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
Hence, by the Fact P2 we have to prove that

$$
A_{n} \cap B_{n}=\emptyset
$$

in order to have that the Finite Spectrum Partition Theorem holds
or by the Fact P2 we have to prove that

$$
A_{n} \cup B_{n}=\{1,2, \ldots n\}
$$

We now choose to to use Fact P2 and to prove that $A_{n} \cap B_{n}=\emptyset$

Spectrum Fact

Reminder

$$
A_{n} \subseteq \operatorname{Spec}(\sqrt{2}) \quad \text { and } \quad B_{n} \subseteq \operatorname{Spec}(2+\sqrt{2})
$$

We hence prove now a more general fact (always do it when you can!)

Spectrum Fact

$$
\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset
$$

We recall definition

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \cdots\}
$$

We get immediately

$$
m \in \operatorname{Spec}(\alpha) \quad \text { iff } \quad m=\lfloor k \alpha\rfloor
$$

Spectrum Fact Proof

Proof

We prove this fact by contradiction
Assume that $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
By definition it means that there is $n \in N-\{0\}$ such that

$$
n \in \operatorname{Spec}(\sqrt{2}) \quad \text { and } \quad n \in \operatorname{Spec}(2+\sqrt{2})
$$

i.e. there are $k_{1}, k_{2} \in N-\{0\}$ such that

$$
n=\left\lfloor k_{1} \sqrt{2}\right\rfloor \quad \text { and } \quad n=\left\lfloor k_{2}(2+\sqrt{2})\right\rfloor
$$

We use now property
8. $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$ for $x \in R, n \in Z$

Spectrum Fact Proof

By 8. convert these two equalities to two inequalities

$$
\begin{array}{lcl}
n \leq & k_{1} \sqrt{2} & <n+1 \\
n \leq & k_{2}(2+\sqrt{2}) & <n+1 \tag{2}
\end{array}
$$

Now we can drop the equality condition in the inequalities (1) and (2) because $n \in N-\{0\}$, but $k_{1} \sqrt{2}$ and $k_{2}(2+\sqrt{2})$ are two irrational numbers
Thus we get

$$
\begin{array}{lcc}
n< & k_{1} \sqrt{2} & <n+1 \\
n< & k_{2}(2+\sqrt{2}) & <n+1 \tag{4}
\end{array}
$$

Spectrum Fact Proof

We divide (3) by $\sqrt{2}$ and (4) by $k_{2}(2+\sqrt{2})$

$$
\begin{align*}
& \frac{n}{\sqrt{2}}<k_{1}<\frac{n+1}{\sqrt{2}} \tag{5}\\
& \frac{n}{+\sqrt{2}}<k_{2}<\frac{n+1}{2+\sqrt{2}}
\end{align*}
$$

Now we add (5) and (6) together, to get:

$$
\frac{n}{\sqrt{2}}+\frac{n}{2+\sqrt{2}}<k_{1}+k_{2}<\frac{n+1}{\sqrt{2}}+\frac{n+1}{2+\sqrt{2}}
$$

Grouping for n and $n+1$

$$
n\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)<k_{1}+k_{2}<(n+1)\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)
$$

Spectrum Fact Proof

The two factors for n and $n+1$ are equal
Let's evaluate them

$$
\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}=\frac{2+2 \sqrt{2}}{\sqrt{2}(2+\sqrt{2})}=\frac{2+2 \sqrt{2}}{2 \sqrt{2}+\sqrt{2} \sqrt{2}}=\frac{2+2 \sqrt{2}}{2 \sqrt{2}+2}=1
$$

This simplifies our inequality to

$$
n<k_{1}+k_{2}<n+1
$$

But this is a contradiction:
n and $n+1$ are two consecutive integers, so no other integer $k_{1}+k_{2}$ can belong to the interval

Finite Spectrum Partition Theorem

We get as a collolary that $A_{n} \cap B_{n}=\emptyset$
We have hence by Fact P2 finally proved the Finite Spectrum Partition Theorem

1. $A_{n} \neq \emptyset$ and $B_{n} \neq \emptyset$
2. $A_{n} \cap B_{n}=\emptyset$
3. $A_{n} \cup B_{n}=\{1,2, \ldots n\}$

It was a LONG WAY! but we are not finished yet!
All we got is the Finite Spectrum Partition Theorem not the "full" Spectrum Partition Theorem

Spectrum Partition Theorem Proof

Spectrum Partition Theorem

1. $\operatorname{Spec}(\sqrt{2}) \neq \emptyset$ and $\operatorname{Spec}(2+\sqrt{2}) \neq \emptyset$
2. $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\emptyset$
3. $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}$

Proof

1. holds by definition of the spectrum, as always
$\lfloor\alpha\rfloor \in \operatorname{Spec}(\alpha)\lfloor\alpha\rfloor$
2. holds by just proved Spectrum Fact
3. - the proof follows

Observe that

$$
\text { S } \operatorname{Spec}(\sqrt{2})=\bigcup_{n \geq 1} A_{n} \text { and } \operatorname{Spec}(2+\sqrt{2})=\bigcup_{n \geq 1} B_{n}
$$

Spectrum Partition Theorem Proof

From the Finite Spectrum Partition Theorem we have that for all $n \in N-\{0\}$

$$
A_{n} \cup B_{n}=\{1,2, \ldots n\}
$$

Hence by

$$
\bigcup_{n \geq 1}\left(A_{n} \cup B_{n}\right)=\bigcup_{n \geq 1}\{1,2, \ldots n\}=N-\{0\}
$$

But by above the general sums distributivity law we get the following

$$
\bigcup_{n \geq 1}\left(A_{n} \cup B_{n}\right)=\bigcup_{n \geq 1} A_{n} \cup \bigcup_{n \geq 1} B_{n}=N-\{0\}
$$

Spectrum Partition Theorem Proof

But by definition S

$$
\text { S } \operatorname{Spec}(\sqrt{2})=\bigcup_{n \geq 1} A_{n} \text { and } \operatorname{Spec}(2+\sqrt{2})=\bigcup_{n \geq 1} B_{n}
$$

we get

$$
\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=N-\{0\}
$$

THIS ENDS THE PFOOF!!

General Spectrum Partition Theorem

We are going now to give a proof of our Spectrum Partition Theorem that is independent of the BOOK

It is simple and elegant and ... does not use the SUMS!

Do do so, we GENERALIZE the problem a bit, prove the generalization and get our Theorem as a particular case Here it is!

Generalization

General Spectrum Partition Theorem

Let $\alpha>0, \beta>0, \alpha, \beta \in R-Q$ be such that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

Then the sets

$$
\begin{array}{ll}
A=\{\lfloor n \alpha\rfloor: & n \in N-\{0\}\}=\operatorname{Spec}(\alpha) \\
B=\{\lfloor n \beta\rfloor: & n \in N-\{0\}\}=\operatorname{Spec}(\beta)
\end{array}
$$

form a partition of $Z^{+}=N-\{0\}$, i.e.

1. $A \neq \emptyset$ and $B \neq \emptyset$
2. $A \cap B=\emptyset$
3. $A \cup B=Z^{+}$

Proof

Proof

1. $A \neq \emptyset$ and $B \neq \emptyset$ holds as $\lfloor\alpha\rfloor \in A$ and $\lfloor\beta\rfloor \in B$

We prove this fact by contradiction
Assume that $A \cap B \neq \emptyset$
By definition it means that there is $k \in Z^{+}$such that

$$
k \in A \quad \text { and } \quad k \in B
$$

i.e. there are $i, j \in Z^{+}$such that

$$
k=\lfloor i \alpha\rfloor \quad \text { and } \quad k=\lfloor j \beta\rfloor
$$

We use now property
8. $\lfloor x\rfloor=k$ if and only if $k \leq x<k+1$ for $x \in R, n \in Z^{+}$

Proof

By 8. convert these two equalities to two inequalities

$$
\begin{align*}
& k \leq i \alpha<k+1 \tag{7}\\
& k \leq j \beta<k+1 \tag{8}
\end{align*}
$$

Now we can drop the equality condition in the inequalities (7) and (8) because $k \in Z^{+}$, but $\alpha, \beta \in R-Q$, so $i \alpha, j \beta$ can't be integers
Thus we get

$$
\begin{align*}
& k<i \alpha<k+1 \tag{9}\\
& k<j \beta<k+1 \tag{10}
\end{align*}
$$

Proof

We divide (9) by α and (10) by β - we can do it as $\alpha>0, \beta>0$ and we get

$$
\begin{align*}
& \frac{k}{\alpha}<i<\frac{k+1}{\alpha} \tag{11}\\
& \frac{k}{\beta}<j<\frac{k+1}{\beta} \tag{12}
\end{align*}
$$

Now we add (11) and (12) together, to get:

$$
\frac{k}{\alpha}+\frac{k}{\beta}<i+j<\frac{k+1}{\alpha}+\frac{k+1}{\beta}
$$

Grouping for k and $k+1$

$$
k\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)<i+j<(k+1)\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)
$$

Proof

The two factors for k and $k+1$ are equal by the Theorem assumption

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

This simplifies our inequality to

$$
k<i+j<k+1
$$

But this is a contradiction:
k and $k+1$ are two consecutive positive integers, so
no other positive integer $i+j$ can belong to the interval

Haven't you seen a similar proof before???

Proof

Now as the last step we prove
3. $A \cup B=Z^{+}$

We carry proof by contradiction
Assume that $\quad A \cup B \neq Z^{+}$
It means that there is $k \in Z^{+}$such that

$$
k \notin A \quad \text { and } \quad k \notin B
$$

By definition of sets A, B we have

$$
\begin{array}{ll}
k \notin A & \text { iff } \quad k \neq\lfloor n \alpha\rfloor \\
k \notin B & \text { iff all } n \in Z^{+} \\
k \neq\lfloor n\rfloor & \text { for all } n \in Z^{+}
\end{array}
$$

Proof

Observe that if $k \neq\lfloor n \alpha\rfloor$ for all $n \in Z^{+}$, then as $\lfloor n \alpha\rfloor \neq k,\lfloor(n+1) \alpha\rfloor \neq k$, and $\lfloor n \alpha\rfloor<\lfloor(n+1) \alpha\rfloor$ there exist $i_{0}, j_{0} \in Z^{+}$such that

$$
\text { (*) }\left\lfloor i_{0} \alpha\right\rfloor<k \quad \text { and } \quad\left\lfloor\left(i_{0}+1\right) \alpha\right\rfloor \geq k+1
$$

and similarly

$$
(\star \star)\left\lfloor j_{0} \beta\right\rfloor<k \quad \text { and } \quad\left\lfloor\left(j_{0}+1\right) \beta\right\rfloor \geq k+1
$$

We now transform ($*$) and ($* *$) by using he properties
13. $\lfloor x\rfloor<n$ if and only if $x<n$
16. $x \geq\lfloor n\rfloor$ if and only if $x \geq n$

Proof

Now we can drop the equality condition applying the inequality 16. because with $k \in Z^{+}$and $\alpha, \beta \in R-Q$, we have that $\left(i_{0}+1\right) \alpha,\left(j_{0}+1\right) \beta$ can't be integers
We get hence that

$$
\begin{aligned}
& \text { (1) } i_{0} \alpha<k \text { and }\left(i_{0}+1\right) \alpha>k+1 \\
& \text { (2) } j_{0} \beta<k \text { and }\left(j_{0}+1\right) \beta>k+1
\end{aligned}
$$

We re-write (1), (2) respectively as follows

$$
\begin{aligned}
& \alpha<\frac{k}{i_{0}} \text { and } \alpha>\frac{k+1}{\left(i_{0}+1\right)} \\
& \beta<\frac{k}{j_{0}} \quad \text { and } \quad \beta>\frac{k+1}{\left(j_{0}+1\right)}
\end{aligned}
$$

Proof

We know that for any $a, b \in Z^{+}$,

$$
a<b \quad \text { iff } \quad \frac{1}{a}>\frac{1}{b}
$$

We hence re-write (1), (2) further as

$$
\frac{1}{\alpha}>\frac{i_{0}}{k} \quad \text { and } \quad \frac{1}{\alpha}<\frac{i_{0}+1}{k+1}
$$

i.e

$$
\text { (3) } \frac{i_{0}}{k}<\frac{1}{\alpha}<\frac{i_{0}+1}{k+1}
$$

and similarly we get

$$
\text { (4) } \frac{j_{0}}{k}<\frac{1}{\beta}<\frac{j_{0}+1}{k+1}
$$

Proof

Adding (3) and (4) and using the assumption

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

we get that

$$
\frac{i_{0}+j_{0}}{k}<1<\frac{i_{0}+j_{0}+2}{k+1}
$$

This is equivalent to

$$
\begin{aligned}
& \frac{i_{0}+j_{0}}{k}<1 \quad \text { and } \quad 1<\frac{i_{0}+j_{0}+2}{k+1} \\
& i_{0}+j_{0}<k \quad \text { and } \quad k+1<i_{0}+j_{0}+2
\end{aligned}
$$

Hence

$$
i_{0}+j_{0}<k<i_{0}+j_{0}+1
$$

Contradiction! as $i_{0}, j_{0}, k \in Z^{+}$
This ends the proof

Floor and Ceilings Sums

Example Evaluate

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor
$$

Hint: use

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{0 \leq k<n} \sum_{m \geq 0, m=\lfloor\sqrt{k}\rfloor} m
$$

We evaluate

$$
\begin{gathered}
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{0 \leq k<n} \sum_{m \geq 0} m[m=\lfloor\sqrt{k}\rfloor] \\
=\sum_{m \geq 0} \sum_{k \geq 0} m[k<n][m=\lfloor\sqrt{k}\rfloor]
\end{gathered}
$$

Floor and Ceilings Sums

We use now property and get

$$
\text { 8. }\lfloor x\rfloor=n \text { if and only if } n \leq x<n+1
$$

and we get

$$
\begin{gathered}
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m \geq 0, k \geq 0} m[k<n][m \leq \sqrt{k}<m+1] \\
=\sum_{m \geq 0, k \geq 0} m\left[k<n \cap m^{2} \leq k<(m+1)^{2}\right]
\end{gathered}
$$

Let's look now at

$$
P(k, m, n) \equiv k<n \cap m^{2} \leq k<(m+1)^{2}
$$

Floor and Ceilings Sums

We evaluate $\quad P(k, m, n) \equiv k<n \cap m^{2} \leq k<(m+1)^{2}$

$$
\equiv m^{2} \leq k<n<(m+1)^{2} \cup m^{2} \leq k<(m+1)^{2} \leq n
$$

i.e. $\quad P(k, m, n) \equiv Q \cup R$ and we know that

$$
\sum_{m, k}[Q \cup R]=\sum_{m, k}[Q]+\sum_{m, k}[R]-\sum_{m, k}[Q \cap R]
$$

and here $Q \cap R$ is false, i.e. $\quad \sum_{m, k}[Q \cap R]=0 \quad$ and we get

$$
\begin{gathered}
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m, k \geq 0} m\left[m^{2} \leq k<n<(m+1)^{2}\right] \\
\quad+\sum_{m, k \geq 0} m\left[m^{2} \leq k<(m+1)^{2} \leq n\right]
\end{gathered}
$$

Floor and Ceilings Sums

Assume now $n=a^{2}$ for certain $a \in N$, i.e. n is a perfect square
The first sum becomes

$$
\sum_{m, k \geq 0} m\left[m^{2} \leq k<a^{2}<(m+1)^{2}\right]=0
$$

because the statement

$$
m^{2} \leq k<a^{2}<(m+1)^{2}
$$

is FALSE as there is no $a \in N$ such that $m<a<m+1$

Floor and Ceilings Sums

We proved that

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m, k \geq 0} m\left[m^{2} \leq k<(m+1)^{2} \leq a^{2}\right]
$$

Evaluate now

$$
\begin{gathered}
m^{2} \leq k<(m+1)^{2} \leq a^{2} \equiv m^{2} \leq k<(m+1)^{2} \cap(m+1)^{2} \leq a^{2} \\
\equiv m^{2} \leq k<(m+1)^{2} \cap(m+1) \leq a \\
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m, k \geq 0} m\left[m^{2} \leq k<(m+1)^{2}\right][(m+1) \leq a]
\end{gathered}
$$

Floor and Ceilings Sums

We evaluate

$$
\begin{aligned}
& \sum_{m, k \geq 0} m\left[m^{2} \leq k<(m+1)^{2}\right][(m+1) \leq a] \\
= & \sum_{m \geq 0} \sum_{k \geq 0} m[(m+1) \leq a]\left[m^{2} \leq k<(m+1)^{2}\right] \\
= & \sum_{m \geq 0} m[(m+1) \leq a] \sum_{k \geq 0}\left[m^{2} \leq k<(m+1)^{2}\right] \\
= & \sum_{m \geq 0} m[(m+1) \leq a] \sum_{k \geq 0}\left[k \in\left[m^{2} \ldots(m+1)^{2}\right)\right]
\end{aligned}
$$

Floor and Ceilings Sums

We recall the properties

$$
\sum_{k}[R(k)]=\sum_{R(k)} 1=|R(k)|
$$

$[\alpha \ldots \beta)$ contains exactly $\lceil\beta\rceil-\lceil\alpha\rceil$ integers and get

$$
\sum_{k \geq 0}\left[k \in\left[m^{2} \ldots(m+1)^{2}\right)\right]=2 m+1
$$

Hence

$$
\begin{gathered}
\sum_{m \geq 0} m[(m+1) \leq a] \sum_{k \geq 0}\left[k \in\left[m^{2} \ldots(m+1)^{2}\right)\right] \\
=\sum_{m \geq 0} m(2 m+1)[(m+1) \leq a]=\sum_{m \geq 0}\left(2 m^{2}+m\right)[(m+1) \leq a]
\end{gathered}
$$

Floor and Ceilings Sums

We have hence proved that

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m \geq 0}\left(2 m^{2}+m\right)[(m+1) \leq a]
$$

Recall that $\quad x^{2}=x(x-1)=x^{2}-x \quad$ and $\quad x^{1}=x$
Evaluate
$2 m^{2}+m=2 m^{2}-2 m+2 m+m=2 m(m-1)+3 m=2 m^{2}+3 m^{1}$
Also we have that $m+1 \leq a$ iff $m<a$, so now

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\sum_{m \geq 0}\left(2 m^{2}+3 m^{1}\right)[m<a]
$$

Floor and Ceilings Sums

Last steps

$$
\begin{gathered}
\sum_{m \geq 0}\left(2 m^{2}+3 m^{1}\right)[m<a]=\sum_{0 \leq m<a}\left(2 m^{2}+3 m^{1}\right) \\
=\sum_{0}^{a}\left(2 m^{2}+3 m^{-}\right) \delta m=\left.\left(2 \frac{m^{3}}{3}+3 \frac{m^{2}}{2}\right)\right|_{0} ^{a} \\
=\frac{2}{3} m(m-1)(m-2)+\left.\frac{3}{2} m(m-1)\right|_{0} ^{a}=\frac{1}{6}(a-1) a(a+1)
\end{gathered}
$$

and

$$
\sum_{0 \leq k<n}\lfloor\sqrt{k}\rfloor=\frac{1}{6}(a-1) a(a+1)
$$

Homework: do the case (page 87) $a=\lfloor\sqrt{k}\rfloor$
END of CHAPTER 3

