# cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

## **LECTURE 12**

# CHAPTER 4 NUMBER THEORY

PART1: Divisibility

PART 2: Primes

# PART 1: DIVISIBILITY

## **Basic Definitions**

### **Definition**

Given  $m, n \in \mathbb{Z}$ , we say m divides n or n is divisible by m if and only if  $m \neq 0$  and n = mk, for some  $k \in \mathbb{Z}$ 

We write it symbolically

 $m \mid n$  if and only if n = mk, for some  $k \in \mathbb{Z}$ 

### **Definition**

If  $m \mid n$ , then m is called a **divisor** or a **factor** of n We call n = mk a **decomposition** or a **factorization** of n



## **Basic Definitions**

## **Definition**

Let m be a divisor of n, i.e. n = mk

Cleary:  $k \neq 0$  is also a **divisor** of n and is uniquely determined by m

## **Definition**

Divisors of of n occur in pairs (m,k)

## **Definition**

 $n \in \mathbb{Z}$  is a **square number** if and only if all its divisors of n are (m, m) i.e when  $n = m^2$ 



#### Fact 1

If (m,k) is a divisor of n so is (-m,-k)

## **Proof**

$$n = mk$$
, so  $n = (-m)(-k) = mk$ 

## **Definition**

(-m, -k) is called an associated divisor to (m, k)

## Fact 2

 $\pm 1$  together with  $\pm n$  are **trivial divisors** of n

**Proof** Each number n has an obvious decomposition (1, n), (-1, -n) as n = 1n = (-1)(-n)

### Fact 3

If m|n and n|m, then m,n are associated, i.e  $m = \pm n$ Proof

Assume m|n i.e.  $n=mk_1$ , also n|m i.e.  $m=nk_2$ , for  $k_1,k_2\in Z$ 

So  $n = nk_1k_2$  iff  $k_1 = k_2 = 1$  and m = nor  $k_1 = k_2 = -1$ , and m = -n

## Fact 4

If  $m \mid n_1$  and  $m \mid n_2$  then  $m \mid (n_1 \pm n_2)$ 

## **Proof**

Assume  $m \mid n_1$  i.e.  $n_1 = mk_1$ , and  $m \mid n_2$  i.e.  $n_2 = mk_2$ Hence  $n_1 \pm n_2 = m(k_1 \pm k_2)$  i.e.  $m \mid (n_1 \pm n_2)$ 



## Fact 5

```
If m \mid n and n \mid k then m \mid k
```

## **Proof**

```
m \mid n iff n = mk_1 and n \mid k iff k = nk_2
Hence k = mk_1k_2 iff m \mid k
```

In most questions regarding **divisors** we assume that m > 0 and only consider **positive divisors** (m, k)

We look first at **positive factorizations** and then we work out others



#### **Book Definition**

#### The Book Definition

For  $n, m, k \in \mathbb{Z}$ 

 $m \mid n$  if and only if m > 0 and n = mk

It means the **The Book** considers only **positive** divisors (m,k), m>0,  $k\in \mathbb{Z}$ 

### **Definition**

All positive divisors, including 1, that are less than n are called **proper divisors** of n

### Fact 6

If (m,k) is a divisor of n then the factors m,k can't be both  $> \sqrt{n}$ 

## **Proof**

Assume that for both factors  $m > \sqrt{n}$  and  $k > \sqrt{n}$ , then  $mk > \sqrt{n}\sqrt{n} = n$ ; we got a **contradiction** with n = mk

## **Fact 6 Rewrite**

If (m,k) is a divisor of n, then  $m \le \sqrt{n}$  or  $k \le \sqrt{n}$ 



## Example

#### **Problem**

Find all divisors of n = 60

By the **Fact 6** the number of divisors of  $m \le \sqrt{n} = \sqrt{60}$  i.e.

$$m \le \sqrt{60} < \sqrt{64} = 8$$

Hence m < 8, m = 1, 2, 3, 4, 5, 6, 7and we have six pairs of divisors

$$(1,60)$$
  $(3,20)$   $(5,12)$ 

$$(2,30)$$
  $(4,15)$   $(6,10)$ 



Let  $b \neq 0$  and  $b \in Z$ 

Then any  $a \in \mathbb{Z}$  is either a multiple of b or alls between two consecutive multiples qb and (q+1)b of b We write it:

$$a = qb + r$$
  $q \in \mathbb{Z}$   $r = 0, 1, 2, ..., |b| - 1$ 

r is called the least positive remainder or simply the remainder of *a* by division with *b* 

$$0 \le r < |b|$$

g is the incomplete quotient or simply the quotient



### Note

Given  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  the quotient q and the remainder r are uniquely determined and each integer  $a \in \mathbb{Z}$  can be written as:

$$a = q b + r$$
  $0 \le r < |b|$ 

## Example

$$321 = 4 \cdot 74 + 25$$
  $q = 4$ ,  $b = 74$ ,  $r = 25$   
 $46 = (-2)(-17) + 12$   $q = -2$ ,  $b = -17$ ,  $r = 12$   
In particular any  $n \in N$ ,  $n = 2q$  (even) or  $n = 2q + 1$  (odd)

### **Theorem**

The square of  $n \in \mathbb{Z}$  is either divisible by 4, or leaves the remainder 1 when divided by 4

## **Proof**

Case 1: 
$$n = 2q$$
,  $n^2 = (2q)^2 = 4q^2$ 

Case2: 
$$n = 2q + 1$$
,  $n^2 = 4q^2 + 4q + 1 = 4(q^2 + q) + 1$ 

Let  $b \neq 0$ ;  $a, b, q \in Z$ 

$$a = qb + r$$
  $0 \le r < |b|$ 

We re-write is as

$$\frac{a}{b} = q + \frac{r}{b}$$
  $0 \le \frac{r}{b} < 1$ 

**Fact** q is the greatest integer such that  $q \leq \frac{a}{b}$ 

# **Special Notation**

**Old** notation

[q] = greatest integer such that it is less or equal  $\frac{a}{b}$ 

**Modern** notation

 $\lfloor \frac{a}{b} \rfloor$  = greatest integer such that it is less or equal  $\frac{a}{b}$ 

Modern notation comes from K.E. Iverson, 1960



Book, page 67

FLOOR:  $\lfloor x \rfloor$  = the greater integer q,  $q \leq x$ 

CEILING: [x] = the least integer q,  $q \ge x$ 

 $q = \lfloor \frac{a}{b} \rfloor$  = the greatest integer q,  $q \leq \frac{a}{b}$  is also called the greatest integer **contained** in  $\frac{a}{b}$ 

## **Example**

$$\left\lfloor \frac{25}{5} \right\rfloor = 5, \quad \left\lfloor \frac{5}{3} \right\rfloor = 1, \quad \left\lfloor 2 \right\rfloor = 2, \quad \left\lfloor \frac{-1}{3} \right\rfloor = -1, \quad \left\lfloor \frac{1}{3} \right\rfloor = 0$$

We extent notation to Real numbers

$$x, y, q \in R$$
  $x = |x| + y$ ,  $0 \le y < 1$ 

## **Example**

$$|\pi| = 3$$
,  $|e| = 2$ ,  $|\pi^2/2| = 4$ 

Back to the Chapter 3 - we used notation  $\{x\}$  for y

Given  $a, b \in N$ , we represent a on base b as

$$a = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0$$
 where  $a_i \in \{0, 1, b-1\}$ 

We write it as

$$a = (a_n, a_{n-1}, a_1, a_0)_b$$

## Questions

- 1. How to find the representation of *a* on base *b*?
- 2. How to pass from one base to the other?

This we did show already in Chapter 1!

### Consider

$$a = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0$$

#### **Observation 1**

 $a_0$  is the remainder of a by division by b as

$$a = b (a_n b^{n-1} + ... + a_1 b^0) + a_0$$

So we have

$$a = q_1b + a_0$$
 where  $q_1 = a_nb^{n-1} + ... + a_2b + a_1$ 

### Consider now

$$q_1 = b(a_nb^{n-2} + ... + a_2) + a_1$$

## **Observation 2**

 $a_1$  is the remainder of  $q_1$  by division by b and

$$q_1 = bq_2 + a_1$$
 where  $q_2 = a_n b^{n-2} + ... + a_3 b + a_2$ 

## Repeat

 $a_i$  is the remainder of  $q_i$  by division by b, for i = 1...n-1

to find all 
$$a_1, a_2, a_n$$

## Examples

## **Example**

Represent 1749 in a system with base 7

$$1749 = 249 \cdot 7 + 6$$

$$249 = 35 \cdot 7 + 4$$

$$35 = 5 \cdot 7 + 0$$

$$a_0 = 6, \quad a_1 = 4, \quad a_2 = 0, \quad a_3 = 5$$

So we get

$$1749 = (5,0,4,6)_7$$

## Examples

## **Example**

Represent 19151 in a system with base 12

$$19151 = 1595 \cdot 12 + 11$$

$$1595 = 132 \cdot 12 + 11$$

$$132 = 11 \cdot 12 + 0$$

$$a_0 = 11, \quad a_1 = 11, \quad a_2 = 0, \quad a_3 = 11$$

So we get

$$19151 = (11, 0, 11, 11)_{12}$$

We evaluated the components

$$a_0, a_1, \ldots, a_n$$

from the lowest  $a_0$  upward to  $a_n$ 

Now let's evaluate  $a_0, ..., a_n$  downward from  $a_n$  to  $a_0$ 

In this case we have to determine the **highest power** of b such that  $b^n$  is **less than** a, while the next power  $b^{n+1}$  exceeds a



We look for **division** of a by  $b^n$  and

$$a = a_n b^n + r_{n-1}$$
  
 $r_{n-1} = a_{n-1} b^{n-1} + a_0$ 

We determine  $a_{n-1}$  from  $r_{n-1}$ 

$$r_{n-1} = a_{n-1}b^{n-1} + r_{n-2}$$

$$r_{n-2} = a_{n-2}b^{n-2} + ... + a_0$$

We determine  $a_{n-2}$  from  $r_{n-2}$ 

$$r_{n-2} = \frac{a_{n-2}}{a_{n-2}} b^{n-2} + r_{n-3}$$
 and etc...



# Example

## Example

Represent 1832 to the base 7 First calculate powers of 7

$$7^1 = 7 \qquad 7^2 = 49 \qquad 7^3 = 343 \qquad 7^4 = 2401$$

and then calculate

$$a = a_n b^n + r_{n-1}$$
 for  $n = 3$ 

$$1832 = \frac{5}{5} \cdot 7^3 + 117 \qquad a_3 = 5$$

$$117 = 2 \cdot 7^2 + 19 \qquad a_2 = 2$$

$$19 = 2 \cdot 7 + 5$$
  $a_1 = 2, a_0 = 5$ 

We obtained

$$1832 = (5, 2, 2, 5)_{7}$$



## **Greatest Common Divisor**

## **Definition Common Divisor**

Let  $a, b, c \in Z$ 

If c divides a and b simultaneously, then c is called a common divisor of a and b

# Symbolically

c is a common divisor of a and b iff  $c \mid a$  and  $c \mid b$ 

### **Greatest Common Divisor**

Let  $A = \{c: c \mid a \text{ and } c \mid b\}$  be the set of **all common divisors** of a and b

The set A is **finite**, so the poset  $(A, \leq)$  is a finite, with a total (linear) order and hence always has the **greatest** element

This greatest element is called a greatest common divisor (g.c.d.) of a and b and denoted by gcd(a,b)

**Remark** The **greatest** element in the poset  $(A, \leq)$  is its unique maximal element so it justifies the BOOK definition

$$gcd(a,b) = max\{c: c \mid a \cap c \mid b\}$$



## Relatively Prime Numbers

### Remark

Every number has the divisor 1, so gcd(a,b) is a positive integer, i.e.  $gcd(a,b) \in Z^+$ 

## **Definition**

 $a,b \in \mathbb{Z}$  are **relatively prime** if and only if

$$gcd(a,b)=1$$

**Book notation** 

 $a \perp b$  for  $a, b \in Z$  relatively prime

## **Example**



#### **Theorem**

Any common divisor of two numbers divides their greatest common divisor

**Proof** By procedure known as Euclid Algorism (Algorithm) Euclid Algorism is known from seventh book of Euclid's Elements (about 300 BC); however it is certainly of earlier origin

## Here it is

Let  $a, b \in \mathbb{Z}$  be two integers whose gcd(a,b) we want to be studied

Since there is only question of **divisibility**, there is no limitation in assuming that **a**, **b** are **positive** and **a** is **greater or equal b**, i.e.

 $a, b \in Z^+$  and  $a \ge b$ 



**1.** We divide a by b with respect to the least positive remainder

$$a = q_1 b + r_1$$
  $0 \le r_1 < b$ 

**2.** We divide b by  $r_1$  with respect to the least positive remainder

$$b = q_2 r_1 + r_2$$
  $0 \le r_2 < r_1$ 

**3.** We divide  $r_1$  by  $r_2$  with respect to the least positive remainder

$$r_1 = q_2 r_2 + r_3$$
  $0 \le r_3 < r_1$ 

We continue the process

Observe that such obtained remainders

$$r_1, r_2, r_3, \ldots r_n,$$

form a decreasing sequence of positive integers

$$r_1 > r_2 > r_3 > \dots r_n > \dots$$

and one must arrive on a division for which  $r_{n+1} = 0$ , i.e. the **Euclid Algorism** process:

divide a by b, divide b by  $r_1$ , ... divide  $r_k$  by  $r_{k+1}$  must **terminate** 



## **Euclid Algorism**

$$a = q_1b + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_2r_2 + r_3$$
...
...
$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n + 0$$

## **Theorem**

$$r_n = (a,b) = gcd(a,b)$$

# **Euclid Algorithm Example**

## Example

Find gcd(76084, 63,020)

$$76,084 = 63,020 \cdot 1 + 13,064$$
  $q_1 = 1, r_1 = 13,064$   
 $63,020 = 13,064 \cdot 4 + 10,764$   $q_2 = 4, r_2 = 10,764$   
 $13,064 = 10,764 \cdot 1 + 2,300$   $q_3 = 1, r_3 = 2,300$   
 $10,764 = 2,300 \cdot 4 + 1,564$   $q_4 = 5, r_4 = 1,564$   
 $2,300 = 1,564 \cdot 1 + 736$   $q_5 = 1, r_5 = 736$   
 $1,564 = 736 \cdot 2 + 92$   $q_6 = 2, r_6 = 92$   
 $736 = 92 \cdot 8 + 0$   $q_7 = 8, r_7 = 0$  end  
 $gcd(76084, 63020) = (76084, 63020) = r_6 = 92$ 

# **Euclid Algorithm Correctness Proof**

#### **Theorem**

For any  $a, b \in Z^+$  and  $a \ge b$ , and the Euclid Algorithm applied to a, b the following holds

IF 
$$r_{n+1} = 0$$
 THEN  $r_n = gcd(a,b)$ 

#### **Proof**

We conduct proof in two steps

**Step 1** We show that the last non-vanishing remainder  $r_n$  is a **common divisor** of a and b

**Step 2** We show that the  $r_n$  is the **greatest** common divisor of a and b

**Step 1** We show that the last non-vanishing remainder  $r_n$  is a **common divisor** of a and b, i.e. we show that

$$r_n \mid a$$
 and  $r_n \mid b$ 

Assume that  $r_n$  is the last non-vanishing remainder, i.e.  $r_{n-1} = q_{n+1}r_n$  and hence

1. 
$$r_n | r_{n-1}$$

**Observe** that

$$r_{n-2} = q_n r_{n-1} + r_n = q_n q_{n+1} r_n + r_n = \frac{r_n}{r_n} (q_n q_{n+1} + 1)$$

Hence

**2.** 
$$r_n | r_{n-2}$$

#### Observe that

$$r_{n-3} = q_{n-1}r_{n-2} + r_{n-1}$$
 and  $r_n \mid r_{n-1}, r_n \mid r_{n-2}$ 

Hence

$$r_n \mid r_{n-3}$$

We carry our **proof** by **double induction** with **1.** and **2.** as base cases proved already to be true

# **Inductive Assumption**

$$r_n \mid r_{n-k}$$
 and  $r_n \mid r_{n-(k+1)}$  for  $k \ge 1$ 

#### **Inductive Thesis**

$$r_n | r_{n-(k+2)}$$



#### Observe that

$$r_{n-(k+2)} = q_{n-(k+1)}r_{n-(k+1)} + r_{n-k}$$

and by inductive assumption

$$r_n | r_{n-(k+1)}, r_n | r_{n-k}$$

Hence

$$r_n | r_{n-(k+2)}$$

By **Double Induction** Principle

$$r_n \mid r_{n-k}$$
 for all  $k \ge 1$ 

In particular case when k = n - 1, and k = n - 2 we get

$$r_n \mid r_1$$
 and  $r_n \mid r_2$ 



We have that

$$b=q_2r_1+r_2$$

and we just got  $r_n \mid r_1$  and  $r_n \mid r_2$ Hence

$$r_n \mid b$$

We also have that

$$a=q_1b+r_1$$

and we just got  $r_n \mid r_1$  and  $r_n \mid b$ Hence

$$r_n \mid a$$

It proves that  $r_n$  is a **common divisor** of a and b and it **ends** the proof of the **Step 1** 



**Step 2** We show that the  $r_n$  is the **greatest** common divisor of a and b

Let A be a set of all common divisors of a and b, i.e.

$$A = \{c: c \mid a \cap c \mid b\}$$

We have to show that for any  $c \in A$ 

$$c \mid r_n$$

i.e. that  $r_n$  is the **greatest** element in the **poset** (A, |) **Exercise:** Show that | is an **order** (partial order) relation in  $\mathbb{Z}$ 

We have

$$a = q_1 b + r_1$$
 and  $r_1 = a - q_1 b$ 

so for any  $c \in A$ ,  $c \mid a$  and  $c \mid b$ , hence

$$c \mid r_1$$

Similarly

$$b = q_2 r_1 + r_2$$
 and  $r_2 = b - q_2 r_1$ 

and  $c \mid b$  and  $c \mid r_1$ , hence

$$c \mid r_2$$

### By Mathematical Induction

c | 
$$r_k$$
 for all  $k \ge 1$ 

and in particular

$$c \mid r_n$$

what **ends the proof** of the **correctness** of the **Euclid Algorithm** 



# Faster Algorithm

**Kronecker** (1823 - 1891) proved that no Euclid Algorism can be shorter then one obtained by **least absolute** remainders -  $r_n$  can be negative

**Example** Find gcd(76084, 63020) by the least absolute remainders

$$76,084 = 63,020 \cdot 1 + 13,064$$
 $63,020 = 13,064 \cdot 5 - 2,300$ 
 $13,064 = 2,300 \cdot 6 - 736$ 
 $2,300 = 736 \cdot 2 + 92$ 
 $736 = 92 \cdot 8$ 
 $gcd(76084, 63020) = 92$ 

We did it in 5 steps instead of 7 steps



# "mod" Binary Operation

#### **Definition**

For any  $x, y \in R$  we define a binary relation  $mod \subseteq R \times R$  as

$$x \mod y = x - y \left\lfloor \frac{x}{y} \right\rfloor \quad \text{for} \quad y \neq 0$$

and

$$x \mod 0 = x$$

# **Example**

5 mod 3 = 5 - 3 
$$\left| \frac{5}{3} \right|$$
 = 5 - 3 · 1 = 2

5 mod 
$$(-3) = 5 - (-3) \left| \frac{5}{-3} \right| = 5 - (-3) \cdot (-1) = -1$$



# "mod" Binary Operation

# **Observe** that when $a, b \in \mathbb{Z}$ , $b \neq 0$ we get

$$a = b \left\lfloor \frac{a}{b} \right\rfloor + a \mod b$$

and

$$a = b \ q + r$$
 for  $q = \left\lfloor \frac{a}{b} \right\rfloor$ ,  $r = a \mod b$ 

#### **Fact**

For any  $a, b \in \mathbb{Z}$ ,  $b \neq 0$ ,  $a \mod b$  is a **remainder** in the division of a by b

# Example

We evaluated  $r_1 = 5 \mod 3 = 2$ ,  $r_2 = 5 \mod (-3) = -1$  and we have

$$5 = 3 \cdot 1 + 2$$
 and  $5 = (-3)(-1) - 1$ 



### "mod" Euclid Algorithm

We use the the mod relation to formulate a more modern version of Euclid Algorithm

We define a recursive function f for any  $m, n \in \mathbb{Z}$ ,  $0 \le m < n$  we put

$$f(m,n) = f(n \mod m, m)$$
 for  $m > 0$   
 $f(0,n) = n$  for  $m = 0$ 

#### **Theorem**

For any  $a, b \in \mathbb{Z}$ ,  $0 \le a < b$ 

If the function f = f(m, n) applied recursively to a, b as the initial values terminates at f(0, k), then

$$gcd(a,b) = f(0,k)$$

**Proof** Book pages 103, 103 - but this is just a translation of our proven theorem!



### Examples

### Example 6

$$f(m,n) = f(n \mod m, m)$$
 for  $m > 0$ ,  $f(0,n) = n$   
 $f(12,18) = f(6,12) = f(0,6) = 6$   $\gcd(12,18) = f(0,6) = 6$   
**Example 2**  
 $f(63020, 76084) = f(13064, 63020) = f(10764, 13064)$   
 $= f(2300, 107640) = f(1564, 2300) = f(736, 1564)$   
 $f(92, 736) = f(0, 92)$   
 $\gcd(63020, 76084) = f(0, 92) = 92$ 

#### Definition

```
m, n \in N - \{0, 1\} are relatively prime if and only if gcd(m, n) = 1
```

Notation  $n \perp m$  for m, n relatively prime

We now use Euclid Algorithm to derive other properties of the gcd. The most important one is the following

#### **Division Lemma**

When a product ac of two natural numbers is divisible by a number b that is **relatively prime** to a, the factor c must be divisible by b

### **Division Lemma** written symbolically

If 
$$b \mid ac$$
 and  $a \perp b$  then  $b \mid c$ 

#### **Proof**

Since  $a \perp b$ , i.e. gcd(m, n) = 1, hence the last remainder  $r_n$  in the Euclid Algorithm must be 1, so E A has a form

$$a = q_1 b + r_1$$
$$b = q_2 r_1 + r_2$$

$$r_{n-2} = q_n r_{n-1} + 1$$

Multiply by c

$$ac = q_1bc + r_1c$$

$$bc = q_2r_1c + r_2c$$
...
$$r_{n-2}c = q_nr_{n-1}c + c$$

and  $b \mid ac$ , so  $b \mid r_1c$ , and hence  $b \mid r_2c$ By Mathematical Induction we get

$$\forall i \geq 1(b \mid r_i)$$

In particular  $b \mid r_{n-2}c$ , and hence  $b \mid c$  It **ends the proof** 



#### Theorem 1

When a number is relatively prime to each of several numbers, it is relatively prime to their product **Symbolically** 

If 
$$a \perp b_i$$
, for  $i = 1, 2, ... k$ , then  $a \perp b_1 b_2 ... b_k$ 

**Proof** By contradiction; we show case i = 2 and the rest is carried by Mathematical Induction

Assume  $a \perp b$  and  $a \perp c$ , and  $a \perp bc$ 

By definition we have hence that  $gcd(a,bc) \neq 1$ , i.e. a has a common divisor d with bc, i.e. there is d such that

$$d \mid a$$
 and  $d \mid bc$ 



We have that there is d such that

$$d \mid a$$
 and  $d \mid bc$ 

and

 $a \perp b$ , and  $d \mid a$ , hence we get  $d \perp b$ 

We also have

 $a \perp c$ , and  $d \mid a$ , hence we get  $d \perp c$ 

So from  $d \mid bc$  and  $d \perp b$  we get by the **Division Lemma** that  $d \mid c$  what is **contrary** to  $d \perp c$ 

**Exercise** Write the full proof by Mathematical Induction



### Theorem 2

$$gcd(ka, kb) = k \cdot gcd(a, b)$$

#### **Proof**

 $gcd(a,b) = r_n$  in the Euclid Algorithm

$$a=q_1b+r_1$$

...

$$r_{n-2}=q_nr_{n-1}+r_n$$

$$r_{n-1} = q_{n+1}r_n + 0$$

We multiply each step by k

We multiply each step by k

$$ka = kq_1b + kr_1$$
 $\dots$ 
 $kr_{n-2} = kq_nr_{n-1} + kr_n$ 
 $kr_{n-1} = q_{n+1}kr_n + 0$ 

This is the Euclid Algorithm for ka, kb and

$$gcd(ka, kb) = k \cdot r_n = k \cdot gcd(a, b)$$

#### Theorem 3

Let d = gcd(a, b) be such that

$$a = a_1 d$$
 and  $b = b_1 d$ 

Then

$$a_1 \perp b_1$$

#### **Proof**

Evaluate using Theorem 2

$$gcd(a, b) = gcd(a_1d, b_1d)$$
$$= d \cdot gcd(a_1, b_1) = gcd(a, b)gcd(a_1, b_1)$$

So we get  $gcd(a_1, b_1) = 1$ , as nk=k iff k=1 This means

$$a_1 \perp b_1$$



The **Theorem 3** applies in elementary arithmetic in the reduction of fractions

Take any fraction and  $a = a_1 d$ ,  $b = b_1 d$ 

$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{a}_1 \, \mathbf{d}}{\mathbf{b}_1 \, \mathbf{d}} = \frac{\mathbf{a}_1}{\mathbf{b}_1}$$

for

$$a_1 \perp b_1$$

I.e any fraction can be represented in **reduced form** with numerator and denominator that are **relatively** prime

A number m is said to be a common multiple of the numbers a and b when it is divisible by both of them For example, the product ab is a common multiple of a and b

Since, as before there is only question of divisibility, there is no limitation in considering only positive multiples

**Definition** Common Multiple

Let  $a, b, m \in \mathbb{Z}$ m = cm(a, b) is a common multiple of a and b iff  $a \mid m$  and  $b \mid m$  and m > 0

Let  $A = \{m: a \mid m \text{ and } b \mid m\}$  be the set of all common multiples of a and b

This **least** element is called a **least common multiple** (l.c.m.) of a and b and denoted by lcm(a,b)

**Remark** The **least** element in the poset  $(A, \leq)$  is its unique minimal element so it justifies the BOOK definition

 $lcm(a,b) = min\{m: m > 0 \text{ and } a \mid m \text{ and } b \mid m\}$ 



#### Theorem 4

Any common multiple of a and b is **divisible** by lcm(a,b) **Proof** 

Let m = cm(a,b)We divide m by lcm(a,b), i.e

$$m = q \frac{lcm(a,b)}{r} + r$$
  $0 \le r < lcm(a,b)$ 

But  $a \mid lcm(a,b)$  and  $b \mid lcm(a,b)$  and  $a \mid m$  and  $b \mid m$ Hence  $a \mid r$  and  $b \mid r$  and r is a common multiple of a, bBut  $0 \le r < lcm(a,b)$ , so r=0 what proves that  $m = q \cdot lcm(a,b)$ , i.e. m is **divisible** by lcm(a,b)

#### Theorem 5

For any  $a, b \in Z^+$  such that lcm(a,b) and gcd(a, b) exist

$$lcm(a,b) \cdot gcd(a,b) = ab$$

#### Theorem 6

$$lcm(a,b) = ab$$
 if and only if  $a \perp b$ 

**Exercise** Prove both Theorems



# PART 2: PRIME NUMBERS

#### Definition

#### **Definition**

A positive integer is called **prime** if it has only two divisors 1 and itself

We assume **convention** that 1 is not prime
We denote by P the **set of all primes**Symbolically

$$p \in P \subseteq N$$
 if and only if  $p > 1$  and for any  $k \in Z$  if  $k \mid p$  then  $k = 1$  or  $k = p$ 

Some primes

2, 3, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...



**Observe** 2 is the only even prime! **Question** Is 91 prime? No, it isn't as  $91 = 7 \cdot 13$ **Definition** 

 $n \in \mathbb{N}, n > 1$  is called **composite** and denoted by  $\mathbb{CN}$ , if it is **not prime** Symbolically

$$n \in CN$$
 if and only if  $n \le 1 \cup \exists_{k \in Z} (k | n \cap k \ne 1 \cap k \ne n)$ 

Directly from the definition we have that

### Fact 1

$$\forall_{m \in N - \{0,1\}} (m \in P \cup m \in CN)$$
 and  $P \cap CN = \emptyset$ 



#### Definition

 $m, n \in \mathbb{N}$  are **relatively prime** if and only if gcd(m, n) = 1Notation  $n \perp m$  for  $m, n \in \mathbb{N}$  relatively prime **Fact 2** 

$$\forall_{p\in P}\ \forall_{n\in N}\ (p\perp n\cup p|n)$$

#### Fact 3

A product of two numbers is divisible by a prime p only when p divides at least one of the factors

Symbolically

$$\forall_{p \in P} \forall_{m, n \in Z} (p \mid mn \Rightarrow (p \mid m \cup p \mid n))$$



#### **Proof**

Assume that **Fact 3** is not true, i.e.

$$\exists_{p \in P} \exists_{m,n \in Z} (p \mid mn \cap p \nmid m \cap p \nmid n)$$

 $p \nmid m$  so by Fact 2  $p \perp m$ . Now when  $p \mid mn$  and  $p \perp m$  we get by Fact 2 that  $p \mid n$ . We get a contradiction with  $p \nmid n$ 

#### Observation

For any  $p \in P$ ,  $m, n \in Z$ , if p divides m or p divides m, then p divides mn **Proof** Assume  $p \mid m$ , i.e. m = kp for  $k \in Z$ . Hence mn = kmp and  $p \mid mn$ . The case  $p \mid m$  is similar



Because of the obvious character of the **Observation** we usually formulate and prove the **Fact 3** in the following more general form

#### Fact 3a

A product of two numbers is divisible by a prime p if and only if p divides at least one of the factors

Symbolically

$$\forall_{p \in P} \forall_{m,n \in Z} (p \mid mn \Leftrightarrow (p \mid m \cup p \mid n))$$



#### Fact 4

A product  $q_1q_2...q_n$  of prime numbers (factors)  $q_i$  is **divisible** by a prime p only when  $p = q_i$  for some  $q_i$  Symbolically

$$\forall_{p,q_1q_2...q_n\in P} (p \mid \prod_{k=1}^n q_k \Rightarrow \exists_{1\leq i\leq n} (p=q_i))$$

### **Proof**

Let  $p \mid \prod_{k=1}^{n} q_k$ . By the **Fact 3**  $p \mid q_i$  for some  $g_i$  where  $q_i \in P$ ; but p > 1 as  $1 \notin P$  hence  $p = q_i$ 



#### Fact 5

Every natural number n, n > 1 is **divisible** by some prime

Symbolically

$$\forall_{n\in N,n>1} \exists_{p\in P} (p\mid n)$$

#### **Proof**

When  $n \in P$ , this is evident as  $n \mid n$ When n is composite it can be factored  $n = n_1 n_2$ where  $n_1 > 1$ 

The smallest possible one of these divisors of  $n_1$  must be prime



We are now ready to prove the main theorem about factorization. The idea of this theorem, as well as all Facts 1-5 we will use in proving it, can be found in Euclid's Elements in Book VII and Book IX

#### **Main Factorization Theorem**

Every composite number can be **factored uniquely** into prime factors

We present here an "old" and pretty straightforward proof You have another proof in the Book pages 105-105 and all this without saying that it is a Theorem, and a quite important one

**Proof** We conduct it in two steps

**Step 1** We show that every composite number n > 1 is product of prime numbers

Step 2 We show the uniqueness

**Step 1** We show that every composite number n > 1 is product of prime numbers

By **Fact 5** there is  $p_1 \in P$  such that  $n = p_1 n_1$ If  $n_1$  is composite, then by **Fact 5** again,  $n_1 = p_2 n_2$ We continue this process with a decreasing sequence

$$n_1 > n_2 > n_3 > \dots$$

of numbers together with a corresponding sequence of prime numbers

$$p_1, p_2, p_3, \dots$$

until some  $n_k$  becomes a prime, i.e.  $n_k = p_k$  and we get

$$n = p_1 p_2 p_3 \dots p_k$$



# Step 2 We show the uniqueness

Assume that we have two different prime factorizations

$$n = p_1 p_2 p_3 \dots p_k = q_1 q_2 q_3 \dots q_m$$

Each  $p_i \mid n$ , so for each  $p_i$ 

$$p_i \mid \prod_{k=1}^m q_k$$

By the **Fact 4**  $p_i = q_i$  for some j and  $1 \le j \le m$ Conversely, we also have that each  $q_i \mid n$ , so for each  $q_i$ 

$$q_i \mid \prod_{n=1}^k p_n$$

By the Fact 4  $q_i = p_n$  for some n and  $1 \le n \le k$ 



This proves that both sides of

$$n = p_1 p_2 p_3 \dots p_k = q_1 q_2 q_3 \dots q_m$$

contain the same primes

The only difference might be that a prime p could occur a greater number of times on one side then on the other In this case we cancel p on both sides sufficient number of times and get equation with p on one side, not the other This contradicts just proven the fact that both sides of the equation contain the same primes

We re-write our Theorem in a more formal way as follows

#### **Main Factorization Theorem**

For any  $n \in \mathbb{N}$ , n > 1, there are  $\alpha_i \in \mathbb{N}$ ,  $\alpha_i \ge 1$ , and prime numbers  $p_1 \ne p_2 \ne \dots \ne p_r$   $r \ge 1$ ,  $1 \le i \le r$ , such that

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_r^{\alpha_r} = \prod_{k=1}^r p_k^{\alpha_k}$$

and this representation is unique

 $p_i$ 's are different prime factors of n  $\alpha_i$  is the multiplicity, i.e. the number of times  $p_i$  occurs in the prime factorization



### Main Factorization Theorem; General Form

We write our Theorem shortly in a more general form, as in the Book (page 107)

Main Factorization Theorem General Form

$$n = \prod_{p} p^{\alpha_p}$$
 for  $p \in P$ ,  $\alpha_p \ge 0$ 

and this representation is unique

This is an infinite product, bur for any particular n all but few exponents  $\alpha_p=0$ , and  $p^0=1$ Hence for a given n it is a finite product

# Some Consequences of Main Factorization Theorem

We know, by the **Main Factorization Theorem** that any n > 1 has a unique representation

$$n = \prod_{p} p^{n_p}$$
 for  $p \in P$ ,  $n_p \ge 0$ 

Consider now the poset  $(P, \leq)$ , i.e. we have that all prime numbers in P are in the sequence

$$p_1 < p_2 < \dots p_n < \dots$$
  
2 < 3 < 5 < 7 < 11 < 13 < \dots

and we write

$$n = \prod_{i>1} p_i^{n_i}$$
 for  $n_i \ge 0$ 

Because of the uniqueness of the representation we can represent n as

$$n = \langle n_1, n_2, n_3, \dots n_k, \dots \rangle$$



# Example

# Example

Reminder

$$2 < 3 < 5 < 7 < 11 < 13 < \dots$$

Here are few representations

### Some Consequences of Factorization Theorem

Observe that when we have the general representations

$$k = \prod_{p} p^{k_p}, \quad n = \prod_{p} p^{n_p}$$
 and  $m = \prod_{p} p^{m_p}$ 

then we evaluate

$$k = n \cdot m = \prod_{p} p^{n_p} \cdot \prod_{p} p^{m_p} = \prod_{p} p^{n_p+m_p}$$

We have hence **proved** the following

#### Fact 6

$$k = n \cdot m$$
 if and only if  $k_p = n_p + m_p$ , for all  $p \in P$ 



### Some Consequences of Factorization Theorem

#### Fact 7

Let

$$m = \prod_{p} p^{m_p}$$
 and  $n = \prod_{p} p^{n_p}$ 

Then

$$m \mid n$$
 if and only if  $m_p \le n_p$  for all  $p \in P$ 

#### **Proof**

$$m \mid n$$
 iff there is k, such that  $n = mk$  and  $k = \prod_{p} p^{k_p}$ 

By **Fact 6** we get that n = mk iff  $n_p = k_p + m_p$  iff  $m_p \le n_p$  and it **ends** the proof

# Some Consequences of Factorization Theorem

Directly from Fact 7 we definitions we get the following

### Fact 8

$$k = \gcd(m, n)$$
 if and only if  $k_p = \min\{m_p, n_p\}$   
 $k = lcd(m, n)$  if and only if  $k_p = \max\{m_p, n_p\}$ 

### Example

### **Example 1**

Let

$$12 = 2^{2} \cdot 3^{1} \qquad 18 = 2^{1} \cdot 3^{2}$$

$$gcd(12, 18) = 2^{min\{2,1\}} \cdot 3^{min\{2,1\}} = 2^{1} \cdot 3^{1} = 6$$

$$lcm(12, 18) = 2^{max\{2,1\}} \cdot 3^{max\{2,1\}} = 2^{2} \cdot 3^{2} = 36$$

### Example 2

Let

Let 
$$m = 2^6 \cdot 3^2 \cdot 5^1 \cdot 7^0$$
  $n = 2^5 \cdot 3^3 \cdot 5^0 \cdot 7^0$   $gcd(m, n) = 2^{min\{6,5\}} \cdot 3^{min\{2,3\}} \cdot 5^{min\{1,0\}} \cdot 7^{min\{0,0\}} = 2^5 \cdot 3^2$   $lcm(m, n) = 2^6 \cdot 3^3 \cdot 5 \cdot 7$ 

#### **Exercises**

1. Use Facts 6-8 to prove

#### Theorem 5

For any  $a, b \in Z^+$  such that lcm(a,b) and gcd(a, b) exist

$$lcm(a,b) \cdot gcd(a,b) = ab$$

2. Use **Theorem 5** and the BOOK version of Euclid Algorithm to express  $lcm(n \mod m, m)$  when  $nmodm \neq 0$  This is Ch4 Problem 2