cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 12

CHAPTER 4 NUMBER THEORY

PART1: Divisibility

PART 2: Primes

PART 1: DIVISIBILITY

Basic Definitions

Definition

Given $m, n \in Z$, we say
m divides n or n is divisible by m if and only if
$m \neq 0$ and $n=m k$, for some $k \in Z$

We write it symbolically

$$
m \mid n \quad \text { if and only if } n=m k, \text { for some } k \in Z
$$

Definition
If $m \mid n$, then m is called a divisor or a factor of n
We call $n=m k$ a decomposition or a factorization of n

Basic Definitions

Definition

Let m be a divisor of n, i.e. $n=m k$
Cleary: $k \neq 0$ is also a divisor of n and is uniquely determined by m

Definition
Divisors of of n occur in pairs (m,k)

Definition

$n \in Z$ is a square number if and only if all its divisors of
n are (m, m) i.e when $n=m^{2}$

Basic Facts

Fact 1

If (m, k) is a divisor of n so is $(-m,-k)$
Proof
$n=m k$, so $n=(-m)(-k)=m k$

Definition

$(-m,-k)$ is called an associated divisor to (m, k)

Fact 2

± 1 together with $\pm n$ are trivial divisors of n
Proof Each number n has an obvious decomposition
$(1, n),(-1,-n)$ as $n=1 n=(-1)(-n)$

Basic Facts

Fact 3

If $\mathrm{m} \mid \mathrm{n}$ and $\mathrm{n} \mid \mathrm{m}$, then m, n are associated, i.e $m= \pm n$ Proof
Assume $\mathrm{m} \mid \mathrm{n}$ i.e. $n=m k_{1}$, also $\mathrm{n} \mid \mathrm{m}$ i.e. $m=n k_{2}$, for $k_{1}, k_{2} \in Z$
So $n=n k_{1} k_{2}$ iff $k_{1}=k_{2}=1$ and $m=n$
or $k_{1}=k_{2}=-1$, and $m=-n$

Fact 4
If $m \mid n_{1}$ and $m \mid n_{2}$ then $m \mid\left(n_{1} \pm n_{2}\right)$
Proof
Assume $m \mid n_{1}$ i.e. $\quad n_{1}=m k_{1}$, and $m \mid n_{2}$ i.e. $\quad n_{2}=m k_{2}$ Hence $\quad n_{1} \pm n_{2}=m\left(k_{1} \pm k_{2}\right)$ i.e. $m \mid\left(n_{1} \pm n_{2}\right)$

Basic Facts

Fact 5

If $m \mid n$ and $n \mid k$ then $m \mid k$

Proof

$m \mid n$ iff $n=m k_{1}$ and $n \mid k$ iff $k=n k_{2}$
Hence $k=m k_{1} k_{2}$ iff $m \mid k$

In most questions regarding divisors we assume that $m>0$ and only consider positive divisors (m, k)

We look first at positive factorizations and then we work out others

Book Definition

The Book Definition
For $n, m, k \in Z$

$$
m \mid n \text { if and only if } m>0 \text { and } n=m k
$$

It means the The Book considers only positive divisors $(m, k), m>0, k \in Z$

Definition

All positive divisors, including 1, that are less than n are called proper divisors of n

Basic Facts

Fact 6

If (m, k) is a divisor of n then the factors m, k can't be both $>\sqrt{n}$
Proof
Assume that for both factors $m>\sqrt{n}$ and $k>\sqrt{n}$, then $m k>\sqrt{n} \sqrt{n}=n$; we got a contradiction with $n=m k$

Fact 6 Rewrite
If (m, k) is a divisor of n , then $m \leq \sqrt{n}$ or $k \leq \sqrt{n}$

Example

Problem

Find all divisors of $n=60$
By the Fact 6 the number of divisors of $m \leq \sqrt{n}=\sqrt{60}$ i.e.

$$
m \leq \sqrt{60}<\sqrt{64}=8
$$

Hence $m<8, \quad m=1,2,3,4,5,6,7$ and we have six pairs of divisors

$$
\begin{array}{lll}
(1,60) & (3,20) & (5,12) \\
(2,30) & (4,15) & (6,10)
\end{array}
$$

Division and Remainders

Let $b \neq 0$ and $b \in Z$
Then any $a \in Z$ is either a multiple of b or alls between two consecutive multiples $q b$ and $(q+1) b$ of b We write it:

$$
a=q b+r \quad q \in Z \quad r=0,1,2, \ldots,|b|-1
$$

r is called the least positive remainder or simply the remainder of a by division with b

$$
0 \leq r<|b|
$$

q is the incomplete quotient or simply the quotient

Division and Remainders

Note

Given $a, b \in Z, b \neq 0$ the quotient q and the remainder r are uniquely determined and each integer $a \in Z$ can be written as:

$$
a=q b+r \quad 0 \leq r<|b|
$$

Example

$$
\begin{array}{ll}
321=4 \cdot 74+25 & q=4, \quad b=74, \quad r=25 \\
46=(-2)(-17)+12 & q=-2, \quad b=-17, \quad r=12
\end{array}
$$

$$
\text { In particular any } n \in N, \quad n=2 q \text { (even) or } n=2 q+1 \text { (odd) }
$$

Division and Remainders

Theorem

The square of $n \in Z$ is either divisible by 4 , or leaves the remainder 1 when divided by 4

Proof

Case 1: $\quad n=2 q, n^{2}=(2 q)^{2}=4 q^{2}$
Case2: $\quad n=2 q+1, n^{2}=4 q^{2}+4 q+1=4\left(q^{2}+q\right)+1$

Division and Remainders

Let $b \neq 0 ; a, b, q \in Z$

$$
a=q b+r \quad 0 \leq r<|b|
$$

We re-write is as

$$
\frac{a}{b}=q+\frac{r}{b} \quad 0 \leq \frac{r}{b}<1
$$

Fact $\quad q$ is the greatest integer such that $q \leq \frac{a}{b}$

Division and Remainders

Special Notation

Old notation
[q] = greatest integer such that it is less or equal $\frac{a}{b}$
Modern notation
$\left\lfloor\frac{a}{b}\right\rfloor=$ greatest integer such that it is less or equal $\frac{a}{b}$

Modern notation comes from K.E. Iverson, 1960

Division and Remainders

Book, page 67
FLOOR: $\lfloor x\rfloor=$ the greater integer $q, q \leq x$
CEILING: $\lceil x\rceil=$ the least integer $q, q \geq x$
$q=\left\lfloor\frac{a}{b}\right\rfloor=$ the greatest integer $q, q \leq \frac{a}{b}$ is also called the greatest integer contained in $\frac{a}{b}$
Example

$$
\left\lfloor\frac{25}{5}\right\rfloor=5, \quad\left\lfloor\frac{5}{3}\right\rfloor=1, \quad\lfloor 2\rfloor=2, \quad\left\lfloor\frac{-1}{3}\right\rfloor=-1, \quad\left\lfloor\frac{1}{3}\right\rfloor=0
$$

Division and Remainders

We extent notation to Real numbers

$$
x, y, q \in R \quad x=\lfloor x\rfloor+y, \quad 0 \leq y<1
$$

Example

$$
\lfloor\pi\rfloor=3, \quad\lfloor e\rfloor=2, \quad\left\lfloor\pi^{2} / 2\right\rfloor=4
$$

Back to the Chapter 3 - we used notation $\{x\}$ for y

Number Systems

Given $a, b \in N$, we represent a on base b as
$a=a_{n} b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b^{1}+a_{0}$ where $a_{i} \in\{0,1,, b-1\}$
We write it as

$$
a=\left(a_{n}, a_{n-1}, a_{1}, a_{0}\right)_{b}
$$

Questions

1. How to find the representation of a on base b ?
2. How to pass from one base to the other?

This we did show already in Chapter 1!

Number Systems

Consider

$$
a=a_{n} b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b^{1}+a_{0}
$$

Observation 1

a_{0} is the remainder of a by division by b as

$$
a=b\left(a_{n} b^{n-1}+\ldots+a_{1} b^{0}\right)+a_{0}
$$

So we have

$$
a=q_{1} b+a_{0} \quad \text { where } \quad q_{1}=a_{n} b^{n-1}+\ldots+a_{2} b+a_{1}
$$

Number Systems

Consider now

$$
q_{1}=b\left(a_{n} b^{n-2}+\ldots+a_{2}\right)+a_{1}
$$

Observation 2
a_{1} is the remainder of q_{1} by division by b and

$$
q_{1}=b q_{2}+a_{1} \quad \text { where } \quad q_{2}=a_{n} b^{n-2}+\ldots+a_{3} b+a_{2}
$$

Repeat

a_{i} is the remainder of q_{i} by division by b, for $i=1 \ldots n-1$
to find all $a_{1}, a_{2},, a_{n}$

Examples

Example

Represent 1749 in a system with base 7

$$
\begin{aligned}
1749 & =249 \cdot 7+6 \\
249 & =35 \cdot 7+4 \\
35 & =5 \cdot 7+0 \\
a_{0}=6, \quad a_{1} & =4, \quad a_{2}=0, \quad a_{3}=5
\end{aligned}
$$

So we get

$$
1749=(5,0,4,6)_{7}
$$

Examples

Example

Represent 19151 in a system with base 12

$$
\begin{aligned}
19151 & =1595 \cdot 12+11 \\
1595 & =132 \cdot 12+11 \\
132 & =11 \cdot 12+0 \\
a_{0}=11, \quad a_{1} & =11, \quad a_{2}=0, \quad a_{3}=11
\end{aligned}
$$

So we get

$$
19151=(11,0,11,11)_{12}
$$

Number Systems

We evaluated the components

$$
a_{0}, a_{1}, \ldots, a_{n}
$$

from the lowest a_{0} upward to a_{n}

Now let's evaluate a_{0}, \ldots, a_{n} downward from a_{n} to a_{0}

In this case we have to determine the highest power of b such that b^{n} is less than a, while the next power b^{n+1} exceeds a

Number Systems

We look for division of a by b^{n} and

$$
\begin{gathered}
a=a_{n} b^{n}+r_{n-1} \\
r_{n-1}=a_{n-1} b^{n-1}++a_{0}
\end{gathered}
$$

We determine a_{n-1} from r_{n-1}

$$
\begin{gathered}
r_{n-1}=a_{n-1} b^{n-1}+r_{n-2} \\
r_{n-2}=a_{n-2} b^{n-2}+\ldots+a_{0}
\end{gathered}
$$

We determine a_{n-2} from r_{n-2}

$$
r_{n-2}=a_{n-2} b^{n-2}+r_{n-3} \quad \text { and etc } \ldots
$$

Example

Example

Represent 1832 to the base 7
First calculate powers of 7

$$
7^{1}=7 \quad 7^{2}=49 \quad 7^{3}=343 \quad 7^{4}=2401
$$

and then calculate

$$
\begin{array}{cc}
a=a_{n} b^{n}+r_{n-1} & \text { for } \\
& n=3 \\
1832=5 \cdot 7^{3}+117 & \\
117=2 \cdot 7_{3}=5 \\
& \\
19=2 \cdot 7+5 & a_{2}=2 \\
& a_{1}=2, \\
& a_{0}=5
\end{array}
$$

We obtained

$$
1832=(5,2,2,5)_{7}
$$

Greatest Common Divisor

Definition Common Divisor

Let $a, b, c \in Z$
If c divides a and b simultanously, then c is called a common divisor of a and b

Symbolically
c is a common divisor of a and b iff $c \mid a$ and $c \mid b$

Greatest Common Divisor

Let $A=\{c: c \mid a$ and $c \mid b\}$ be the set of all common divisors of a and b

The set A is finite, so the poset (A, \leq) is a finite, with a total (linear) order and hence always has the greatest element

This greatest element is called a greatest common divisor (g.c.d.) of a and b and denoted by $\operatorname{gcd}(a, b)$
Remark The greatest element in the poset (A, \leq) is its unique maximal element so it justifies the BOOK definition

$$
\operatorname{gcd}(a, b)=\max \{c: \quad c|a \cap c| b\}
$$

Relatively Prime Numbers

Remark

Every number has the divisor 1, so $\operatorname{gcd}(a, b)$ is a positive integer, i.e. $\operatorname{gcd}(a, b) \in Z^{+}$
Definition
$a, b \in Z$ are relatively prime if and only if

$$
\operatorname{gcd}(a, b)=1
$$

Book notation
$a \perp b$ for $a, b \in Z$ relatively prime
Example
$\operatorname{gcd}(24,56)=8, \quad 24 \wedge 56$ and $\operatorname{gcd}(15,21)=1, \quad 15 \perp 22$

Euclid Algorithm

Theorem

Any common divisor of two numbers divides their greatest common divisor

Proof By procedure known as Euclid Algorism (Algorithm)
Euclid Algorism is known from seventh book of Euclid's Elements (about 300 BC); however it is certainly of earlier origin
Here it is
Let $a, b \in Z$ be two integers whose $\operatorname{gcd}(a, b)$ we want to be studied

Since there is only question of divisibility, there is no limitation in assuming that \mathbf{a}, \mathbf{b} are positive and \mathbf{a} is greater or equal \mathbf{b}, i.e.
$a, b \in Z^{+}$and $a \geq b$

Euclid Algorithm

1. We divide a by b with respect to the least positive remainder

$$
a=q_{1} b+r_{1} \quad 0 \leq r_{1}<b
$$

2. We divide b by r_{1} with respect to the least positive remainder

$$
b=q_{2} r_{1}+r_{2} \quad 0 \leq r_{2}<r_{1}
$$

3. We divide r_{1} by r_{2} with respect to the least positive remainder

$$
r_{1}=q_{2} r_{2}+r_{3} \quad 0 \leq r_{3}<r_{1}
$$

We continue the process

Euclid Algorithm

Observe that such obtained remainders

$$
r_{1}, \quad r_{2}, \quad r_{3}, \quad \ldots r_{n},
$$

form a decreasing sequence of positive integers

$$
r_{1}>r_{2}>r_{3}>\ldots r_{n}>\ldots
$$

and one must arrive on a division for which $r_{n+1}=0$, i.e. the Euclid Algorism process:
divide a by b , divide b by r_{1}, \ldots divide r_{k} by r_{k+1} must terminate

Euclid Algorithm

Euclid Algorism

$$
\begin{aligned}
& a=q_{1} b+r_{1} \\
& b=q_{2} r_{1}+r_{2} \\
& r_{1}=q_{2} r_{2}+r_{3} \\
& \ldots \quad \ldots \quad \ldots \\
& r_{n-2}=q_{n} r_{n-1}+r_{n} \\
& r_{n-1}=q_{n+1} r_{n}+0
\end{aligned}
$$

Theorem

$$
r_{n}=(a, b)=\operatorname{gcd}(a, b)
$$

Euclid Algorithm Example

Example

Find $\operatorname{gcd}(76084,63,020)$

$$
\begin{array}{cc}
76,084=63,020 \cdot 1+13,064 & q_{1}=1, r_{1}=13,064 \\
63,020=13,064 \cdot 4+10,764 & q_{2}=4, r_{2}=10,764 \\
13,064=10,764 \cdot 1+2,300 & q_{3}=1, r_{3}=2,300 \\
10,764=2,300 \cdot 4+1,564 & q_{4}=5, r_{4}=1,564 \\
2,300=1,564 \cdot 1+736 & q_{5}=1, r_{5}=736 \\
1,564=736 \cdot 2+92 & q_{6}=2, r_{6}=92 \\
736=92 \cdot 8+0 & q_{7}=8, r_{7}=0 \text { end } \\
\operatorname{gcd}(76084,63020)=(76084,63020)=r_{6}=92
\end{array}
$$

Euclid Algorithm Correctness Proof

Theorem

For any $a, b \in Z^{+} \quad$ and $a \geq b$, and the Euclid Algorithm applied to a, b the following holds

$$
\text { IF } \quad r_{n+1}=0 \quad \text { THEN } \quad r_{n}=\operatorname{gcd}(a, b)
$$

Proof

We conduct proof in two steps
Step 1 We show that the last non-vanishing remainder r_{n} is a common divisor of a and b

Step 2 We show that the r_{n} is the greatest common divisor of a and b

Euclid Algorithm Correctness Proof

Step 1 We show that the last non-vanishing remainder r_{n} is a common divisor of a and b, i.e. we show that

$$
r_{n} \mid a \quad \text { and } \quad r_{n} \mid b
$$

Assume that r_{n} is the last non-vanishing remainder, i.e. $r_{n-1}=q_{n+1} r_{n}$ and hence

$$
\text { 1. } r_{n} \mid r_{n-1}
$$

Observe that

$$
r_{n-2}=q_{n} r_{n-1}+r_{n}=q_{n} q_{n+1} r_{n}+r_{n}=r_{n}\left(q_{n} q_{n+1}+1\right)
$$

Hence
2. $r_{n} \mid r_{n-2}$

Euclid Algorithm Correctness Proof

Observe that

$$
r_{n-3}=q_{n-1} r_{n-2}+r_{n-1} \quad \text { and } \quad r_{n}\left|r_{n-1}, \quad r_{n}\right| r_{n-2}
$$

Hence

$$
r_{n} \mid r_{n-3}
$$

We carry our proof by double induction with 1. and 2. as base cases proved already to be true
Inductive Assumption

$$
r_{n} \mid r_{n-k} \text { and } r_{n} \mid r_{n-(k+1)} \text { for } k \geq 1
$$

Inductive Thesis

$$
r_{n} \mid r_{n-(k+2)}
$$

Euclid Algorithm Correctness Proof

Observe that

$$
r_{n-(k+2)}=q_{n-(k+1)} r_{n-(k+1)}+r_{n-k}
$$

and by inductive assumption

$$
r_{n}\left|r_{n-(k+1)}, \quad r_{n}\right| r_{n-k}
$$

Hence

$$
r_{n} \mid r_{n-(k+2)}
$$

By Double Induction Principle

$$
r_{n} \mid r_{n-k} \quad \text { for all } k \geq 1
$$

In particular case when $k=n-1$, and $k=n-2$ we get

$$
r_{n} \mid r_{1} \quad \text { and } \quad r_{n} \mid r_{2}
$$

Euclid Algorithm Correctness Proof

We have that

$$
b=q_{2} r_{1}+r_{2}
$$

and we just got $r_{n} \mid r_{1}$ and $r_{n} \mid r_{2}$
Hence

$$
r_{n} \mid b
$$

We also have that

$$
a=q_{1} b+r_{1}
$$

and we just got $r_{n} \mid r_{1}$ and $r_{n} \mid b$
Hence

$$
r_{n} \mid a
$$

It proves that r_{n} is a common divisor of a and b and it ends the proof of the Step 1

Euclid Algorithm Correctness Proof

Step 2 We show that the r_{n} is the greatest common divisor of a and b
Let A be a set of all common divisors of a and b, i.e.

$$
A=\{c: \quad c|a \cap c| b\}
$$

We have to show that for any $c \in A$

$$
c \mid r_{n}
$$

i.e. that r_{n} is the greatest element in the poset (A, \mid)

Exercise: Show that | is an order (partial order) relation in Z

Euclid Algorithm Correctness Proof

We have

$$
a=q_{1} b+r_{1} \text { and } r_{1}=a-q_{1} b
$$

so for any $c \in A, \quad c \mid a$ and $c \mid b$, hence

$$
c \mid r_{1}
$$

Similarly

$$
b=q_{2} r_{1}+r_{2} \text { and } r_{2}=b-q_{2} r_{1}
$$

and $c \mid b$ and $c \mid r_{1}$, hence

$$
c \mid r_{2}
$$

By Mathematical Induction

$$
c \mid r_{k} \quad \text { for all } k \geq 1
$$

and in particular

$$
c \mid r_{n}
$$

what ends the proof of the correctness of the Euclid Algorithm

Faster Algorithm

Kronecker (1823-1891) proved that no Euclid Algorism can be shorter then one obtained by least absolute remainders - r_{n} can be negative
Example Find $\operatorname{gcd}(76084,63020)$ by the least absolute remainders

$$
\begin{gathered}
76,084=63,020 \cdot 1+13,064 \\
63,020=13,064 \cdot 5-2,300 \\
13,064=2,300 \cdot 6-736 \\
2,300=736 \cdot 2+92 \\
736=92 \cdot 8 \\
\operatorname{gcd}(76084,63020)=92
\end{gathered}
$$

We did it in 5 steps instead of 7 steps

"mod" Binary Operation

Definition

For any $x, y \in R$ we define a binary relation $\bmod \subseteq R \times R$ as

$$
x \bmod y=x-y\left\lfloor\frac{x}{y}\right\rfloor \text { for } y \neq 0
$$

and

$$
x \bmod 0=x
$$

Example

$$
\begin{gathered}
5 \bmod 3=5-3\left\lfloor\frac{5}{3}\right\rfloor=5-3 \cdot 1=2 \\
5 \bmod (-3)=5-(-3)\left\lfloor\frac{5}{-3}\right\rfloor=5-(-3) \cdot(-1)=-1
\end{gathered}
$$

"mod" Binary Operation

Observe that when $a, b \in Z, b \neq 0$ we get

$$
a=b\left\lfloor\frac{a}{b}\right\rfloor+a \bmod b
$$

and

$$
a=b q+r \text { for } q=\left\lfloor\frac{a}{b}\right\rfloor, \quad r=a \bmod b
$$

Fact

For any $a, b \in Z, b \neq 0$,
a mod b is a remainder in the division of a by b
Example
We evaluated $r_{1}=5 \bmod 3=2, \quad r_{2}=5 \bmod (-3)=-1$ and we have

$$
5=3 \cdot 1+2 \text { and } 5=(-3)(-1)-1
$$

"mod" Euclid Algorithm

We use the the mod relation to formulate a more modern version of Euclid Algorithm
We define a recursive function f for any $m, n \in Z, \quad 0 \leq m<n$ we put

$$
\begin{gathered}
f(m, n)=f(n \bmod m, m) \text { for } m>0 \\
f(0, n)=n \quad \text { for } \quad m=0
\end{gathered}
$$

Theorem

For any $a, b \in Z, \quad 0 \leq a<b$
If the function $f=f(m, n)$ applied recursively to a, b as the initial values terminates at $f(0, k)$, then

$$
\operatorname{gcd}(a, b)=f(0, k)
$$

Proof Book pages 103, 103 - but this is just a translation of our proven theorem!

Examples

Example 6

$$
f(m, n)=f(n \bmod m, m) \text { for } m>0, \quad f(0, n)=n
$$

$f(12,18)=f(6,12)=f(0,6)=6 \quad \operatorname{gcd}(12,18)=f(0,6)=6$

Example 2

$f(63020,76084)=f(13064,63020)=f(10764,13064)$

$$
=f(2300,107640)=f(1564,2300)=f(736,1564)
$$

$$
f(92,736)=f(0,92)
$$

$$
\operatorname{gcd}(63020,76084)=f(0,92)=92
$$

Some Consequences of Euclid Algorithm

Definition
$m, n \in N-\{0,1\}$ are relatively prime if and only if $\operatorname{gcd}(m, n)=1$
Notation $n \perp m$ for m, n relatively prime

We now use Euclid Algorithm to derive other properties of the gcd. The most important one is the following Division Lemma
When a product ac of two natural numbers is divisible by a number b that is relatively prime to a, the factor c must be divisible by b

Some Consequences of Euclid Algorithm

Division Lemma written symbolically

$$
\text { If } b \mid a c \text { and } a \perp b \text { then } b \mid c
$$

Proof

Since $a \perp b$, i.e. $\operatorname{gcd}(m, n)=1$, hence the last remainder r_{n} in the Euclid Algorithm must be 1, so EA has a form

$$
\begin{gathered}
a=q_{1} b+r_{1} \\
b=q_{2} r_{1}+r_{2} \\
\ldots \quad \ldots \\
r_{n-2}=q_{n} r_{n-1}+1
\end{gathered}
$$

Some Consequences of Euclid Algorithm

Multiply by c

$$
\begin{gathered}
a c=q_{1} b c+r_{1} c \\
b c=q_{2} r_{1} c+r_{2} c \\
\ldots \quad \ldots \\
r_{n-2} c=q_{n} r_{n-1} c+c
\end{gathered}
$$

and $b \mid a c$, so $b \mid r_{1} c$, and hence $b \mid r_{2} c$
By Mathematical Induction we get

$$
\forall i \geq 1\left(b \mid r_{i}\right)
$$

In particular $b \mid r_{n-2} c$, and hence $b \mid c$ It ends the proof

Some Consequences of Euclid Algorithm

Theorem 1

When a number is relatively prime to each of several numbers, it is relatively prime to their product

Symbolically

$$
\text { If } a \perp b_{i} \text {, for } i=1,2, \ldots k \text {, then } a \perp b_{1} b_{2} \ldots b_{k}
$$

Proof By contradiction; we show case $i=2$ and the rest is carried by Mathematical Induction
Assume $a \perp b$ and $a \perp c$, and $a \wedge b c$
By definition we have hence that $\operatorname{gcd}(a, b c) \neq 1$, i.e. a has a common divisor d with bc, i.e. there is d such that

$$
d \mid a \text { and } d \mid b c
$$

Some Consequences of Euclid Algorithm

We have that there is d such that

$$
d \mid a \text { and } d \mid b c
$$

and
$a \perp b$, and $d \mid a$, hence we get $d \perp b$
We also have
$a \perp c$, and $d \mid a$, hence we get $d \perp c$
So from $d \mid b c$ and $d \perp b$ we get by the Division Lemma that $d \mid c$ what is contrary to $d \perp c$
Exercise Write the full proof by Mathematical Induction

Some Consequences of Euclid Algorithm

Theorem 2

$$
\operatorname{gcd}(k a, k b)=k \cdot \operatorname{gcd}(a, b)
$$

Proof

$\operatorname{gcd}(a, b)=r_{n}$ in the Euclid Algorithm

$$
a=q_{1} b+r_{1}
$$

$$
\begin{aligned}
& r_{n-2}=q_{n} r_{n-1}+r_{n} \\
& r_{n-1}=q_{n+1} r_{n}+0
\end{aligned}
$$

We multiply each step by k

Some Consequences of Euclid Algorithm

We multiply each step by k

$$
k a=k q_{1} b+k r_{1}
$$

$$
\begin{array}{r}
k r_{n-2}=k q_{n} r_{n-1}+k r_{n} \\
k r_{n-1}=q_{n+1} k r_{n}+0
\end{array}
$$

This is the Euclid Algorithm for $k a, k b$ and

$$
\operatorname{gcd}(k a, k b)=k \cdot r_{n}=k \cdot \operatorname{gcd}(a, b)
$$

Some Consequences of Euclid Algorithm

Theorem 3

Let $d=\operatorname{gcd}(a, b)$ be such that

$$
a=a_{1} d \quad \text { and } \quad b=b_{1} d
$$

Then

$$
a_{1} \perp b_{1}
$$

Proof

Evaluate using Theorem 2

$$
\begin{gathered}
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a_{1} d, b_{1} d\right) \\
=d \cdot \operatorname{gcd}\left(a_{1}, b_{1}\right)=\operatorname{gcd}(a, b) \operatorname{gcd}\left(a_{1}, b_{1}\right)
\end{gathered}
$$

So we get $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$, as $n k=k$ iff $k=1$
This means

$$
a_{1} \perp b_{1}
$$

Some Consequences of Euclid Algorithm

The Theorem 3 applies in elementary arithmetic in the reduction of fractions
Take any fraction and $a=a_{1} d, b=b_{1} d$

$$
\frac{a}{b}=\frac{a_{1} d}{b_{1} d}=\frac{a_{1}}{b_{1}}
$$

for

$$
a_{1} \perp b_{1}
$$

l.e any fraction can be represented in reduced form with numerator and denominator that are relatively prime

Least Common Multiple

A number m is said to be a common multiple of the numbers a and b when it is divisible by both of them For example, the product $a b$ is a common multiple of a and b

Since, as before there is only question of divisibility, there is no limitation in considering only positive multiples
Definition Common Multiple
Let $a, b, m \in Z$
$\mathrm{m}=\mathrm{cm}(\mathrm{a}, \mathrm{b})$ is a common multiple of a and b iff
$a \mid m$ and $b \mid m$ and $m>0$

Least Common Multiple

Let $A=\{m: \quad a \mid m$ and $b \mid m\}$ be the set of all common multiples of a and b
This least element is called a least common multiple (I.c.m.) of a and b and denoted by $\operatorname{lcm}(a, b)$

Remark The least element in the poset (A, \leq) is its unique minimal element so it justifies the BOOK definition

$$
\operatorname{lcm}(a, b)=\min \{m: \quad m>0 \text { and } a \mid m \text { and } b \mid m\}
$$

Least Common Multiple

Theorem 4

Any common multiple of a and b is divisible by $\operatorname{Icm}(\mathrm{a}, \mathrm{b})$ Proof
Let $m=c m(a, b)$
We divide m by $\operatorname{Icm}(a, b)$, i.e

$$
m=q \operatorname{lcm}(a, b)+r \quad 0 \leq r<\operatorname{lcm}(a, b)
$$

But $a \mid \operatorname{Icm}(a, b)$ and $b \mid \operatorname{Icm}(a, b)$ and $a \mid m$ and $b \mid m$ Hence $a \mid r$ and $b \mid r$ and r is a common multiple of a, b But $0 \leq r<\operatorname{lcm}(a, b)$, so $r=0$ what proves that $m=q \cdot \operatorname{lcm}(a, b)$, i.e. m is divisible by $\operatorname{Icm}(a, b)$

Least Common Multiple

Theorem 5

For any $a, b \in Z^{+}$such that $\operatorname{Icm}(a, b)$ and $\operatorname{gcd}(a, b)$ exist

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b
$$

Theorem 6

$$
\operatorname{lcm}(a, b)=a b \quad \text { if and only if } \quad a \perp b
$$

Exercise Prove both Theorems

PART 2: PRIME NUMBERS

Definition

Definition

A positive integer is called prime if it has only two divisors
1 and itself
We assume convention that 1 is not prime
We denote by P the set of all primes
Symbolically

$$
p \in P \subseteq N \text { if and only if } p>1 \text { and for any } k \in Z
$$

if $k \mid p$ then $k=1$ or $k=p$
Some primes

$$
2,3,3,5,7,11,13,17,19,23,29,31,37, \ldots
$$

Primes

Observe 2 is the only even prime!
Question Is 91 prime? No, it isn't as $91=7 \cdot 13$
Definition
$n \in N, n>1$ is called composite and denoted by CN, if it is not prime

Symbolically

$n \in C N$ if and only if $n \leq 1 \cup \exists_{k \in Z}(k \mid n \cap k \neq 1 \cap k \neq n)$
Directly from the definition we have that
Fact 1

$$
\forall_{m \in N-\{0,1\}}(m \in P \cup m \in C N) \quad \text { and } \quad P \cap C N=\emptyset
$$

Primes

Definition

$m, n \in N$ are relatively prime if and only if $\operatorname{gcd}(m, n)=1$
Notation $n \perp m$ for $m, n \in N$ relatively prime
Fact 2

$$
\forall_{p \in P} \forall_{n \in N}(p \perp n \cup p \mid n)
$$

Fact 3

A product of two numbers is divisible by a prime p only when p divides at least one of the factors
Symbolically

$$
\forall_{p \in P} \forall_{m, n \in Z}(p \mid m n \Rightarrow(p|m \cup p| n))
$$

Primes

Proof

Assume that Fact 3 is not true, i.e.

$$
\exists_{p \in P} \exists_{m, n \in Z}(p \mid m n \cap p \nmid m \cap p \nmid n)
$$

$p \nmid m$ so by Fact $2 p \perp m$. Now when $p \mid m n$ and $p \perp m$ we get by Fact 2 that $p \mid n$. We get a contradiction with $p \nmid n$
Observation
For any $p \in P, m, n \in Z$,
if p divides m or p divides m, then p divides $m n$
Proof Assume $p \mid m$, i.e. $m=k p$ for $k \in Z$. Hence $m n=k m p$ and $p \mid m n$. The case $p \mid m$ is similar

Primes

Because of the obvious character of the Observation we usually formulate and prove the Fact 3 in the following more general form
Fact 3a
A product of two numbers is divisible by a prime p if and only if p divides at least one of the factors
Symbolically

$$
\forall_{p \in P} \forall_{m, n \in Z}(p \mid m n \Leftrightarrow(p|m \cup p| n))
$$

Primes

Fact 4

A product $q_{1} q_{2} \ldots q_{n}$ of prime numbers (factors) q_{i} is divisible by a prime p only when $p=q_{i}$ for some q_{i}
Symbolically

$$
\forall_{p, q_{1} q_{2} \ldots q_{n} \in P}\left(p \mid \prod_{k=1}^{n} q_{k} \Rightarrow \exists_{1 \leq i \leq n}\left(p=q_{i}\right)\right)
$$

Proof

Let $p \mid \prod_{k=1}^{n} q_{k}$. By the Fact $3 p \mid q_{i}$ for some g_{i} where
$q_{i} \in P$; but $p>1$ as $1 \notin P$ hence $p=q_{i}$

Primes

Fact 5

Every natural number $n, n>1$ is divisible by some prime

Symbolically

$$
\forall_{n \in N, n>1} \exists_{p \in P}(p \mid n)
$$

Proof

When $n \in P$, this is evident as $n \mid n$
When n is composite it can be factored $n=n_{1} n_{2}$
where $n_{1}>1$
The smallest possible one of these divisors of n_{1} must be prime

Main Factorization Theorem

We are now ready to prove the main theorem about factorization. The idea of this theorem, as well as all Facts 1-5 we will use in proving it, can be found in Euclid's Elements in Book VII and Book IX

Main Factorization Theorem

Every composite number can be factored uniquely into prime factors

Main Factorization Theorem

We present here an "old" and pretty straightforward proof You have another proof in the Book pages 105-105 and all this without saying that it is a Theorem, and a quite important one

Proof We conduct it in two steps
Step 1 We show that every composite number $n>1$ is product of prime numbers
Step 2 We show the uniqueness

Main Factorization Theorem

Step 1 We show that every composite number $n>1$ is product of prime numbers
By Fact 5 there is $p_{1} \in P$ such that $n=p_{1} n_{1}$
If n_{1} is composite, then by Fact 5 again, $n_{1}=p_{2} n_{2}$
We continue this process with a decreasing sequence

$$
n_{1}>n_{2}>n_{3}>\ldots
$$

of numbers together with a corresponding sequence of prime numbers

$$
p_{1}, p_{2}, p_{3}, \ldots
$$

until some n_{k} becomes a prime, i.e. $n_{k}=p_{k}$ and we get

$$
n=p_{1} p_{2} p_{3} \ldots p_{k}
$$

Main Factorization Theorem

Step 2 We show the uniqueness
Assume that we have two different prime factorizations

$$
n=p_{1} p_{2} p_{3} \ldots p_{k}=q_{1} q_{2} q_{3} \ldots q_{m}
$$

Each $p_{i} \mid n$, so for each p_{i}

$$
p_{i} \mid \prod_{k=1}^{m} q_{k}
$$

By the Fact $4 \quad p_{i}=q_{j}$ for some j and $1 \leq j \leq m$
Conversely, we also have that each $q_{i} \mid n$, so for each q_{i}

$$
q_{i} \mid \prod_{n=1}^{k} p_{n}
$$

By the Fact $4 \quad q_{i}=p_{n}$ for some n and $1 \leq n \leq k$

Main Factorization Theorem

This proves that both sides of

$$
n=p_{1} p_{2} p_{3} \ldots p_{k}=q_{1} q_{2} q_{3} \ldots q_{m}
$$

contain the same primes
The only difference might be that a prime p could occur a greater number of times on one side then on the other In this case we cancel p on both sides sufficient number of times and get equation with p on one side, not the other This contradicts just proven the fact that both sides of the equation contain the same primes

Main Factorization Theorem

We re-write our Theorem in a more formal way as follows

Main Factorization Theorem

For any $n \in N, n>1$, there are $\alpha_{i} \in N, \alpha_{i} \geq 1$, and prime numbers $p_{1} \neq p_{2} \neq \ldots \neq p_{r} \quad r \geq 1, \quad 1 \leq i \leq r$, such that

$$
n=p_{1}{ }^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{r}^{\alpha_{r}}=\prod_{k=1}^{r} p_{k}^{\alpha_{k}}
$$

and this representation is unique
p_{i} 's are different prime factors of n
α_{i} is the multiplicity, i.e. the number of times p_{i} occurs in the prime factorization

Main Factorization Theorem; General Form

We write our Theorem shortly in a more general form, as in the Book (page 107)
Main Factorization Theorem General Form

$$
n=\prod_{p} p^{\alpha_{p}} \text { for } p \in P, \alpha_{p} \geq 0
$$

and this representation is unique

This is an infinite product, bur for any particular n all but few exponents $\alpha_{p}=0$, and $p^{0}=1$ Hence for a given n it is a finite product

Some Consequences of Main Factorization Theorem

We know, by the Main Factorization Theorem that any $n>1$ has a unique representation

$$
n=\prod_{p} p^{n_{p}} \text { for } p \in P, \quad n_{p} \geq 0
$$

Consider now the poset (P, \leq), i.e. we have that all prime numbers in P are in the sequence

$$
\begin{gathered}
p_{1}<p_{2}<\ldots p_{n}<\ldots \\
2<3<5<7<11<13<\ldots
\end{gathered}
$$

and we write

$$
n=\prod_{i \geq 1} p_{i}^{n_{i}} \text { for } n_{i} \geq 0
$$

Because of the uniqueness of the representation we can represent n as

$$
n=<n_{1}, n_{2}, n_{3}, \ldots n_{k}, \ldots>
$$

Example

Example

Reminder

$$
2<3<5<7<11<13<\ldots
$$

Here are few representations

$$
\begin{gathered}
7=7 \text { so } 7=<0,0,0,1,0, \ldots=<0,0,0,1> \\
12=2 \cdot 2 \cdot 3=2^{2} \cdot 3 \text { so } 12=<2,1,0,0, \ldots>=<2,1> \\
18=2 \cdot 3 \cdot 3=2 \cdot 3^{2} \text { so } 18=<1,2,0,0, \ldots>=<1,2>
\end{gathered}
$$

Some Consequences of Factorization Theorem

Observe that when we have the general representations

$$
k=\prod_{p} p^{k_{p}}, \quad n=\prod_{p} p^{n_{p}} \quad \text { and } \quad m=\prod_{p} p^{m_{p}}
$$

then we evaluate

$$
k=n \cdot m=\prod_{p} p^{n_{p}} \cdot \prod_{p} p^{m_{p}}=\prod_{p} p^{n_{p}+m_{p}}
$$

We have hence proved the following
Fact 6

$$
k=n \cdot m \quad \text { if and only if } \quad k_{p}=n_{p}+m_{p}, \text { for all } p \in P
$$

Some Consequences of Factorization Theorem

Fact 7

Let

$$
m=\prod_{p} p^{m_{p}} \quad \text { and } \quad n=\prod_{p} p^{n_{p}}
$$

Then
$m \mid n \quad$ if and only if $m_{p} \leq n_{p}$ for all $p \in P$

Proof

$m \mid n$ iff there is k, such that $n=m k$ and $k=\prod_{p} p^{k_{p}}$
By Fact 6 we get that $n=m k$ iff $n_{p}=k_{p}+m_{p}$ iff $m_{p} \leq n_{p}$ and it ends the proof

Some Consequences of Factorization Theorem

Directly from Fact 7 we definitions we get the following

Fact 8

$$
\begin{array}{lll}
k=\operatorname{gcd}(m, n) & \text { if and only if } & k_{p}=\min \left\{m_{p}, n_{p}\right\} \\
k=\operatorname{lcd}(m, n) & \text { if and only if } & k_{p}=\max \left\{m_{p}, n_{p}\right\}
\end{array}
$$

Example

Example 1

Let

$$
\begin{gathered}
12=2^{2} \cdot 3^{1} \quad 18=2^{1} \cdot 3^{2} \\
\operatorname{gcd}(12,18)=2^{\min \{2,1\}} \cdot 3^{\min \{2,1\}}=2^{1} \cdot 3^{1}=6 \\
\operatorname{lcm}(12,18)=2^{\max \{2,1\}} \cdot 3^{\max \{2,1\}}=2^{2} \cdot 3^{2}=36
\end{gathered}
$$

Example 2

Let

$$
\begin{gathered}
m=2^{6} \cdot 3^{2} \cdot 5^{1} \cdot 7^{0} \quad n=2^{5} \cdot 3^{3} \cdot 5^{0} \cdot 7^{0} \\
\operatorname{gcd}(m, n)=2^{\min \{6,5\}} \cdot 3^{\min \{2,3\}} \cdot 5^{\min \{1,0\}} \cdot 7^{\min \{0,0\}}=2^{5} \cdot 3^{2}
\end{gathered}
$$

$$
\operatorname{lcm}(m, n)=2^{6} \cdot 3^{3} \cdot 5 \cdot 7
$$

Exercises

1. Use Facts 6-8 to prove

Theorem 5
For any $a, b \in Z^{+}$such that $\operatorname{Icm}(a, b)$ and $\operatorname{gcd}(a, b)$ exist

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b
$$

2. Use Theorem 5 and the BOOK version of Euclid Algorithm to express lcm(n mod m, m) when nmodm $\neq 0$ This is Ch4 Problem 2
