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CHAPTER 5
Binomial Coefficients



Basic Definitions

Definition
For any n,k ∈ N, k ≥ 0, k ≤ n we define(

n
k

)
=

n(n−1)(n−2) . . .(n−k +1)
k(k −1) . . . 2 ·1

Observe that (
n
k

)
=

nk

k !

Combinatorial interpretation(n
k

)
reads: “n choose k”(n

k

)
denotes a number of ways to choose k-element subset

from an n-element set



Combinatorial Interpretation

Combinatorial Interpretation

The number of ways to choose a k-element subset from
an n-element set is(

n
k

)
=

n(n−1)(n−2)...(n−k +1)
k(k −1) . . . 2 ·1

Proof We carry the proof in two steps
Step 1: we find the number of k-element, 1-1 sequences
formed out of any n-element set
By definition, all sequences of length k formed from
n-element set are all possible functions

f : {1,2, . . . ,k} −→ {a1, . . . ,an}

We know, by the Counting Functions Theorem that and
there are nk of them
We need to count 1-1 sequences only and to count them
we use a notion of a permutation



Proof of Combinatorial Interpretation

Definition

A permutation of a set A is any function f : A
1−1,onto−→ A

Fact
For any non empty set set A of n elements the number of
permutation of A is n!
Proof
By definition, we have so show that there are n! functions
f : A

1−1,onto−→ A. We carry the proof by induction over
the number n > 0 of elements of the set A
Base Step Let |A|= 1. Hence A = {a} and obviously

there is only one function f : {a} 1−1,onto−→ {a}
By definition, 1! = 1 and Base Step holds



Proof of Combinatorial Interpretation

InductIve Step Let A = {a1, . . . ,an} and n > 1
Assume that for any B ⊂ A, such that |B|= n−1 there are

(n−1)! functions that map f : B
1−1,onto−→ B

In order to count all functions

f : {a1, . . . ,an}
1−1,onto−→ {a1, . . . ,an}

we divide them into n disjoint groups G1, G2, . . . Gn as
follows
G1 consists of all functions f, such that

f (a1) = a1

By inductive assumption, G1 contains (n−1)! functions



Proof of Combinatorial Interpretation

G2 consists of all functions f, such that

f (a2) = a2

By inductive assumption, G2 contains (n−1)! functions
In general, Gk consists of all functions f, such that

f (ak ) = ak

for k = 1,2, . . .n
By inductive assumption, each Gk contains (n−1)!
functions



Proof of Combinatorial Interpretation

We have divided the set of all functions into n disjoint
groups, each containing (n−1)! functions
Hence all together there are n! = n(n−1)! functions

f : A
1−1,onto−→ A

This ends the proof of the Fact and we go back to the
proof of the Combinatorial Interpretation as follows



Proof of Combinatorial Interpretation

Back to Step 1
Let |A|= n be any n-element set
We count now all possible 1-1, k-element sequences out
of elements of A as follows.
The 1-1, k-element sequences are of the form

b1, b2, . . . , bk for bi , bj and k ≥ 1

1. k = 1
b1 - there are n choices, for any b1 ∈ A
2. k = 2
b1, b2 - there are n - 1 choices, for any b2 ∈ A−{b1}



Proof of Combinatorial Interpretation

3. k = 3
b1, b2, b3 - there are n - 2 choices, for any
b3 ∈ A−{b1,b2}
Induction (really)
3. k = i
b1b2....bi - there are (n− i +1) choices for any
bi ∈ A−{b1,b2, . . . ,bi−1}

All together we have n(n−1)...(n−k +1) possible 1-1
sequences

b1, b2, . . . ,bk



Proof of Combinatorial Interpretation

Step 2
In Combinatorial Interpretation

(n
k

)
represents how

many are there k-element subsets of the set A
We proved that there are n(n−1)...(n−k +1) possible 1-1,
k-element sequences
Now we have to establish a relationship between the 1-1
sequences b1, b2, . . . ,bk and corresponding subsets
{b1, b2, . . . ,bk}
Observation
Sets: {b1, b2, . . . ,bk}= {b2, b2, . . . ,bk}
Sequences : b1, b2, . . . ,bk , b2, b2, . . . ,bk



Proof of Combinatorial Interpretation

Different sequences b1, b2, . . . ,bk can represent the
same set {b1, b2, . . . ,bk}
Question: How many are there of all possible set
representations {b1, b2, . . . ,bk} of the 1-1 sequence
b1, b2, . . . ,bk?
Answer: as many as permutation of the set
{b1, b2, . . . ,bk} , i.e. k !
Hence(

n
k

)
=

number of sequences
k !

=
n(n−1)...(n−k +1)

k !

This ends the proof



Generalization

We defined(
n
k

)
=

n(n−1)(n−2) . . .(n−k +1)
k(k −1) . . . 2 ·1

i.e. by the formula (
n
k

)
=

nk

k !

for n,k ∈ N, k ≥ 0, k ≤ n
We also proved the Combinatorial Statement that

(n
k

)
represents the number of ways to choose a k-element
subset from an n-element set.
We defined

0! = 1 and x0 = 1



Generalization

We generalize now the definition of
(n

k

)
as follows.

Consider a function f : R −→ R given by a formula (for
fixed k ∈ Z )

f (x) = xk = x(x−1) . . .(x−k +1)

and x0 = 1
or, more precisely, a function

f : R×Z −→ R

given by formula

f (x ,k) =

{
xk

k! k ≥ 0
0 k < 0



Definition

Definition
For any x ∈ R, k ∈ Z we define(

x
k

)
=

{
xk

k! k ≥ 0
0 k < 0

BOOk uses notation r ∈ R and defines(
r
k

)
=

{
r k

k! k ≥ 0
0 k < 0



Examples

(
x
k

)
=

xk

k !
for k ≥ 0, x ∈ R

xk = x(x−1)...(x−k +1)

We evaluate(
−1
3

)
=
−13

3!
=

(−1)(−2)(−3)
1.2.3

=−1

(
−1
−1

)
= 0 as k < 0 and

(
1
1

)
= 1

In general (
n
n

)
=

{
1 k ≥ 0
0 k < 0



Examples

We evaluate(√
2

3

)
=

√
2

3

3!
=

(
√

2)(
√

2−1)(
√

2−2)
1 ·2 ·3

√
2

3
= (
√

2)(
√

2−1)(
√

2−2)

NO Combinatorial Interpretation HERE



Generalization

We defined (
x
k

)
=

{
xk

k! k ≥ 0
0 k < 0

for any x ∈ R, k ∈ Z
Reminder (

n
n

)
= 1, for n ∈ N

(
n
n

)
= 0, for n < 0

(
n
k

)
= 0, for k > n, k ≥ 0



Symmetry Poperty

Symmetry Property

SP
(

n
k

)
=

(
n

n−k

)
for any n,k ∈ N, 0≤ k ≤ n

Proof We evaluate, by definition,(
n
k

)
=

n(n−1)...(n−k +1)
k !

=
n!

k !(n−k)!

=
n!

(n− (n−k))!(n−k)!
=

(
n

n−k

)
Combinatorial Interpretation(n

k

)
- - k chosen element from out of n( n

n−k

)
- - n-k unchosen element out of n



Symmetric Property

We proved that
(n

k

)
=
( n

n−k

)
for k ,n ∈ N and 0≤ k ≤ n

Case k < 0
We have

(n
k

)
= 0 and( n

n−k

)
=
(n

s

)
= 0 as s > n

Case k > n
We have

(n
k

)
= 0 and( n

n−k

)
=
(n

s

)
= 0 as s < 0



Symmetric Property Generalization

We have proved the
Symmetry Property Generalization

SP
(

n
k

)
=

(
n

n−k

)
holds for all n ∈ N, k ∈ Z

We will show now that it can’t be generalized to n ∈ Z



Symmetric Property Generalization

For example, take n =−1 and any k ≥ 0
We evaluate(
−1
k

)
=
−1k

k !
=

(−1)(−2)...(−1−k +1)
k !

=
k !−1k

k !
= (−1)k

where xk = x(x−1)...(x−k +1)
Now we evaluate(

−1
−1−k

)
= 0 for all k ≥ 0

This proves that(
−1
k

)
,

(
−1
−1−k

)
for all k ≥ 0



Absorption Identities

Absorption Identity

A1
(

x
k

)
=

x
k

(
x−1
k −1

)
for x ∈ R, k ∈ Z −0

Proof We first proof that

xk = x(x−1)k−1

as follows

x(x−1)k−1 = x(x−1)(x−2) . . .((x−1)− (k −1)+1)

= x(x−1) . . .((x−k +1) = xk



Absorption Identities

We evaluate now(
x
k

)
=

xk

k !
=

x(x−1)k−1

k(k −1)!
=

x
k

(
x−1
k −1

)
This ends the proof.
We multiply both sides of the identity A1 by k and get

A2 k
(

x
k

)
= x

(
x−1
k −1

)
for x ∈ R, k ∈ Z



Absorption Identities

We are going to prove now the following

A3 (x−k)
(

x
k

)
= x

(
x−1

k

)
for x ∈ R, k ∈ Z

Proof We carry the proof in two stages
Stage 1: we prove A3 for x ∈ N, k ∈ Z using the
Symmetry Property SP(

n
k

)
=

(
n

n−k

)
that only holds for x ∈ N
Stage 2: we use a Polynomial Argument (to be defined)
to extend Stage 1 case to x ∈ N, k ∈ Z



Absorption Identities

Stage 1: we assume that x ∈ N and evaluate

(x−k)
(

x
k

)
=SP (x−k)

(
x

(x−k)

)

= x
(

x−1
x−k −1

)
use A2 for k := x−k

= x
(

x−1
(x−1)−k

)
=SP x

(
x−1

k

)
This proves

(x−k)
(

x
k

)
= x

(
x−1

k

)
for x ∈ N, k ∈ Z



Polynomial Argument

Stage 2: Polynomial Argument
Observe the the equality

(x−k)
(

x
k

)
= x

(
x−1

k

)
for x ∈ R, k ∈ Z

is an equality of the following two polynomials of the
degree (k +1) over R with integer coordinates

L(x) = (x−k)
(

x
k

)
= ak+1xk+1 + . . . +a0

P(x) = x
(

x−1
k

)
= bk+1xk+1 + . . . +b0

as (
x
k

)
=

xk

k !
=

x(x−1)...(x−k +1)
k !

is a polynomial of the degree k



Polynomial Argument

Polynomial Theorem 1
Let w(x) = anxn + . . . +a0 be a polynomial of the
degree n with ai ∈ Z , i = 0, . . . ,n and n , 0.
Then the equation w(x) = 0 has at most n solutions; i.e.

|{x ∈ R : w(x) = 0}| ≤ n

Polynomial Theorem 2
Let w(x) = anxn + . . . +a0 be a polynomial with of the
degree n with ai ∈ Z , i = 0, . . . ,n and n , 0, such that

|{x ∈ R : w(x) = 0}| > n

Then
w(x) = 0 for all x ∈ R



Polynomial Argument

Back to Absorption Identity

A3 (x−k)
(

x
k

)
= x

(
x−1

k

)
for x ∈ R, k ∈ Z

We write it as

L(x) = P(x), or L(x)−P(x) = 0, for all x ∈ R,

where L(x),P(x) are two polynomials of the degree
(k +1) over R, with integer coordinates

L(x) = (x−k)
(

x
k

)
= ak+1xk+1 + . . . +a0

P(x) = x
(

x−1
k

)
= bk+1xk+1 + . . . +b0



Polynomial Argument

Observe that we have just proved A3 for all x ∈ N, i.e. we
proved that

|{x ∈ R : L(x)−P(x) = 0}|= |N|= ℵ0 > k for all k ∈ Z

By Polynomial Theorem 2,

L(x)−P(x) = 0, for all x ∈ R

and hence we have proved the Absorption Identity

A3 (x−k)
(

x
k

)
= x

(
x−1

k

)
for x ∈ R, k ∈ Z



Absorption Identities

We are going to prove now yet another Absorption Identity

A4
(

x
k

)
=

(
x−1

k

)
+

(
x−1
k −1

)
for x ∈ R, k ∈ Z

We present here two proofs
Proof 1 We carry the proof in two stages
Stage 1: we prove A4 for x ∈ N, k ∈ Z
Stage 2: we use a Polynomial Argument to extend Stage
1 case to x ∈ N, k ∈ Z
Proof 2 We use Absorption Identities A2 and A3- left as
an exercise



Polynomial Argument

We prove the case x ∈ N by a straightforward evaluation.
We use the Polynomial Argument as follows
Let

L(x) =
(

x
k

)
- polynomial of the degree k

P(x) =
(

x−1
k

)
+

(
x−1
k −1

)
- polynomial of the degree k

We proved that

L(x)−P(x) = 0, for all x ∈ N



Polynomial Argument

Hence

|{x ∈ R : L(x)−P(x) = 0}|= |N|= ℵ0 > k for all k ∈ Z

By Polynomial Theorem 2,

L(x)−P(x) = 0, for all x ∈ R

and hence we have proved the

A4
(

x
k

)
=

(
x−1

k

)
+

(
x−1
k −1

)
for x ∈ R, k ∈ Z


