cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 13

CHAPTER 5
 Binomial Coefficients

Basic Definitions

Definition

For any $n, k \in N, k \geq 0, k \leq n$ we define

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1) \ldots 2 \cdot 1}
$$

Observe that

$$
\binom{n}{k}=\frac{n^{\underline{k}}}{k!}
$$

Combinatorial interpretation
$\binom{n}{k}$ reads: "n choose k"
$\binom{n}{k}$ denotes a number of ways to choose k-element subset from an n-element set

Combinatorial Interpretation

Combinatorial Interpretation

The number of ways to choose a k-element subset from an n-element set is

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1) \ldots 2 \cdot 1}
$$

Proof We carry the proof in two steps Step 1: we find the number of k-element, 1-1 sequences formed out of any n-element set
By definition, all sequences of length k formed from n-element set are all possible functions

$$
f:\{1,2, \ldots, k\} \longrightarrow\left\{a_{1}, \ldots, a_{n}\right\}
$$

We know, by the Counting Functions Theorem that and there are n^{k} of them
We need to count 1-1 sequences only and to count them we use a notion of a permutation

Proof of Combinatorial Interpretation

Definition

A permutation of a set A is any function $f: A \xrightarrow{1-1, \text { onto }} A$

Fact

For any non empty set set A of n elements the number of permutation of A is n !

Proof

By definition, we have so show that there are $n!$ functions $f: A \xrightarrow{1-1, \text { onto }} A$. We carry the proof by induction over the number $n>0$ of elements of the set A
Base Step Let $|A|=1$. Hence $A=\{a\}$ and obviously there is only one function $f:\{a\} \xrightarrow{1-1, o n t o}\{a\}$
By definition, $1!=1$ and Base Step holds

Proof of Combinatorial Interpretation

Inductlve Step Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $n>1$
Assume that for any $B \subset A$, such that $|B|=n-1$ there are $(n-1)$! functions that map $f: B \xrightarrow{1-1, \text { onto }} B$
In order to count all functions

$$
f:\left\{a_{1}, \ldots, a_{n}\right\} \xrightarrow{1-1, \text { onto }}\left\{a_{1}, \ldots, a_{n}\right\}
$$

we divide them into n disjoint groups G1, G2, ... Gn as follows
G1 consists of all functions f, such that

$$
f\left(a_{1}\right)=a_{1}
$$

By inductive assumption, G1 contains ($n-1$)! functions

Proof of Combinatorial Interpretation

G2 consists of all functions f, such that

$$
f\left(a_{2}\right)=a_{2}
$$

By inductive assumption, G2 contains ($n-1$)! functions In general, Gk consists of all functions f, such that

$$
f\left(a_{k}\right)=a_{k}
$$

for $k=1,2, \ldots n$
By inductive assumption, each Gk contains ($n-1$)! functions

Proof of Combinatorial Interpretation

We have divided the set of all functions into n disjoint groups, each containing $(n-1)$! functions
Hence all together there are $n!=n(n-1)$! functions

$$
f: A \xrightarrow{1-1, \text { onto }} A
$$

This ends the proof of the Fact and we go back to the proof of the Combinatorial Interpretation as follows

Proof of Combinatorial Interpretation

Back to Step 1

Let $|A|=n$ be any n-element set
We count now all possible 1-1, k-element sequences out of elements of A as follows.
The 1-1, k-element sequences are of the form

$$
b_{1}, b_{2}, \ldots, b_{k} \text { for } b_{i} \neq b_{j} \text { and } k \geq 1
$$

1. $k=1$
b_{1} - there are n choices, for any $b_{1} \in A$
2. $k=2$
b_{1}, b_{2} - there are $n-1$ choices, for any $b_{2} \in A-\left\{b_{1}\right\}$

Proof of Combinatorial Interpretation

3. $k=3$
b_{1}, b_{2}, b_{3} - there are $\mathrm{n}-2$ choices, for any
$b_{3} \in A-\left\{b_{1}, b_{2}\right\}$
Induction (really)
4. $k=i$
$b_{1} b_{2} \ldots b_{i}$ - there are $(n-i+1)$ choices for any
$b_{i} \in A-\left\{b_{1}, b_{2}, \ldots, b_{i-1}\right\}$

All together we have $n(n-1) \ldots(n-k+1)$ possible 1-1 sequences

$$
b_{1}, b_{2}, \ldots, b_{k}
$$

Proof of Combinatorial Interpretation

Step 2

In Combinatorial Interpretation $\binom{n}{k}$ represents how many are there k-element subsets of the set A
We proved that there are $n(n-1) \ldots(n-k+1)$ possible 1-1,
k-element sequences
Now we have to establish a relationship between the 1-1 sequences $b_{1}, b_{2}, \ldots, b_{k}$ and corresponding subsets $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$
Observation
Sets: $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}=\left\{b_{2}, b_{2}, \ldots, b_{k}\right\}$
Sequences: $b_{1}, b_{2}, \ldots, b_{k} \neq b_{2}, b_{2}, \ldots, b_{k}$

Proof of Combinatorial Interpretation

Different sequences $b_{1}, b_{2}, \ldots, b_{k}$ can represent the same set $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$
Question: How many are there of all possible set representations $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ of the 1-1 sequence $b_{1}, b_{2}, \ldots, b_{k}$?
Answer: as many as permutation of the set $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, i.e. $k!$
Hence

$$
\binom{n}{k}=\frac{\text { number of sequences }}{k!}=\frac{n(n-1) \ldots(n-k+1)}{k!}
$$

This ends the proof

Generalization

We defined

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1) \ldots 2 \cdot 1}
$$

i.e. by the formula

$$
\binom{n}{k}=\frac{n^{\underline{k}}}{k!}
$$

for $n, k \in N, k \geq 0, k \leq n$
We also proved the Combinatorial Statement that $\binom{n}{k}$ represents the number of ways to choose a k-element subset from an n-element set.
We defined

$$
0!=1 \quad \text { and } \quad x^{0}=1
$$

Generalization

We generalize now the definition of $\binom{n}{k}$ as follows.
Consider a function $f: R \longrightarrow R$ given by a formula (for fixed $k \in Z$)

$$
f(x)=x^{\underline{k}}=x(x-1) \ldots(x-k+1)
$$

and $x^{0}=1$
or, more precisely, a function

$$
f: R \times Z \longrightarrow R
$$

given by formula

$$
f(x, k)= \begin{cases}\frac{x^{k}}{k!} & k \geq 0 \\ 0 & k<0\end{cases}
$$

Definition

Definition

For any $x \in R, k \in Z$ we define

$$
\binom{x}{k}= \begin{cases}\frac{x k}{k!} & k \geq 0 \\ 0 & k<0\end{cases}
$$

BOOk uses notation $r \in R$ and defines

$$
\binom{r}{k}= \begin{cases}\frac{r \underline{k}}{k!} & k \geq 0 \\ 0 & k<0\end{cases}
$$

Examples

$$
\begin{aligned}
\binom{x}{k} & =\frac{x^{\underline{k}}}{k!} \text { for } k \geq 0, x \in R \\
x^{\underline{k}} & =x(x-1) \ldots(x-k+1)
\end{aligned}
$$

We evaluate

$$
\begin{aligned}
& \binom{-1}{3}=\frac{-1^{3}}{3!}=\frac{(-1)(-2)(-3)}{1.2 .3}=-1 \\
& \binom{-1}{-1}=0 \text { as } k<0 \text { and }\binom{1}{1}=1
\end{aligned}
$$

In general

$$
\binom{n}{n}= \begin{cases}1 & k \geq 0 \\ 0 & k<0\end{cases}
$$

Examples

We evaluate

$$
\begin{gathered}
\binom{\sqrt{2}}{3}=\frac{\sqrt{2}^{\frac{3}{3}}}{3!}=\frac{(\sqrt{2})(\sqrt{2}-1)(\sqrt{2}-2)}{1 \cdot 2 \cdot 3} \\
\sqrt{2}^{\frac{3}{3}}=(\sqrt{2})(\sqrt{2}-1)(\sqrt{2}-2)
\end{gathered}
$$

NO Combinatorial Interpretation HERE

Generalization

We defined

$$
\binom{x}{k}= \begin{cases}\frac{x^{k}}{k!} & k \geq 0 \\ 0 & k<0\end{cases}
$$

for any $x \in R, \quad k \in Z$
Reminder

$$
\begin{gathered}
\binom{n}{n}=1, \quad \text { for } n \in N \\
\binom{n}{n}=0, \quad \text { for } n<0 \\
\binom{n}{k}=0, \quad \text { for } \quad k>n, \quad k \geq 0
\end{gathered}
$$

Symmetry Poperty

Symmetry Property

$$
\mathbf{S P} \quad\binom{n}{k}=\binom{n}{n-k} \text { for any } n, k \in N, 0 \leq k \leq n
$$

Proof We evaluate, by definition,

$$
\begin{aligned}
\binom{n}{k} & =\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!} \\
& =\frac{n!}{(n-(n-k))!(n-k)!}=\binom{n}{n-k}
\end{aligned}
$$

Combinatorial Interpretation
$\binom{n}{k}--k$ chosen element from out of n
$\binom{n}{n-k}--n-k$ unchosen element out of n

Symmetric Property

We proved that $\binom{n}{k}=\binom{n}{n-k}$ for $k, n \in N$ and $0 \leq k \leq n$
Case $k<0$
We have $\binom{n}{k}=0$ and
$\binom{n}{n-k}=\binom{n}{s}=0 \quad$ as $\quad s>n$
Case $k>n$
We have $\binom{n}{k}=0$ and
$\binom{n}{n-k}=\binom{n}{s}=0 \quad$ as $\quad s<0$

Symmetric Property Generalization

We have proved the

Symmetry Property Generalization

$$
\text { SP } \quad\binom{n}{k}=\binom{n}{n-k}
$$

holds for all $n \in N, k \in Z$

We will show now that it can't be generalized to $n \in Z$

Symmetric Property Generalization

For example, take $n=-1$ and any $k \geq 0$
We evaluate
$\binom{-1}{k}=\frac{-1^{\underline{k}}}{k!}=\frac{(-1)(-2) \ldots(-1-k+1)}{k!}=\frac{k!-1^{\underline{k}}}{k!}=(-1)^{k}$
where $\quad x^{k}=x(x-1) \ldots(x-k+1)$
Now we evaluate

$$
\binom{-1}{-1-k}=0 \quad \text { for all } k \geq 0
$$

This proves that

$$
\binom{-1}{k} \neq\binom{-1}{-1-k} \text { for all } k \geq 0
$$

Absorption Identities

Absorption Identity

$$
\text { A1 } \quad\binom{x}{k}=\frac{x}{k}\binom{x-1}{k-1} \text { for } x \in R, \quad k \in Z-0
$$

Proof We first proof that

$$
x^{\underline{k}}=x(x-1)^{\underline{k-1}}
$$

as follows

$$
\begin{aligned}
x(x-1)^{k-1} & =x(x-1)(x-2) \ldots((x-1)-(k-1)+1) \\
& =x(x-1) \ldots\left((x-k+1)=x^{\underline{k}}\right.
\end{aligned}
$$

Absorption Identities

We evaluate now

$$
\binom{x}{k}=\frac{x^{\underline{k}}}{k!}=\frac{x(x-1)^{\frac{k-1}{}}}{k(k-1)!}=\frac{x}{k}\binom{x-1}{k-1}
$$

This ends the proof.
We multiply both sides of the identity A1 by k and get
A2 $k\binom{x}{k}=x\binom{x-1}{k-1}$ for $x \in R, k \in Z$

Absorption Identities

We are going to prove now the following

$$
\text { A3 } \quad(x-k)\binom{x}{k}=x\binom{x-1}{k} \text { for } x \in R, k \in Z
$$

Proof We carry the proof in two stages
Stage 1: we prove A3 for $x \in N, k \in Z$ using the Symmetry Property SP

$$
\binom{n}{k}=\binom{n}{n-k}
$$

that only holds for $x \in N$
Stage 2: we use a Polynomial Argument (to be defined) to extend Stage 1 case to $x \in N, \quad k \in Z$

Absorption Identities

Stage 1: we assume that $x \in N$ and evaluate

$$
\begin{aligned}
& (x-k)\binom{x}{k}=\mathbf{S P}(x-k)\binom{x}{(x-k)} \\
= & x\binom{x-1}{x-k-1} \text { use A2 for } k:=x-k \\
= & x\binom{x-1}{(x-1)-k}={ }^{\mathbf{S P}} x\binom{x-1}{k}
\end{aligned}
$$

This proves

$$
(x-k)\binom{x}{k}=x\binom{x-1}{k} \text { for } x \in N, \quad k \in Z
$$

Polynomial Argument

Stage 2: Polynomial Argument

Observe the the equality

$$
(x-k)\binom{x}{k}=x\binom{x-1}{k} \text { for } x \in R, k \in Z
$$

is an equality of the following two polynomials of the degree $(k+1)$ over R with integer coordinates

$$
\begin{gathered}
L(x)=(x-k)\binom{x}{k}=a_{k+1} x^{k+1}+\ldots+a_{0} \\
P(x)=x\binom{x-1}{k}=b_{k+1} x^{k+1}+\ldots+b_{0}
\end{gathered}
$$

as

$$
\binom{x}{k}=\frac{x^{\underline{k}}}{k!}=\frac{x(x-1) \ldots(x-k+1)}{k!}
$$

is a polynomial of the degree k

Polynomial Argument

Polynomial Theorem 1

Let $w(x)=a_{n} x^{n}+\ldots+a_{0}$ be a polynomial of the degree n with $a_{i} \in Z, i=0, \ldots, n$ and $n \neq 0$.
Then the equation $w(x)=0$ has at most n solutions; i.e.

$$
|\{x \in R: w(x)=0\}| \leq n
$$

Polynomial Theorem 2

Let $w(x)=a_{n} x^{n}+\ldots+a_{0}$ be a polynomial with of the degree n with $a_{i} \in Z, i=0, \ldots, n$ and $n \neq 0$, such that

$$
|\{x \in R: w(x)=0\}|>n
$$

Then

$$
w(x)=0 \quad \text { for all } x \in R
$$

Polynomial Argument

Back to Absorption Identity

$$
\text { A3 } \quad(x-k)\binom{x}{k}=x\binom{x-1}{k} \text { for } x \in R, k \in Z
$$

We write it as

$$
L(x)=P(x), \text { or } L(x)-P(x)=0, \quad \text { for all } x \in R,
$$

where $L(x), P(x)$ are two polynomials of the degree $(k+1)$ over R, with integer coordinates

$$
\begin{gathered}
L(x)=(x-k)\binom{x}{k}=a_{k+1} x^{k+1}+\ldots+a_{0} \\
P(x)=x\binom{x-1}{k}=b_{k+1} x^{k+1}+\ldots+b_{0}
\end{gathered}
$$

Polynomial Argument

Observe that we have just proved A3 for all $x \in N$, i.e. we proved that

$$
|\{x \in R: \quad L(x)-P(x)=0\}|=|N|=\aleph_{0}>k \quad \text { for all } k \in Z
$$

By Polynomial Theorem 2,

$$
L(x)-P(x)=0, \quad \text { for all } x \in R
$$

and hence we have proved the Absorption Identity

$$
\text { A3 } \quad(x-k)\binom{x}{k}=x\binom{x-1}{k} \text { for } x \in R, \quad k \in Z
$$

Absorption Identities

We are going to prove now yet another Absorption Identity

$$
\text { A4 } \quad\binom{x}{k}=\binom{x-1}{k}+\binom{x-1}{k-1} \text { for } x \in R, \quad k \in Z
$$

We present here two proofs
Proof 1 We carry the proof in two stages
Stage 1: we prove A4 for $x \in N, k \in Z$
Stage 2: we use a Polynomial Argument to extend Stage 1 case to $x \in N, \quad k \in Z$
Proof 2 We use Absorption Identities A2 and A3- left as an exercise

Polynomial Argument

We prove the case $x \in N$ by a straightforward evaluation.
We use the Polynomial Argument as follows
Let

$$
L(x)=\binom{x}{k} \text { - polynomial of the degree } k
$$

$$
P(x)=\binom{x-1}{k}+\binom{x-1}{k-1} \text { - polynomial of the degree } \mathrm{k}
$$

We proved that

$$
L(x)-P(x)=0, \quad \text { for all } \quad x \in N
$$

Polynomial Argument

Hence

$$
|\{x \in R: \quad L(x)-P(x)=0\}|=|N|=\aleph_{0}>k \quad \text { for all } k \in Z
$$

By Polynomial Theorem 2,

$$
L(x)-P(x)=0, \quad \text { for all } x \in R
$$

and hence we have proved the

$$
\text { A4 } \quad\binom{x}{k}=\binom{x-1}{k}+\binom{x-1}{k-1} \text { for } x \in R, \quad k \in Z
$$

