cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

Lecture 15

DISCRETE MATHEMATICS BASICS

Discrete Mathematics Basics

PART 1: Sets and Operations on Sets
PART 2: Relations and Functions
PART 3: Special types of Binary Relations
PART 4: Finite and Infinite Sets
PART 5: Some Fundamental Proof Techniques
PART 6: Closures and Algorithms
PART 7: Alphabets and languages
PART 8: Finite Representation of Languages

Discrete Mathematics Basics

PART 1: Sets and Operations on Sets

Sets

Set A set is a collection of objects

Elements The objects comprising a set are are called its elements or members
$a \in A \quad$ denotes that a is an element of a set A
$a \notin A$ denotes that a is not an element of A

Empty Set is a set without elements

Empty Set is denoted by \emptyset

Sets

Sets can be defined by listing their elements;

Example

The set

$$
A=\{a, \emptyset,\{a, \emptyset\}\}
$$

has 3 elements:

$$
a \in A, \quad \emptyset \in A, \quad\{a, \emptyset\} \in A
$$

Sets

Sets can be defined by referring to other sets and to properties $\mathrm{P}(\mathrm{x})$ that elements may or may not have

We write it as

$$
B=\{x \in A: P(x)\}
$$

Example

Let N be a set of natural numbers

$$
B=\{n \in N: \quad n<0\}=\emptyset
$$

Operations on Sets

Set Inclusion

$A \subseteq B \quad$ if and only if $\quad \forall a(a \in A \Rightarrow a \in B)$ is a true statement

Set Equality

$A=B \quad$ if and only if $A \subseteq B$ and $B \subseteq A$

Proper Subset

$A \subset B \quad$ if and only if $A \subseteq B$ and $A \neq B$

Operations on Sets

Subset Notations

$A \subseteq B$ for a subset (might be improper)
$A \subset B$ for a proper subset

Power Set Set of all subsets of a given set

$$
\mathcal{P}(A)=\{B: \quad B \subseteq A\}
$$

Other Notation

$$
2^{A}=\{B: B \subseteq A\}
$$

Operations on Sets

Union
$A \cup B=\{x: \quad x \in A$ or $x \in B\}$
We write:
$x \in A \cup B$ if and only if $x \in A \cup x \in B$

Intersection
$A \cap B=\{x: \quad x \in A \quad$ and $\quad x \in B\}$
We write:
$x \in A \cap B \quad$ if and only if $\quad x \in A \cap x \in B$

Operations on Sets

Relative Complement

$x \in(A-B) \quad$ if and only if $\quad x \in A$ and $x \notin B$
We write:

$$
A-B=\{x: \quad x \in A \cap x \notin B\}
$$

Complement is defined only for $A \subseteq U$, where U is called an universe

$$
-A=U-A
$$

We write for $x \in U$,
$x \in-A \quad$ if and only if $\quad x \notin A$

Operations on Sets

Algebra of sets consists of properties of sets that are true for all sets involved

We use tautologies of propositional logic to prove basic properties of the algebra of sets

We then use the basic properties to prove more elaborated properties of sets

Operations on Sets

It is possible to form intersections and unions of more then two, or even a finite number o sets

Let \mathcal{F} denote is any collection of sets

We write $\cup \mathcal{F}$ for the set whose elements are the elements of all of the sets in \mathcal{F}

Example Let

$$
\mathcal{F}=\{\{a\},\{\emptyset\},\{a, \emptyset, b\}\}
$$

We get

$$
\bigcup \mathcal{F}=\{a, \emptyset, b\}
$$

Operations on Sets

Observe that given

$$
\mathcal{F}=\{\{a\},\{\emptyset\},\{a, \emptyset, b\}\}=\left\{A_{1}, A_{2}, A_{3}\right\}
$$

we have that

$$
\{a\} \cup\{\emptyset\} \cup\{a, \emptyset, b\}=A_{1} \cup A_{2} \cup A_{3}=\{a, \emptyset, b\}=\bigcup \mathcal{F}
$$

Hence we have that for any element x,

$$
x \in \bigcup \mathcal{F} \text { if and only if there exists } i \text {, such that } x \in A_{i}
$$

Operations on Sets

We define formally
Generalized Union of any family \mathcal{F} of sets is

$$
\bigcup \mathcal{F}=\{x: \quad \text { exists a set } S \in \mathcal{F} \text { such that } x \in S\}
$$

We write it also as

$$
x \in \bigcup \mathcal{F} \quad \text { if and only if } \quad \exists_{S \in \mathcal{F}} \quad x \in S
$$

Operations on Sets

Generalized Intersection of any family \mathcal{F} of sets is

$$
\bigcap \mathcal{F}=\left\{x: \quad \forall_{S \in \mathcal{F}} x \in S\right\}
$$

We write

$$
x \in \bigcap \mathcal{F} \quad \text { if and only if } \quad \forall S \in \mathcal{F} x \in S
$$

Operations on Sets

Ordered Pair

Given two sets A, B we denote by

$$
(a, b)
$$

an ordered pair, where $a \in A$ and $b \in B$
We call a a first coordinate of (a, b)
and b its second coordinate
We define

$$
(a, b)=(c, d) \text { if and only if } a=c \quad \text { and } b=d
$$

Operations on Sets

Cartesian Product

Given two sets A and B, the set

$$
A \times B=\{(a, b): \quad a \in A \text { and } b \in B\}
$$

is called a Cartesian product (cross product) of sets A, B We write

$$
(a, b) \in A \times B \quad \text { if and only if } \quad a \in A \text { and } b \in B
$$

Discrete Mathematics Basics

PART 2: Relations and Functions

Binary Relations

Binary Relation

Any set R such that $R \subseteq A \times A$
is called a binary relation defined in a set A

Domain, Range of R
Given a binary relation $R \subseteq A \times A$, the set

$$
D_{R}=\{a \in A: \quad(a, b) \in R\}
$$

is called a domain of the relation R
The set

$$
V_{R}=\{b \in A: \quad(a, b) \in R\}
$$

is called a range (set of values) of the relation R

n - ary Relations

Ordered tuple

Given sets $A_{1}, \ldots A_{n}$, an element $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ such that $a_{i} \in A_{i}$ for $i=1,2, \ldots n$ is called an ordered tuple

Cartesian Product of sets $A_{1},, A_{n}$ is a set

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots a_{n}\right): a_{i} \in A_{i}, i=1,2, \ldots n\right\}
$$

n-ary Relation on sets A_{1}, \ldots, A_{n} is any subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$, i.e. the set

$$
R \subseteq A_{1} \times A_{2} \times \ldots \times A_{n}
$$

Function as Relation

Definition

A binary relation $R \subseteq A \times B$ on sets A, B is a function from A to B
if and only if the following condition holds

$$
\forall_{a \in A} \exists!{ }_{b \in B}(a, b) \in R
$$

where $\exists!_{b \in B}$ means there is exactly one $b \in B$

Because the condition says that for any $a \in A$ we have exactly one $b \in B$, we write

$$
R(a)=b \text { for }(a, b) \in R
$$

Function as Relation

Given a binary relation

$$
R \subseteq A \times B
$$

that is a function

The set A is called a domain of the function R and we write:
$R: A \longrightarrow B$
to denote that the relation R is a function and say that
R maps the set A into the set B

Functions

Function notation
We denote relations that are functions by letters $\mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots$ and write

$$
f: \quad A \longrightarrow B
$$

say that the function f maps the set A into the set B

Domain, Codomain

Let $f: A \longrightarrow B$,
the set A is called a domain of f ,
and the set B is called a codomain of f

Functions

Range

Given a function $f: A \longrightarrow B$
The set

$$
R_{f}=\{b \in B: \quad b=f(a) \text { and } a \in A\}
$$

is called a range of the function f
By definition, the range of f is a subset of its codomain B
We write $\quad R_{f}=\left\{b \in B: \quad \exists_{a \in A} b=f(a)\right\}$

The set

$$
f=\{(a, b) \in A \times B: \quad b=f(a)\}
$$

is called a graph of the function f

Functions

Function "onto"

The function $f: A \longrightarrow B$ is an onto function if and only if the following condition holds

$$
\forall_{b \in B} \exists_{a \in A} f(a)=b
$$

We denote it by

$$
f: A \xrightarrow{\text { onto }} B
$$

Functions

Function "one- to -one"

The function $f: A \longrightarrow B$
is called a one- to -one function and denoted by

$$
f: A \xrightarrow{1-1} B
$$

if and only if the following condition holds

$$
\forall_{x, y \in A}(x \neq y \Rightarrow f(x) \neq f(y))
$$

Functions

A function $\quad f: A \longrightarrow B$ is not one- to -one function if and only if the following condition holds

$$
\exists_{x, y \in A}(x \neq y \cap f(x)=f(y))
$$

If a function f is $\mathbf{1 - 1}$ and onto
we denote it as

$$
f: A \xrightarrow{1-1, \text { onto }} B
$$

Functions

Composition of functions

Let f and g be two functions such that

$$
f: A \longrightarrow B \text { and } g: B \longrightarrow C
$$

We define a new function

$$
h: A \longrightarrow C
$$

called a composition of functions f and g as follows: for any $x \in A \quad$ we put

$$
h(x)=g(f(x))
$$

Functions

Composition notation

Given function f and g such that

$$
f: A \longrightarrow B \text { and } g: B \longrightarrow C
$$

We denote the composition of f and g by ($f \circ g$)
in order to stress that the function

$$
f: \quad A \longrightarrow \mathbf{B}
$$

"goes first" followed by the function

$$
g: \quad \mathbf{B} \longrightarrow C
$$

with a shared set B between them

Functions

We write now the definition of composition of functions f and g using the composition notation (name for the composition function) ($f \circ g$) as follows
The composition $(f \circ g)$ is a new function

$$
(f \circ g): \quad A \longrightarrow C
$$

such that for any $x \in A \quad$ we put

$$
(f \circ g)(x)=g(f(x))
$$

Functions

There is also other notation (name) for the composition of f and g that uses the symbol $(g \circ f)$, i.e. we put

$$
(g \circ f)(x)=g(f(x)) \text { for all } x \in A
$$

This notation was invented to help calculus students to remember the formula $g(f(x))$ defining the composition of functions f and g

Functions

Inverse function

Let $f: A \longrightarrow B$ and $g: B \longrightarrow A$
g is called an inverse function to f if and only if the following condition holds

$$
\forall_{a \in A}(f \circ g)(a)=g(f(a))=a
$$

If g is an inverse function to f we denote by $g=f^{-1}$

Functions

Identity function

A function $I: A \longrightarrow A$ is called an identity on A if and only if the following condition holds

$$
\forall a \in A I(a)=a
$$

Inverse and Identity

Let $f: A \longrightarrow B$ and let $f^{-1}: B \longrightarrow A$
be an inverse to f , then the following hold

$$
\begin{array}{lll}
\left(f \circ f^{-1}\right)(a)=f^{-1}(f(a))=I(a)=a, & \text { for all } & a \in A \\
\left(f^{-1} \circ f(b)\right)=f\left(f^{-1}(b)=I(b)=b,\right. & \text { for all } & b \in B
\end{array}
$$

Functions: Image and Inverse Image

Image

Given a function $f: X \longrightarrow Y$ and a set $A \subseteq X$
The set

$$
f[A]=\{y \in Y: \quad \exists x(x \in A \cap y=f(x))\}
$$

is called an image of the set $A \subseteq X$ under the function f We write

$$
y \in f[A] \text { if and only if there is } x \in A \text { and } y=f(x)
$$

Other symbols used to denote the image are

$$
f \rightarrow(A) \text { or } f(A)
$$

Functions: Image and Inverse Image

Inverse Image
Given a function $f: X \longrightarrow Y$ and a set $B \subseteq Y$
The set

$$
f^{-1}[B]=\{x \in X: \quad f(x) \in B\}
$$

is called an inverse image of the set $B \subseteq Y$ under the function f

We write

$$
x \in f^{-1}[B] \quad \text { if and only if } \quad f(x) \in B
$$

Other symbol used to denote the inverse image are

$$
f^{-1}(B) \quad \text { or } \quad f \leftarrow(B)
$$

Sequences

Definition

A sequence of elements of a set A is any function from the set of natural numbers N into the set A , i.e. any function

$$
f: N \longrightarrow A
$$

Any $f(n)=a_{n}$ is called \boldsymbol{n}-th term of the sequence f
Notations

$$
f=\left\{a_{n}\right\}_{n \in N}, \quad\left\{a_{n}\right\}_{n \in N}, \quad\left\{a_{n}\right\}
$$

Sequences Example

Example

We define a sequence for real numbers R as follows

$$
f: \quad N \longrightarrow R
$$

such that

$$
f(n)=n+\sqrt{n}
$$

We also use a shorthand notation for the function f and write it as

$$
a_{n}=n+\sqrt{n}
$$

Sequences Example

We often write the function $f=\left\{a_{n}\right\}$ in an even shorter and informal form as

$$
a_{0}=0, \quad a_{1}=1+1=2, \quad a_{2}=2+\sqrt{2} \ldots \ldots \ldots
$$

or even as

$$
0, \quad 2, \quad 2+\sqrt{2}, \quad 3+\sqrt{3}, \quad \ldots \ldots \ldots \ldots . n+\sqrt{n} \ldots \ldots \ldots .
$$

Observations

Observation 1

By definition, sequence of elements of any set is always infinite (countably infinite) because the domain of the sequence function f is a set N of natural numbers

Observation 2

We can enumerate elements of a sequence by any infinite subset of N

We usually take a set $N-\{0\}$ as a sequence domain (enumeration)

Observations

Observation 3

We can choose as a set of indexes of a sequence any countably infinite set T, i. e, not only the set N of natural numbers

We often choose $T=N-\{0\}=N^{+}$, i.e we consider sequences that "start" with $n=1$
In this case we write sequences as

$$
a_{1}, \quad a_{2}, \quad a_{3}, \ldots \ldots a_{n}, \ldots \ldots
$$

Finite Sequences

Finite Sequence

Given a finite set $K=\{1,2, \ldots, n\}$, for $n \in N$ and any set A

Any function

$$
f:\{1,2, \ldots n\} \longrightarrow A
$$

is called a finite sequence of elements of the set A of the length n

Case $n=0$
In this case the function f is an empty set and we call it an empty sequence
We denote the empty sequence by e

Example

Example

Consider a sequence given by a formula

$$
a_{n}=\frac{n}{(n-2)(n-5)}
$$

The domain of the function $f(n)=a_{n}$ is the set $N-\{2,5\}$ and the sequence f is a function

$$
f: N-\{2,5\} \rightarrow R
$$

The first elements of the sequence f are

$$
a_{0}=f(0), a_{1}=f(1), a_{3}=f(3), a_{4}=f(4) a_{5}=f(5), a_{6}=f(6), \ldots
$$

Example

Example

Let $T=\{-1,-2,3,4\}$ be a finite set and

$$
f:\{-1,-2,3,4\} \rightarrow R
$$

be a function given by a formula

$$
f(n)=a_{n}=\frac{n}{(n-2)(n-5)}
$$

f is a finite sequence of length 4 with elements

$$
a_{-1}=f(-1), \quad a_{-2}=f(-2), \quad a_{3}=f(3), \quad a_{4}=f(4)
$$

Families of Sets

Family of sets

Any collection of sets is called a family of sets
We denote the family of sets by

$$
\mathcal{F}
$$

Sequence of sets

Any function

$$
f: N \longrightarrow \mathcal{F}
$$

is a sequence of sets, i..e a sequence where all its elements are sets
We use capital letters to denote sets and write the sequence of sets as

$$
\left\{A_{n}\right\}_{n \in N}
$$

Generalized Union

Generalized Union

Given a sequence $\left\{A_{n}\right\}_{n \in N}$ of sets
We define that Generalized Union of the sequence of sets as

$$
\bigcup_{n \in N} A_{n}=\left\{x: \quad \exists \exists_{n \in N} x \in A_{n}\right\}
$$

We write

$$
x \in \bigcup_{n \in N} A_{n} \quad \text { if and only if } \quad \exists_{n \in N} x \in A_{n}
$$

Generalized Intersection

Generalized Intersection

Given a sequence $\left\{A_{n}\right\}_{n \in N}$ of sets
We define that Generalized Intersection of the sequence of sets as

$$
\bigcap_{n \in N} A_{n}=\left\{x: \quad \forall_{n \in N} x \in A_{n}\right\}
$$

We write

$$
x \in \bigcap_{n \in N} A_{n} \quad \text { if and only if } \quad \forall_{n \in N} x \in A_{n}
$$

Indexed Family of Sets

Indexed Family of Sets

Given \mathcal{F} be a family of sets
Let $T \neq \emptyset$ be any non empty set

Any function

$$
f: \quad T \longrightarrow \mathcal{F}
$$

is called an indexed family of sets with the set of indexes T
We write it

$$
\left\{A_{t}\right\}_{t \in T}
$$

Notice
Any sequence of sets is an indexed family of sets for $\mathrm{T}=\mathrm{N}$

Short Review

Some Simple Questions and Answers

Simple Short Questions

Here are some short Yes/ No questions
Answer them and write a short justification of your answer

Q1 $\quad 2^{\{1,2\}} \cap\{1,2\} \neq \emptyset$

Q2 $\{\{a, b\}\} \in 2^{\{a, b,\{a, b\}\}}$

Q3 $\emptyset \in 2^{\{a, b,\{a, b\}\}}$

Q4 Any function from $A \neq \emptyset$ onto A, has property

$$
f(a) \neq a \text { for certain } a \in A
$$

Simple Short Questions

Q5 Let $f: N \longrightarrow \mathcal{P}(N)$ be given by a formula:

$$
f(n)=\left\{m \in N: \quad m<n^{2}\right\}
$$

then $\quad \emptyset \in f[\{0,1,2\}]$

Q6 Some relations

$$
R \subseteq A \times B
$$

are functions that map the set A into the set B

Answers to Short Questions

Q1 $2^{\{1,2\}} \cap\{1,2\} \neq \emptyset$
NO because

$$
2^{\{1,2\}}=\{\emptyset,\{1\},\{2\},\{1,2\}\} \cap\{1,2\}=\emptyset
$$

Q2 $\{\{a, b\}\} \in 2^{\{a, b,\{a, b\}\}}$
YES because
have that $\quad\{a, b\} \subseteq\{a, b,\{a, b\}\} \quad$ and hence

$$
\{\{a, b\}\} \in 2^{\{a, b,\{a, b\}\}}
$$

by definition of the set of all subsets of a given set

Answers to Short Questions

Q2 $\{\{a, b\}\} \in 2^{\{a, b,\{a, b\}\}}$
YES other solution
We list all subsets of the set $\{a, b,\{a, b\}\}$,
i.e. all elements of the set

$$
2^{\{a, b,\{a, b\}\}}
$$

We start as follows

$$
\{\emptyset,\{a\},\{b\},\{\{a, b\}\}, \ldots, \ldots\}
$$

and observe that we can stop listing because we reached the set $\{\{a, b\}\}$
This proves that $\quad\{\{a, b\}\} \in 2^{\{a, b,\{a, b\}\}}$

Answers to Short Questions

Q3 $\emptyset \in 2^{\{a, b,\{a, b\}\}}$
YES because for any set A, we have that $\emptyset \subseteq A$

Q4 Any function f from $A \neq \emptyset$ onto A has a property

$$
f(a) \neq a \quad \text { for certain } \quad a \in A
$$

NO

Take a function such that $f(a)=a \quad$ for all $a \in A$ Obviously f is "onto" and and there is no $a \in A$ for which $f(a) \neq a$

Answers to Short Questions

Q5 Let $f: N \longrightarrow \mathcal{P}(N)$ be given by formula:
$f(n)=\left\{m \in N: m<n^{2}\right\}$, then $\emptyset \in f[\{0,1,2\}]$
YES We evaluate
$f(0)=\{m \in N: \quad m<0\}=\emptyset$
$f(1)=\{m \in N: m<1\}=\{0\}$
$f(2)=\left\{m \in N: m<2^{2}\right\}=\{0,1,2,3\}$
and so by definition of $f[A]$ get that
$f[\{0,1,2\}]=\{\emptyset,\{0\},\{0,1,2,3\}\}$ and hence $\emptyset \in f[\{0,1,2\}]$

Q6 Some $R \subseteq A \times B$ are functions that map A into B
YES: Functions are special type of relations

Simple Short Questions

Q7 $\{(1,2),(a, 1)\}$ is a binary relation on $\{1,2\}$

Q8 For any binary relation $R \subseteq A \times A$, the inverse relation R^{-1} exists

Q9 For any binary relation $R \subseteq A \times A$ that is a function, the inverse function R^{-1} exists

Simple Short Questions

Q10 Let $A=\{a,\{a\}, \emptyset\}$ and $B=\{\emptyset,\{\emptyset\}, \emptyset\}$ there is a function $f: A \longrightarrow{ }_{\text {onto }}^{1-1} B$

Q11 Let $f: A \longrightarrow B$ and $g: B \longrightarrow{ }^{\text {onto }} A$, then the compositions $(g \circ f)$ and $(f \circ g)$ exist

Q12 The function $f: N \longrightarrow \mathcal{P}(R)$ given by the formula:

$$
f(n)=\left\{x \in R: \quad x>\frac{\ln \left(n^{3}+1\right)}{\sqrt{n+6}}\right\}
$$

is a sequence

Answers to Short Questions

Q7 $\{(1,2),(a, 1)\}$ is a binary relation on $\{1,2\}$
NO because $(a, 1) \notin\{1,2\} \times\{1,2\}$

Q8 For any binary relation $R \subseteq A \times A$, the inverse relation R^{-1} exists
YES By definition, the inverse relation to $R \subseteq A \times A$ is the set

$$
R^{-1}=\{(b, a): \quad(a, b) \in R\}
$$

and it is a well defined relation in the set A

Answers to Short Questions

Q9 For any binary relation $R \subseteq A \times A$ that is a function, the inverse function R^{-1} exists
NO R must be also a 1-1 and onto function

Q10 Let $A=\{a,\{a\}, \emptyset\}$ and $B=\{\emptyset,\{\emptyset\}, \emptyset\}$ there is a function $f: A \longrightarrow{ }_{\text {onto }}^{1-1} B$
NO The set A has 3 elements and the set

$$
B=\{\emptyset,\{\emptyset\}, \emptyset\}=\{\emptyset,\{\emptyset\}\}
$$

has 2 elements and an onto function does not exists

Answers to Short Questions

Q11 Let $f: A \longrightarrow B$ and $g: B \longrightarrow$ onto A, then the compositions ($g \circ f$) and ($f \circ g$) exist

YES The composition $(f \circ g)$ exists because the functions $f: A \longrightarrow \mathbf{B}$ and $g: \mathbf{B} \longrightarrow{ }^{\text {onto }} A$ share the same set \mathbf{B}

The composition $(g \circ f)$ exists because the functions $g: B \longrightarrow$ onto \mathbf{A} and $f: \mathbf{A} \longrightarrow B$ share the same set \mathbf{A}

The information "onto" is irrelevant

Answers to Short Questions

Q12 The function $f: N \longrightarrow \mathcal{P}(R)$ given by the formula:

$$
f(n)=\left\{x \in R: \quad x>\frac{\ln \left(n^{3}+1\right)}{\sqrt{n+6}}\right\}
$$

is a sequence

YES It is a sequence as the domain of the function f is the set N of natural numbers and the formula for $f(n)$ assigns to each natural number n a certain subset of R, i.e. an element of $\mathcal{P}(R)$

Dusctere Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation

Equivalence Relation

Equivalence relation

A binary relation $R \subseteq A \times A$ is an equivalence relation defined in the set A if and only if it is reflexive, symmetric and transitive

Symbols

We denote equivalence relation by symbols

$$
\sim, \quad \approx \text { or } \equiv
$$

We will use the symbol \approx to denote the equivalence relation

Equivalence Relation

Equivalence class
Let $\approx \subseteq A \times A$ be an equivalence relation on A
The set

$$
E(a)=\{b \in A: \quad a \approx b\}
$$

is called an equivalence class

Symbol

The equivalence classes are usually denoted by

$$
[a]=\{b \in A: \quad a \approx b\}
$$

The element a is called a representative of the equivalence class [a] defined in A

Partitions

Partition

A family of sets $\mathbf{P} \subseteq \mathcal{P}(A)$ is called a partition of the set A if and only if the following conditions hold

1. $\forall X \in P(X \neq \emptyset)$
i.e. all sets in the partition are non-empty
2. $\forall_{X, Y \in \mathbf{P}}(X \cap Y=\emptyset)$
i.e. all sets in the partition are disjoint
3. $\cup \mathbf{P}=A$
i.e union of all sets from \mathbf{P} is the set A

Equivalence and Partitions

Notation

A / \approx denotes the set of all equivalence classes of the equivalence relation \approx, i.e.

$$
A / \approx=\{[a]: a \in A\}
$$

We prove the following theorem 1.3.1
Theorem 1
Let $A \neq \emptyset$
If \approx is an equivalence relation on A, then the set A / \approx is a partition of A

Equivalence and Partitions

Theorem 1 (full statement)
Let $A \neq \emptyset$
If \approx is an equivalence relation on A, then the set A / \approx is a partition of A, i.e.

1. $\forall_{[a] \in A / \approx}([a] \neq \emptyset)$
i.e. all equivalence classes are non-empty
2. $\forall[a] \neq[b] \in A / \approx([a] \cap[b]=\emptyset)$
i.e. all different equivalence classes are disjoint
3. $\cup A / \approx=A$
i.e the union of all equivalence classes is equal to the set A

Partition and Equivalence

We also prove a following
Theorem 2
For any partition

$$
\mathbf{P} \subseteq \mathcal{P}(A) \text { of the set } A
$$

one can construct a binary relation R on A such that
R is an equivalence on A and its equivalence classes are exactly the sets of the partition P

Partition and Equivalence

Observe that we can consider, for any binary relation R on s set A the sets that "look" like equivalence classes i.e. that are defined as follows:

$$
R(a)=\{b \in A ; \quad a R b\}=\{b \in A ; \quad(a, b) \in R\}
$$

Fact 1

If the relation R is an equivalence on A, then the family $\{R(a)\}_{a \in A}$ is a partition of A

Fact 2

If the family $\{R(a)\}_{a \in A}$ is not a partition of A
, then R is not an equivalence on A

Proof of Theorem 1

Theorem 1
Let $A \neq \emptyset$
If \approx is an equivalence relation on A,
then the set A / \approx is a partition of A

Proof

Let $A / \approx=\{[a]: a \in A\}=P$
We must show that all sets in \mathbf{P} are nonempty, disjoint, and together exhaust the set A

Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as $a \in[a]$ for all $a \in A$, reflexivity of equivalence relation
2. All different equivalence classes are disjoint

Consider two different equivalence classes $[a] \neq[b]$
Assume that $[a] \cap[b] \neq \emptyset$.
We have that $[a] \neq[b]$, thus there is an element c
such that $c \in[a]$ and $c \in[b]$
Hence $(a, c) \in \approx$ and $(c, b) \in \approx$
Since \approx is transitive, we get $(a, b) \in \approx$

Proof of Theorem 1

Since \approx is symmetric, we have that also $(a, b) \in \approx$

Now take any element $d \in[a]$; then $(d, a) \in \approx$, and by transitivity, $(d, b) \in \approx$ Hence $d \in[b]$, so that $[a] \subseteq[b]$

Likewise $[b] \subseteq[a]$ and $[a]=[b]$ what contradicts the assumption that $[a] \neq[b]$

Proof of Theorem 1

3. To prove that

$$
\bigcup A / \approx=\bigcup \mathbf{P}=A
$$

we simply notice that each element $a \in A$ is
in some set in \mathbf{P}
Namely we have by reflexivity that always

$$
a \in[a]
$$

This ends the proof of Theorem 1

Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be reversed, namely that the following is also true

Theorem 2
For any partition

$$
\mathbf{P} \subseteq \mathcal{P}(A)
$$

of A, one can construct a binary relation R on A
such that R is an equivalence and its equivalence classes are exactly the sets of the partition \mathbf{P}
Proof
We define a binary relation R as follows

$$
R=\{(a, b): \quad a, b \in X \text { for some } X \in \mathbf{P}\}
$$

Short Review

PART 3: Equivalence Relations - Short and Long Questions

Short Questions

Q1 Let $R \subseteq A \times A$ for $A \neq \emptyset$, then the set

$$
[a]=\{b \in A:(a, b) \in R\}
$$

is an equivalence class with a representative a

Q2 The set

$$
\{(\emptyset, \emptyset),(\{a\},\{a\}),(3,3)\}
$$

represents a transitive relation

Short Questions

Q3 There is an equivalence relation on the set

$$
A=\{\{0\},\{0,1\}, 1,2\}
$$

with 3 equivalence classes

Q4 Let $A \neq \emptyset$ be such that there are exactly
25 partitions of A
It is possible to define $\mathbf{2 0}$ equivalence relations on A

Short Questions Answers

Q1 Let $R \subseteq A \times A$ then the set

$$
[a]=\{b \in A:(a, b) \in R\}
$$

is an equivalence class with a representative a
NO The set $[a]=\{b \in A:(a, b) \in R\}$ is an equivalence class only when the relation R is an equivalence relation

Q2 The set

$$
\{(\emptyset, \emptyset),(\{a\},\{a\}),(3,3)\}
$$

represents a transitive relation
YES Transitivity condition is vacuously true

Short Questions Answers

Q3 There is an equivalence relation on

$$
A=\{\{0\},\{0,1\}, 1,2\}
$$

with 3 equivalence classes

YES For example, a relation R defined by the partition

$$
\mathbf{P}=\{\{\{0\}\}, \quad\{\{0,1\}\}, \quad\{1,2\}\}
$$

and so By proof of Theorem 2

$$
R=\{(a, b): a, b \in X \text { for some } X \in \mathbf{P}\}
$$

i.e. $a=b=\{0\}$ or $a=b=\{0,1\}$ or $(a=1$ and $b=2)$

Short Questions Answers

Q4
Let $A \neq \emptyset$ be such that there are exactly $\mathbf{2 5}$ partitions of A It is possible to define $\mathbf{2}$ equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as partitions) of equivalence classes

Equivalence Relations

Some Long Questions

Some Long Questions

Q1 Consider a function $f: A \longrightarrow B$
Show that $R=\{(a, b) \in A \times A: \quad f(a)=f(b)\}$
is an equivalence relation on A

Q2 Let $f: N \longrightarrow N$ be such that

$$
f(n)= \begin{cases}1 & \text { if } n \leq 6 \\ 2 & \text { if } n>6\end{cases}
$$

Find equivalence classes of R from $\mathbf{Q 1}$ for this particular function f

Long Questions Solutions

Q1 Consider a function $f: A \longrightarrow B$
Show that

$$
R=\{(a, b) \in A \times A: \quad f(a)=f(b)\}
$$

is an equivalence relation on A

Solution

1. R is reflexive
$(a, a) \in R$ for all $a \in A$ because $f(a)=f(a)$

Long Questions Solutions

2. R is symmetric

Let $(a, b) \in R$, by definition $f(a)=f(b)$ and $f(b)=f(a)$
Consequently $(b, a) \in R$
3. R is transitive

For any $a, b, c \in A$ we get that $f(a)=f(b)$ and $f(b)=f(c)$ implies that $f(a)=f(c)$

Long Questions Solutions

Q2 Let $f: N \longrightarrow N$ be such that

$$
f(n)= \begin{cases}1 & \text { if } n \leq 6 \\ 2 & \text { if } n>6\end{cases}
$$

Find equivalence classes of

$$
R=\{(a, b) \in A \times A: \quad f(a)=f(b)\}
$$

for this particular f

Long Questions Solutions

Solution

We evaluate

$$
\begin{aligned}
& {[0]=\{n \in N: f(0)=f(n)\}=\{n \in N: f(n)=1\}} \\
& =\{n \in N: n \leq 6\}
\end{aligned}
$$

$$
[7]=\{n \in N: f(7)=f(n)\}=\{n \in N: f(n)=2\}
$$

$$
=\{n \in N: n>6\}
$$

There are two equivalence classes:

$$
A_{1}=\{n \in N: n \leq 6\}, \quad A_{2}=\{n \in N: n>6\}
$$

Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations

Order Relations

We introduce now of another type of important binary relations: the order relations

Definition

$R \subseteq A \times A$ is an order relation on A iff R is 1.Reflexive, 2 . Antisymmetric, and 3 . Transitive, i.e. the following conditions are satisfied

1. $\forall a \in A(a, a) \in R$
2. $\forall_{a, b \in A}((a, b) \in R \cap(b, a) \in R \Rightarrow a=b)$
3. $\forall_{a, b, c \in A}((a, b) \in R \cap(b, c) \in R \Rightarrow(a, c) \in R)$

Order Relations

Definition

$R \subseteq(A \times A)$ is a total order on A if and only if R is an order and any two elements of A are comparable, i.e. additionally the following condition is satisfied
4. $\forall_{a, b \in A}((a, b) \in R \cup(b, a) \in R)$

Names
order relation is also called historically a partial order total order is also called historically a linear order

Order Relations

Notations

order relations are usually denoted by \leq, or when we want to make a clear distinction from the natural order in sets of numbers we denote it by \leq

Remember

We use \leq as the order relation symbol, it is a symbol for any order relation, not a the natural order in sets of numbers, unless we say so

Posets

Definition

Given $A \neq \emptyset$ and an order relation defined on A
A tuple

$$
(A, \leq)
$$

is called a poset

Name poset stands historically for Partially Ordered Set
A Diagram of is a graphical representation of a poset and
is defined as follows

Posets

A Diagram of a poset (A, \leq) is a simplified graph constructed as follows

1. As the order relation \leq is reflexive, i.e. $(a, a) \in R$ for all $a \in A$, we draw a point with symbol a instead of a point with symbol a and the loop
2. As the order relation \leq is antisymmetric we draw a pointb above a point a connected, but without the arrows to indicate that $(a, b) \in R$
3. As the order relation is transitive, we connect points a, b, c with a line without arrows

Posets Special Elements

Special elements in a poset (A, \leq) are: maximal, minimal, greatest (largest) and smallest (least) and are defined below.

Smallest (least) $a_{0} \in A$ is a smallest (least) element in the poset (A, \leq) iff $\forall a \in A\left(a_{0} \leq a\right)$

Greatest (largest) $a_{0} \in A$ is a greatest (largest) element in the poset $(A, \leq) \quad$ iff $\quad \forall_{a \in A}\left(a \leq a_{0}\right)$

Posets Special Elements

Maximal (formal) $a_{0} \in A$ is a maximal element in the poset (A, \leq) iff $\neg \exists_{a \in A}\left(a_{0} \leq a \cap a_{0} \neq a\right)$
Maximal (informal) $a_{0} \in A$ is a maximal element in the poset (A, \leq) iff on a diagram of (A, \leq) there is no element placed above a_{0}
Minimal (formal) $a_{0} \in A$ is a minimal element in the poset (A, \leq) iff $\neg \exists_{a \in A}\left(a \leq a_{0} \cap a_{0} \neq a\right)$
Minimal (informal) $a_{0} \in A$ is a minimal element in the poset (A, \leq) iff on the diagram of (A, \leq) there is no element placed below a_{0}

Some Properties of Posets

Use Mathematical Induction to prove the following property of finite posets
Property 1 Every non-empty finite poset has at least one maximal element

Proof

Let (A, \leq) be a finite, not empty poset (partially ordered set by \leq, such that A has n -elements, i.e. $|A|=n$
We carry the Mathematical Induction over $n \in N-\{0\}$
Reminder: an element $a_{o} \in A$ ia a maximal element in a poset (A, \leq) iff the following is true.

$$
\neg \exists_{a \in A}\left(a_{0} \neq a \cap a_{0} \leq a\right)
$$

Inductive Proof

Base case: $n=1$, so $A=\{a\}$ and a is maximal (and minimal, and smallest, and largest) in the poset ($\{a\}, \leq$)
Inductive step: Assume that any set A such that $|A|=n$ has a maximal element;
Denote by a_{0} the maximal element in (A, \leq)
Let B be a set with $n+1$ elements; i.e. we can write B as
$B=A \cup\left\{b_{0}\right\}$ for $b_{0} \notin A$, for some A with n elements

Inductive Proof

By Inductive Assumption the poset (A, \leq) has a maximal element a_{0}
To show that (B, \leq) has a maximal element we need to consider 3 cases.

1. $b_{0} \leq a_{0}$; in this case a_{0} is also a maximal element in
(B, \leq)
2. $a_{0} \leq b_{0}$; in this case b_{0} is a new maximal in (B, \leq)
3. a_{0}, b_{0} are not compatible; in this case a_{0} remains maximal in (B, \leq)
By Mathematical Induction we have proved that
$\forall_{n \in \in N-\{0\}}(|A|=n \Rightarrow A$ has a maximal element)

Some Properties of Posets

We just proved
Property 1 Every non-empty finite poset has at least one maximal element
Show that the Property 1 is not true for an infinite set
Solution: Consider a poset (Z, \leq), where Z is the set on integers and \leq is a natural order on Z. Obviously no maximal element!

Exercise: Prove
Property 2 Every non-empty finite poset has at least one minimal element
Show that the Property 2 is not true for an infinite set

Discrete Mathematics Basics

PART 4: Finite and Infinite Sets

Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous if and only if there is a bijection function $f: A \longrightarrow B$, i.e. there is f is such that

$$
f: A \xrightarrow{1-1, \text { onto }} B
$$

Notation

We write $A \sim B$ to denote that the sets A and B are equinumerous and write symbolically

$$
A \sim B \text { if and only if } f: A \xrightarrow{1-1, \text { onto }} B
$$

Equinumerous Relation

Observe that for any set X, the relation \sim is an equivalence on the set 2^{X}, i.e.

$$
\sim \subseteq 2^{X} \times 2^{X}
$$

is reflexive, symmetric and transitive and for any set A the equivalence class

$$
[A]=\left\{B \in 2^{X}: A \sim B\right\}
$$

describes for finite sets all sets that have the same number of elements as the set A

Equinumerous Relation

Observe also that the relation \sim when considered for any sets A, B is not an equivalence relation as its domain would have to be the set of all sets that does not exist

We extend the notion of "the same number of elements" to any sets by introducing the notion of cardinality of sets

Cardinality of Sets

Cardinality definition

We say that A and B have the same cardinality if and only if they are equipotent, i.e.

$$
A \sim B
$$

Cardinality notations

If sets A and B have the same cardinality we denote it as:

$$
|A|=|B| \text { or } \quad \operatorname{card} A=\operatorname{cardB}
$$

Cardinality of Sets

Cardinality

We put the above together in one definition
$|A|=|B| \quad$ if and only if
there is a function f is such that

$$
f: A \xrightarrow{1-1, o n t o} B
$$

Finite and Infinite Sets

Definition

A set A is finite if and only if
there is $n \in N$ and there is a function

$$
f:\{0,1,2, \ldots, n-1\} \xrightarrow{1-1, \text { onto }} A
$$

In this case we have that

$$
|A|=n
$$

and say that the set A has n elements

Finite and Infinite Sets

Definition

A set A is infinite if and only if A is not finite

Here is a theorem that characterizes infinite sets

Dedekind Theorem

A set A is infinite if and only if
there is a proper subset B of the set A such that

$$
|A|=|B|
$$

Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula
$f(n)=2 n$ for all $n \in N$
Obviously

$$
f: N \xrightarrow{1-1, \text { onto }} 2 N
$$

By Dedekind Theorem the set N is infinite as the set 2 N of even numbers are a proper subset of natural numbers N

Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula
$f(x)=2^{x}$ for all $x \in R$
Obviously

$$
f: R \xrightarrow{1-1, \text { onto }} R^{+}
$$

By Dedekind Theorem the set R is infinite as the set R^{+}of positive real numbers are a proper subset of real numbers R

Countably Infinite Sets
 Cardinal Number $\boldsymbol{\aleph}_{0}$

Definition

A set A is called countably infinite if and only if it has the same cardinality as the set N natural numbers, i.e. when

$$
|A|=|N|
$$

The cardinality of natural numbers N is called
\aleph_{0} (Aleph zero) and we write

$$
|N|=\aleph_{0}
$$

Countably Infinite Sets

Definition

For any set A,

$$
|A|=\aleph_{0} \quad \text { if and only if } \quad|A|=|N|
$$

Directly from definitions we get the following

Fact 1

A set A is countably infinite if and only if $\quad|A|=\aleph_{0}$

Countably Infinite Sets

Fact 2
A set A is countably infinite if and only if all elements of A can be put in a 1-1 sequence

Other name for countably infinite set is
infinitely countable set and we will use both names

Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence we can "prune" all repetitive elements to get a 1-1 sequence,
i.e. we prove the following

Fact 2a
An infinite set A is countably infinite if and only if all elements of A can be put in a sequence

Countable and Uncountable Sets

Definition

A set A is countable if and only if A is finite or countably infinite

Fact 3

A set A is countable if and only if A is finite or $|A|=\aleph_{0}$, i.e. $|A|=|N|$

Countable and Uncountable Sets

Definition
A set A is uncountable if and only if A is not countable

Fact 4
A set A is uncountable if and only if A is infinite and
$|A| \neq \aleph_{0}$, i.e. $|A| \neq|N|$

Fact 5

A set A is uncountable if and only if its elements can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4

Countably Infinite Sets

We have proved the following

Fact 2a
An infinite set A is countably infinite if and only if all elements of A can be put in a sequence

We use it now to prove two theorems about countably infinite sets

Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set Proof

Let A, B be two disjoint infinitely countable sets
By Fact 2 we can list their elements as $1-1$ sequences
$A: a_{0}, a_{1}, a_{2}, \ldots$ and $B: b_{0}, b_{1}, b_{2}, \ldots$
and their union can be listed as $1-1$ sequence

$$
A \cup B: a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots, \ldots
$$

In a case not disjoint sets we proceed the same and then
"prune" all repetitive elements to get a 1-1 sequence

Countably Infinite Sets

Product Theorem

Cartesian Product of two countably infinite sets is a
countably infinite set

Proof

Let A, B be two infinitely countable sets
By Fact 2 we can list their elements as $1-1$ sequences

$$
A: a_{0}, a_{1}, a_{2}, \ldots \text { and } B: b_{0}, b_{1}, b_{2}, \ldots
$$

We list their Cartesian Product $A \times B$ as an infinite table $\left(a_{0}, b_{0}\right),\left(a_{0}, b_{1}\right),\left(a_{0}, b_{2}\right),\left(a_{0}, b_{3}\right), \ldots$
$\left(a_{1}, b_{0}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots$
$\left(a_{2}, b_{0}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right), \ldots$
$\left(a_{3}, b_{0}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$

Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its diagonals is finite
$\left(a_{0}, b_{0}\right),\left(a_{0}, b_{1}\right),\left(a_{0}, b_{2}\right),\left(a_{0}, b_{3}\right),\left(a_{0}, b_{4}\right), \ldots, \ldots$
$\left(a_{1}, b_{0}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots$
$\left(a_{2}, b_{0}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right), \ldots$
$\left(a_{3}, b_{0}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$

We list now elements of $A \times B$ one diagonal after the other
Each diagonal is finite, so now we know when one finishes and other starts

Cartesian Product Theorem Proof

$A \times B$ becomes now the following sequence
$\left(a_{0}, b_{0}\right)$,
$\left(a_{1}, b_{0}\right),\left(a_{0}, b_{1}\right)$,
$\left(a_{2}, b_{0}\right),\left(a_{1}, b_{1}\right),\left(a_{0}, b_{2}\right)$,
$\left(a_{3}, b_{0}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{0}, b_{3}\right)$,
$\left(a_{3}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{0}, b_{4}\right), \ldots$,

We prove by Mathematical induction that the sequence is well defined for all $n \in N$ and hence that $|A \times B|=|N|$ It ends the proof of the Product Theorem

Union and Cartesian Product Theorems

Observe that the both Union and Product Theorems
can be generalized by Mathematical Induction to the case of
Union or Cartesian Products of any finite number of sets

Uncountable Sets

Theorem 1

The set R of real numbers is uncountable

Proof

We first prove (homework problem 1.5.11) the following
Lemma 1
The set of all real numbers in the interval $[0,1]$ is uncountable
Then we use the Lemma 2 below (to be proved it as an exercise) and the fact that $[0,1] \subseteq R$ and this ends the proof

Lemma 2 For any sets A, B such that $B \subseteq A$ and B is uncountable we have that also the set A is uncountable

Special Uncountable Sets

Cardinal Number C - Continuum

We denote by C the cardinality of the set R of real numbers
C is a new cardinal number called continuum and we write

$$
|R|=C
$$

Definition
We say that a set A has cardinality C (continuum)
if and only if $\quad|A|=|R|$
We write it

$$
|A|=C
$$

Sets of Cardinality C

Example

The set of positive real numbers R^{+}has cardinality C because a function f given by the formula

$$
f(x)=2^{x} \text { for all } x \in R
$$

is 1-1 function and maps R onto the set R^{+}

Sets of Cardinality C

Theorem 2

The set 2^{N} of all subsets of natural numbers is uncountable

Proof

We will prove it in the PART 5.

Theorem 3

The set 2^{N} has cardinality C, i.e.

$$
\left|2^{N}\right|=C
$$

Proof

The proof of this theorem is not trivial and is not in the scope of this course

Cantor Theorem

Cantor Theorem (1891)

For any set A,

$$
|A|<\left|2^{A}\right|
$$

where we define
$|A| \leq|B| \quad$ if and only if there is a function $f: A \xrightarrow{1-1} B$
$|A|<|B| \quad$ if and only if $\quad|A| \leq|B|$ and $|A| \neq|B|$

Cantor Theorem

Directly from the definition we have the following
Fact 6
If $A \subseteq B$ then $|A| \leq|B|$

We know that $|N|=\aleph_{0}, \quad C=|R|$, and $N \subseteq R$ hence from
Fact $6, \aleph_{0} \leq C$, but $\aleph_{0} \neq C$, as the set N is countable and the set R is uncountable

Hence we proved
Fact 7

$$
\aleph_{0}<C
$$

Uncountable Sets of Cardinality Greater then C

By Cantor Theorem we have that

$$
|N|<|\mathcal{P}(N)|<|\mathcal{P}(\mathcal{P}(N))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))|<\ldots
$$

All sets

$$
\mathcal{P}(\mathcal{P}(N)), \quad \mathcal{P}(\mathcal{P}(\mathcal{P}(N))) \ldots
$$

are uncountable with cardinality greater then C, as by Theorem 3, Fact 7, and Cantor Theorem we have that

$$
\aleph_{0}<C<|\mathcal{P}(\mathcal{P}(\mathcal{N}))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{N})))|<\ldots
$$

Countable and Uncountable Sets

Here are some basic Theorem and Facts

Union 1
Union of two infinitely countable (of cardinality \aleph_{0}) sets is an infinitely countable set

This means that

$$
\boldsymbol{\aleph}_{0}+\boldsymbol{\aleph}_{0}=\boldsymbol{\aleph}_{0}
$$

Union 2

Union of a finite (of cardinality n) set and infinitely countable (of cardinality \aleph_{0}) set is an infinitely countable set
This means that

$$
\aleph_{0}+n=\aleph_{0}
$$

Countable and Uncountable Sets

Union 3

Union of an infinitely countable (of cardinality \aleph_{0}) set and a set of the same cardinality as real numbers i.e. of the cardinality C has the same cardinality as the set of real numbers
This means that

$$
\aleph_{0}+C=C
$$

Union 4 Union of two sets of cardinality the same as real numbers (of cardinality C) has the same cardinality as the set of real numbers

This means that

$$
C+C=C
$$

Countable and Uncountable Sets

Product 1

Cartesian Product of two infinitely countable sets is an infinitely countable set

$$
\boldsymbol{\aleph}_{0} \cdot \boldsymbol{\aleph}_{0}=\boldsymbol{\aleph}_{0}
$$

Product 2

Cartesian Product of a non-empty finite set and an infinitely countable set is an infinitely countable set

$$
n \cdot \aleph_{0}=\aleph_{0} \text { for } n>0
$$

Countable and Uncountable Sets

Product 3

Cartesian Product of an infinitely countable set and an uncountable set of cardinality C has the cardinality C

$$
\aleph_{0} \cdot C=C
$$

Product 4

Cartesian Product of two uncountable sets of cardinality C has the cardinality C

$$
C \cdot C=C
$$

Countable and Uncountable Sets

Power 1

The set 2^{N} of all subsets of natural numbers (or of any countably infinite set) is uncountable set of cardinality C, i.e. has the same cardinality as the set of real numbers

$$
2^{\aleph_{0}}=C
$$

Power 2

There are C of all functions that map N into N

Power 3

There are C possible sequences that can be form out of an infinitely countable set

$$
\aleph_{0}^{\aleph_{0}}=C
$$

Countable and Uncountable Sets

Power 4

The set of all functions that map R into R has the cardinality C^{C}

Power 5

The set of all real functions of one variable has the same cardinality as the set of all subsets of real numbers

$$
C^{C}=2^{C}
$$

Countable and Uncountable Sets

Theorem 4

$$
n<\aleph_{0}<C
$$

Theorem 5
For any non empty, finite set A, the set A^{*} of all finite sequences formed out of A is countably infinite, i.e

$$
\left|A^{*}\right|=\aleph_{0}
$$

We write it as
If $|A|=n, n \geq 1, \quad$ then $\left|A^{*}\right|=\aleph_{0}$

Simple Short Questions

Simple Short Questions

Q1 Set A is uncountable iff $A \subseteq R$ (R is the set of real numbers)
Q2 Set A is countable iff $N \subseteq A$ where N is the set of natural numbers
Q3 The set 2^{N} is infinitely countable
Q4 The set $A=\left\{\{n\} \in 2^{N}: n^{2}+1 \leq 15\right\}$ is infinite
Q5 The set $A=\left\{(\{n\}, n) \in 2^{N} \times N: 1 \leq n \leq n^{2}\right\}$ is infinitely countable
Q6 Union of an infinite set and a finite set is an infinitely countable set

Answers to Simple Short Questions

Q1 Set A is uncountable if and only if $A \subseteq R$ (R is the set of real numbers)
NO
The set 2^{R} is uncountable, as $|R|<\left|2^{R}\right|$ by Cantor Theorem, but 2^{R} is not a subset of R

Also for example. $N \subseteq R$ and N is not uncountable

Answers to Simple Short Questions

Q2 Set A is countable if and only if $N \subseteq A$, where N is the set of natural numbers

NO

For example, the set $A=\{\emptyset\}$ is countable as it is finite, but

$$
N \nsubseteq\{\emptyset\}
$$

In fact, A can be any finite set
or any A can be any infinite set that does not include N , for example,

$$
A=\{\{n\}: \quad n \in N\}
$$

Answers to Simple Short Questions

Q3 The set 2^{N} is infinitely countable NO
$\left|2^{N}\right|=|R|=C$ and hence 2^{N} is uncountable Q4

The set $A=\left\{\{n\} \in 2^{N}: n^{2}+1 \leq 15\right\}$ is infinite NO
The set $\left\{n \in N: n^{2}+1 \leq 15\right\}=\{0,1,2,3\}$, Hence the set $A=\{\{0\},\{1\},\{2\},\{3\}\}$ is finite

Answers to Simple Short Questions

Q5 The set $A=\left\{(\{n\}, n) \in 2^{N} \times N: 1 \leq n \leq n^{2}\right\}$ is infinitely countable (countably infinite)
YES
Observe that the condition $n \leq n^{2}$ holds for all $n \in N$, so the set $B=\left\{n: n \leq n^{2}\right\}$ is nfinitely countable The set $C=\left\{\left(\{n\} \in 2^{N}: 1 \leq n \leq n^{2}\right\}\right.$ is also infinitely countable as the function given by a formula $f(n)=\{n\} \quad$ is $1-1$ and maps B onto C, i.e $|B|=|C|$

The set $A=C \times B$ is hence infinitely countable as the Cartesian Product of two infinitely countable sets

vDiscrete Mathematics Basics

PART 5: Fundamental Proof Techniques

1. Mathematical Induction
2. The Pigeonhole Principle
3. The Diagonalization Principle

Mathematical Induction Applications

 Examples

 Examples}

Counting Functions Theorem

For any finite, non empty sets A, B, there are

$$
|B|^{|A|}
$$

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the number of elements of the set A, i.e. over $n \in N-\{0\}$, where $n=|A|$

Counting Functions Theorem Proof

Base case $n=1$
We have hence that $|A|=1$ and let $|B|=m, \quad m \geq 1$, i.e.

$$
A=\{a\} \text { and } B=\left\{b_{1}, \ldots b_{m}\right\}, \quad m \geq 1
$$

We have to prove that there are

$$
|B|^{|A|}=m^{1}
$$

functions that map A into B
The base case holds as there are exactly $m^{1}=m$
functions $f:\{a\} \longrightarrow\left\{b_{1}, \ldots b_{m}\right\}$ defined as follows

$$
f_{1}(a)=b_{1}, \quad f_{2}(a)=b_{2}, \quad \ldots ., f_{m}(a)=b_{m}
$$

Counting Functions Theorem Proof

Inductive Step

Let $A=A_{1} \cup\{a\}$ for $a \notin A_{1}$ and $\left|A_{1}\right|=n$
By inductive assumption, there are m^{n} functions

$$
f: A \longrightarrow B=\left\{b_{1}, \ldots b_{m}\right\}
$$

We group all functions that map A_{1} as follows
Group 1 contains all functions f_{1} such that

$$
f_{1}: A \longrightarrow B
$$

and they have the following property

$$
f_{1}(a)=b_{1}, \quad f_{1}(x)=f(x) \text { for all } f: A \longrightarrow B \text { and } x \in A_{1}
$$

By inductive assumption there are m^{n} functions in the Group 1

Counting Functions Theorem Proof

Inductive Step

We define now a Group i, for $1 \leq i \leq m, \quad m=|B|$ as follows Each Group i contains all functions f_{i} such that

$$
f_{i}: A \longrightarrow B
$$

and they have the following property

$$
f_{i}(a)=b_{1}, \quad f_{i}(x)=f(x) \quad \text { for all } f: A \longrightarrow B \text { and } x \in A_{1}
$$

By inductive assumption there are m^{n} functions in each of the Group i
There are $m=|B|$ groups and each of them has m^{n} elements, so all together there are

$$
m\left(m^{n}\right)=m^{n+1}
$$

functions, what ends the proof

Mathematical Induction Applications

Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and $|A|>|B|$, then there is no one-to one function from A to B Proof

We conduct the proof by by Mathematical Induction over
$n \in N-\{0\}$, where $n=|B|$ and $B \neq \emptyset$
Base case $n=1$
Suppose $|B|=1$, that is, $B=\{b\}$, and $|A|>1$.
If $f: A \longrightarrow\{b\}$,
then there are at least two distinct elements $a_{1}, a_{2} \in A$, such that $f\left(a_{1}\right)=f\left(a_{2}\right)=\{b\}$
Hence the function f is not one-to one

Pigeonhole Principle Proof

Inductive Assumption

We assume that any $f: A \longrightarrow B$ is not one-to one provided

$$
|A|>|B| \text { and }|B| \leq n \text {, where } n \geq 1
$$

Inductive Step

Suppose that $f: A \longrightarrow B$ is such that

$$
|A|>|B| \text { and }|B|=n+1
$$

Choose some $b \in B$
Since $|B| \geq 2$ we have that $B-\{b\} \neq \emptyset$

Pigeonhole Principle Proof

Consider the set $f^{-1}(\{b\}) \subseteq A$. We have two cases

1. $\left|f^{-1}(\{b\})\right| \geq 2$

Then by definition there are $a_{1}, a_{2} \in A$,
such that $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)=b$ what proves that the function f is not one-to one
2. $\left|f^{-1}(\{b\})\right| \leq 1$

Then we consider a function

$$
g: A-f^{-1}(\{b\}) \longrightarrow B-\{b\}
$$

such that

$$
g(x)=f(x) \text { for all } x \in A-f^{-1}(\{b\})
$$

Pigeonhole Principle Proof

Observe that the inductive assumption applies to the function g because $|B-\{b\}|=n$ for $|B|=n+1$ and

$$
\left|A-f^{-1}(\{b\})\right| \geq|A|-1 \text { for }\left|f^{-1}(\{b\})\right| \leq 1
$$

We know that $|A|>|B|$, so
$|A|-1>|B|-1=n=|B-\{b\}|$ and $\left|A-f^{-1}(\{b\})\right|>|B-\{b\}|$
By the inductive assumption applied to g we get that g is not one -to one
Hence $g\left(a_{1}\right)=g\left(a_{2}\right)$ for some distinct $a_{1}, a_{2} \in A-f^{-1}(\{b\})$, but then $f\left(a_{1}\right)=f\left(a_{2}\right)$ and f is not one -to one either

Pigeonhole Principle Revisited

We now formulate a bit stronger version of the the pigeonhole principle and present its slightly different proof

Pigeonhole Principle Theorem
If A and B are finite sets and $|A|>|B|$,
then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over
$n \in N$, where $n=|B|$
Base case $n=0$
Assume $|B|=0$, that is, $B=\emptyset$. Then there is no function
$f: A \longrightarrow B$ whatsoever; let alone a one-to one function

Pigeonhole Principle Revisited Proof

Inductive Assumption

Any function $f: A \longrightarrow B$ is not one-to one provided

$$
|A|>|B| \quad \text { and } \quad|B| \leq n, \quad n \geq 0
$$

Inductive Step

Suppose that $f: A \longrightarrow B$ is such that

$$
|A|>|B| \quad \text { and } \quad|B|=n+1
$$

We have to show that f is not one-to one under the Inductive Assumption

Pigeonhole Principle Revisited Proof

We proceed as follows
We choose some element $a \in A$
Since $|A|>|B|$, and $|B|=n+1 \geq 1$ such choice is possible

Observe now that if there is another element $a^{\prime} \in A$ such that $a^{\prime} \neq a$ and $f(a)=f\left(a^{\prime}\right)$, then obviously the function f is not one-to one and we are done

So, suppose now that the chosen $a \in A$ is the only element mapped by fto $f(\mathrm{a})$

Pigeonhole Principle Revisited Proof

Consider then the sets $A-\{a\}$ and $B-\{f(a)\}$ and a function

$$
g: A-\{a\} \longrightarrow B-\{f(a)\}
$$

such that

$$
g(x)=f(x) \text { for all } x \in A-\{a\}
$$

Observe that the inductive assumption applies to g because

$$
\begin{gathered}
|B-\{f(a)\}|=n \text { and } \\
|A-\{a\}|=|A|-1>|B|-1=|B-\{f(a)\}|
\end{gathered}
$$

Pigeonhole Principle Revisited Proof

Hence by the inductive assumption the function
g is not one-to one
Therefore, there are two distinct elements elements of
$A-\{a\}$ that are mapped by g to the same element of
$B-\{f(a)\}$
The function g is, by definition, such that

$$
g(x)=f(x) \text { for all } x \in A-\{a\}
$$

so the function f is not one-to one either
This ends the proof

Pigeonhole Principle Theorem Application

The Pigeonhole Principle Theorem is a quite simple fact but is used in a large variety of proofs including many in this course We present here just one simple application which we will use in later Chapters

Path Definition

Let $A \neq \emptyset$ and $R \subseteq A \times A$ be a binary relation in the set A
A path in the binary relation R is a finite sequence
a_{1}, \ldots, a_{n} such that $\left(a_{i}, a_{i+1}\right) \in R$, for $i=1,2, \ldots n-1$ and $n \geq 1$
The path a_{1}, \ldots, a_{n} is said to be from a_{1} to a_{n}
The length of the path a_{1}, \ldots, a_{n} is n
The path a_{1}, \ldots, a_{n} is a cycle if a_{i} are all distinct and also
$\left(a_{n}, a_{1}\right) \in R$

Pigeonhole Principle Theorem Application

Path Theorem

Let R be a binary relation on a finite set A and let $a, b \in A$
If there is a path from a to b in R,
then there is a path of length at most $|A|$

Proof

Suppose that a_{1}, \ldots, a_{n} is the shortest path from $a=a_{1}$ to $b=a_{n}$, that is, the path with the smallest length, and suppose that $n>|A|$. By Pigeonhole Principle there is an element in A that repeats on the path, say $a_{i}=a_{j}$ for some $1 \leq i<j \leq n$
But then $a_{1}, \ldots, a_{i}, a_{j+1}, \ldots, a_{n}$ is a shorter path from a to b, contradicting a_{1}, \ldots, a_{n} being the shortest path

The Diagonalization Principle

Here is yet another Principle which justifies a new important proof technique
Diagonalization Principle (Georg Cantor 1845-1918)
Let R be a binary relation on a set A, i.e.
$R \subseteq A \times A$ and let D , the diagonal set for R be as follows

$$
D=\{a \in A:(a, a) \notin R\}
$$

For each $a \in A$, let

$$
R_{a}=\{b \in A: \quad(a, b) \in R\}
$$

Then D is distinct from each R_{a}

The Diagonalization Principle Applications

Here are two theorems whose proofs are the "classic" applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers
The set 2^{N} is uncountable

Cantor Theorem 3

The set of real numbers in the interval $[0,1]$ is uncountable

Cantor Theorem 2 Proof

Cantor Theorem 2

Let N be the set on natural numbers

The set 2^{N} is uncountable

Proof

We apply proof by contradiction method and the

Diagonalization Principle

Suppose that 2^{N} is countably infinite. That is, we assume that we can put sets of 2^{N} in a one-to one sequence
$\left\{R_{n}\right\}_{n \in N}$ such that

$$
2^{N}=\left\{R_{0}, R_{1}, R_{2}, \ldots\right\}
$$

We define a binary relation $R \subseteq N \times N$ as follows

$$
R=\left\{(i, j): j \in R_{i}\right\}
$$

This means that for any $i, j \in N$ we have that

$$
(i, j) \in R \text { if and only if } j \in R_{i}
$$

Cantor Theorem 2 Proof

In particular, for any $i, j \in N$ we have that

$$
(i, j) \notin R \text { if and only if } j \notin R_{i}
$$

and the diagonal set D for R is

$$
D=\left\{n \in N: \quad n \notin R_{n}\right\}
$$

By definition $D \subseteq N$, i.e.

$$
D \in 2^{N}=\left\{R_{0}, R_{1}, R_{2}, \ldots\right\}
$$

and hence

$$
D=R_{k} \text { for some } k \geq 0
$$

Cantor Theorem 2 Proof

We obtain contradiction by asking whether $k \in R_{k}$ for

$$
D=R_{k}
$$

We have two cases to consider: $k \in R_{k}$ or $k \notin R_{k}$
c1 Suppose that $k \in R_{k}$
Since $D=\left\{n \in N: n \notin R_{n}\right\}$ we have that $k \notin D$
But $D=R_{k}$ and we get $k \notin R_{k}$

Contradiction

c2 Suppose that $k \notin R_{k}$
Since $D=\left\{n \in N: n \notin R_{n}\right\}$ we have that $k \in D$
But $D=R_{k}$ and we get $k \in R_{k}$

Contradiction

This ends the proof

Cantor Theorem 3 Proof

Cantor Theorem 3

The set of real numbers in the interval $[0,1]$ is uncountable Proof
We carry the proof by the contradiction method
We assume hat the set of real numbers in the interval
$[0,1]$ is infinitely countable
This means, by definition, that there is a function f such that
$f: N \xrightarrow{1-1, \text { onto }}[01]$
Let f be any such function. We write $f(n)=d_{n}$ and denote by

$$
d_{0}, d_{1}, \ldots, \quad d_{n}, \ldots,
$$

a sequence of of all elements of [01] defined by f
We will get a contradiction by showing that one can always
find an element $d \in[01]$ such that $d \neq d_{n}$ for all $n \in N$

Cantor Theorem 3 Proof

We use binary representation of real numbers
Hence we assume that all numbers in the interval [01] form a one to one sequence

$$
\begin{aligned}
& d_{0}=0 . a_{00} \\
& a_{01}
\end{aligned} a_{02} a_{03} a_{04} \quad \ldots \quad \ldots .
$$

where all $a_{i j} \in\{0,1\}$

Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element $d \in$ [01], such that $d \neq d_{n}$ for all $n \in N$ as follows
For each element $a_{n n}$ of the "diagonal"

```
a00},\mp@subsup{a}{11}{},\mp@subsup{a}{22}{},\ldots,\mp@subsup{a}{nn}{},\ldots,
```

of the sequence $d_{0}, d_{1}, \ldots, d_{n}, \ldots$, of binary representation of all elements of the interval [01] we define an element $b_{n n} \neq a_{n n}$ as

$$
b_{n n}= \begin{cases}0 & \text { if } a_{n n}=1 \\ 1 & \text { if } a_{n n}=0\end{cases}
$$

Cantor Theorem 3 Proof

Given such defined sequence

$$
b_{00}, b_{11}, b_{22}, b_{33}, b_{44}, \ldots \ldots
$$

We now construct a real number d as

$$
d=b_{00} b_{11} b_{22} b_{33} b_{44} \ldots \ldots
$$

Obviously $d \in[01]$ and by the Diagonatization Principle $d \neq d_{n}$ for all $n \in N$

Contradiction
This ends the proof

Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3
It uses, after Cantor the decimal representation of real numbers

In this case we assume that all numbers in the interval [01] form a one to one sequence

$$
\begin{aligned}
& d_{0}=0 . a_{00} \\
& a_{01}
\end{aligned} a_{02} a_{03} a_{04} \quad \ldots \quad \ldots .
$$

where all $a_{i j} \in\{0,1,2 \ldots 9\}$

Cantor Theorem 3 Proof

For each element $a_{n n}$ of the "diagonal"

$$
a_{00}, a_{11}, a_{22}, \ldots a_{n n}, \ldots, \ldots
$$

we define now an element (this is not the only possible definition) $b_{n n} \neq a_{n n}$ as

$$
b_{n n}= \begin{cases}2 & \text { if } a_{n n}=1 \\ 1 & \text { if } a_{n n} \neq 1\end{cases}
$$

We construct a real number $d \in[01]$ as

$$
d=b_{00} b_{11} b_{22} b_{33} b_{44} \ldots \ldots
$$

Discrete Mathematics Basics

PART 6: Closures and Algorithms

Closures - Intuitive

Idea

Natural numbers N are closed under + , i.e. for given two natural numbers n, m we always have that $n+m \in N$
Natural numbers N are not closed under subtraction -, i.e there are two natural numbers n, m such that $n-m \notin N$, for example $1,2 \in N$ and $1-2 \notin N$
Integers Z are closed under-, moreover Z is the smallest set containing N and closed under subtraction -
The set Z is called a closure of N under subtraction -

Closures - Intuitive

Consider the two directed graphs R (a) and R^{*} (b) as shown below

Observe that $R^{*}=R \cup\left\{\left(a_{i}, a_{i}\right): \quad i=1,2,3,4\right\} \cup\left\{\left(a_{2}, a_{4}\right)\right\}$,
$R \subseteq R^{*}$ and is R^{*} is reflexive and transitive whereas R is neither, moreover R^{*} is also the smallest set containing R that is reflexive and transitive
We call such relation R^{*} the reflexive, transitive closure of R We define this concept formally in two ways and prove the equivalence of the two definitions

Two Definitions of R^{*}

Definition 1 of R^{*}

R^{*} is called a reflexive, transitive closure of R iff $R \subseteq R^{*}$ and is R^{*} is reflexive and transitive and is the smallest set with these properties
This definition is based on a notion of a closure property which is any property of the form " the set B is closed under relations $R_{1}, R_{2}, \ldots, R_{m}$ "
We define it formally and prove that reflexivity and transitivity are closures properties
Hence we justify the name: reflexive, transitive closure of R for R^{*}

Two Definitions of R^{*}

Definition 2 of R^{*}

Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

$$
R^{*}=\{(a, b) \in A \times A: \quad \text { there is a path from a to } b \text { in } R\}
$$

This is a much simpler definition- and algorithmically more interesting as it uses a simple notion of a path We hence start our investigations from it- and only later introduce all notions needed for the Definition 1 in order to prove that the R^{*} defined above is really what its name says: the reflexive, transitive closure of R

Definition 2 of R^{*}

We bring back the following

Path Definition

A path in the binary relation R is a finite sequence
a_{1}, \ldots, a_{n} such that $\left(a_{i}, a_{i+1}\right) \in R$, for $i=1,2, \ldots n-1$ and $n \geq 1$
The path a_{1}, \ldots, a_{n} is said to be from a_{1} to a_{n}
The path a_{1} (case when $n=1$) always exist and is called a trivial path from a_{1} to a_{1}

Definition 2

Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

$$
R^{*}=\{(a, b) \in A \times A: \text { there is a path from a to } b \text { in } R\}
$$

Algorithms

Definition 2 immediately suggests an following algorithm for computing the reflexive transitive closure R^{*} of any given binary relation R over some finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

Algorithm 1

Initially $R^{*}:=0$
for $i=1,2, \ldots, n$ do
for each i- tuple $\left(b_{1}, \ldots, b_{i}\right) \in A^{i}$ do
if b_{1}, \ldots, b_{i} is a path in R then add $\left(b_{1}, b_{n}\right)$ to R^{*}

Algorithms

We also have a following much faster algorithm Algorithm 2
Initially $R^{*}:=R \cup\left\{\left(a_{i}, a_{i}\right): a_{i} \in A\right\}$
for $j=1,2, \ldots, n$ do
for $i=1,2, \ldots, n$ and $k=1,2, \ldots, n$ do
if $\left(a_{i}, a_{j}\right),\left(a_{j}, a_{k}\right) \in R^{*}$ but $\left(a_{i}, a_{k}\right) \notin R^{*}$
then add $\left(a_{i}, a_{k}\right)$ to R^{*}

Closure Property Formal

We introduce now formally a concept of a closure property of a given set

Definition

Let D be a set, let $n \geq 0$ and
let $R \subseteq D^{n+1}$ be a ($n+1$)-ary relation on D
Then the subset B of D is said to be closed under R
if $b_{n+1} \in B$ whenever $\left(b_{1}, \ldots, b_{n}, b_{n+1}\right) \in R$

Any property of the form " the set B is closed under relations $R_{1}, R_{2}, \ldots, R_{m}$ " is called a closure property of B

Closure Property Examples

Observe that any function $f: D^{n} \longrightarrow D$ is a special relation $f \subseteq D^{n+1}$ so we have also defined what does it mean that a set $A \subseteq D$ is closed under the function f
E1: $\quad+$ is a closure property of N
Adition is a function $+: N \times N \longrightarrow N$ defined by a formula $+(n, m)=n+m$, i.e. it is a relation $+\subseteq N \times N \times N$ such that

$$
+=\{(n, m, n+m): \quad n, m \in N\}
$$

Obviously the set $N \subseteq N$ is (formally) closed under + because
for any $n, m \in N$ we have that $(n, m, n+m) \in+$

Closures Property Examples

E2: \cap is a closure property of 2^{N}
$\cap \subseteq 2^{N} \times 2^{N} \times 2^{N}$ is defined as

$$
(A, B, C) \in \cap \quad \text { iff } \quad A \cap B=C
$$

and the following is true for all $A, B, C \in 2^{N}$

$$
\text { if } A, B \in 2^{N} \text { and }(A, B, C) \in \cap \text { then } C \in 2^{N}
$$

Closure Property Fact1

Since relations are sets, we can speak of one relation as being closed under one or more others
We show now the following
CP Fact 1
Transitivity is a closure property
Proof
Let D be a set, let Q be a ternary relation on $D \times D$, i.e.
$Q \subseteq(D \times D)^{3}$ be such that

$$
Q=\{((a, b),(b, c),(a, c)): \quad a, b, c \in D\}
$$

Observe that for any binary relation $R \subseteq D \times D$,
R is closed under Q if and only if R is transitive

CP Fact1 Proof

The definition of closure of R under Q says: for any $x, y, z \in D \times D$,

$$
\text { if } x, y \in R \text { and }(x, y, z) \in Q \text { then } z \in R
$$

But $(x, y, z) \in Q \quad$ iff $\quad x=(a, b), y=(b, c), z=(a, c) \quad$ and

$$
(a, b),(b, c) \in R \text { implies }(a, c) \in R
$$

is a true statement for all $a, b, c \in D$ iff R is transitive

Closure Property Fact2

We show now the following
CP Fact 2
Reflexivity is a closure property

Proof

Let $D \neq \emptyset$, we define an unary relation Q^{\prime} on $D \times D$, i.e.
$Q^{\prime} \subseteq D \times D$ as follows

$$
Q^{\prime}=\{(a, a): \quad a \in D\}
$$

Observe that for any R binary relation on D , i.e. $R \subseteq D \times D$ we have that
R is closed under Q^{\prime} if and only if R is reflexive

Closure Property Theorem

CP Theorem
Let P be a closure property defined by relations on a set D , and let $A \subseteq D$

Then there is a unique minimal set B such that $B \subseteq A$ and
B has property P

Two Definition of R^{*} Revisited

Definition 1

R^{*} is called a reflexive, transitive closure of R iff $R \subseteq R^{*}$ and is R^{*} is reflexive and transitive and is the smallest set with these properties
Definition 2
Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation
$R^{*}=\{(a, b) \in A \times A$: there is a path from a to b in $R\}$

EquivalencyTheorem

R^{*} of the Definition 2 is the same as R^{*} of the Definition 1 and hence richly deserves its name reflexive, transitive closure of R

Equivalency of Two Definition of R^{*}

Proof Let

$$
R^{*}=\{(a, b) \in A \times A: \quad \text { there is a path from a to } b \text { in } R\}
$$

R^{*} is reflexive for there is a trivial path (case $\mathrm{n}=1$) from a to a, for any $a \in A$
R^{*} is transitive as for any $a, b, c \in A$
if there is a path from a to b and a path from b to c, then there is a path from a to c
Clearly $R \subseteq R^{*}$ because there is a path from a to b whenever $(a, b) \in R$

Equivalency of Two Definition of R^{*}

Consider a set \mathcal{S} of all binary relations on A that contain R and are reflexive and transitive, i.e.
$\mathcal{S}=\{Q \subseteq A \times A: R \subseteq Q$ and Q is reflexive and transitive $\}$
We have just proved that $R^{*} \in \mathcal{S}$
We prove now that R^{*} is the smallest set in the poset (\mathcal{S}, \subseteq),
i.e. that for any $Q \in \mathcal{S}$ we have that $R^{*} \subseteq Q$

Equivalency of Two Definition of R^{*}

Assume that $(a, b) \in R^{*}$. By Definition 2 there is a path $a=a_{1}, \ldots, a_{k}=b$ from a to b and let $Q \in \mathcal{S}$

We prove by Mathematical Induction over the length k of the path from a to b
Base case: k=1
We have that the path is $a=a_{1}=b$, i.e. $(a, a) \in R^{*}$ and
$(a, a) \in Q$ from reflexivity of Q

Inductive Assumption:

Assume that for any $(a, b) \in R^{*}$ such that there is a path of length k from a to b we have that $(a, b) \in Q$

Equivalency of Two Definition of R^{*}

Inductive Step:

Let $(a, b) \in R^{*}$ be now such that there is a path of length $k+1$ from a to b, i.e there is a a path $a=a_{1}, \ldots, a_{k}, a_{k+1}=b$
By inductive assumption $\left(a=a_{1}, a_{k}\right) \in Q$ and by definition of the path $\left(a_{k}, a_{k+1}=b\right) \in R$
But $R \subseteq Q$ hence $\left(a_{k}, a_{k+1}=b\right) \in Q$ and $(a, b) \in Q$ by transitivity
This ends the proof that Definition 2 of R^{*} implies the Definition1

The inverse implication follows from the previously proven fact that reflexivity and transitivity are closure properties

Discrete Mathematics Basics

PART 7: Alphabets and languages

Alphabets and languages Introduction

Data are encoded in the computers' memory as strings of bits or other symbols appropriate for manipulation

The mathematical study of the Theory of Computation begins with understanding of mathematics of manipulation of strings of symbols

We first introduce two basic notions: Alphabet and
Language

Alphabet

Definition

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

This is why we also say:
Alphabet is any finite set of symbols

Alphabet

Alphabet Notation

We use a symbol Σ to denote the alphabet

Remember
Σ can be \emptyset as empty set is a finite set

When we want to study non-empty alphabets we have to
say so, i.e to write:

$$
\Sigma \neq \emptyset
$$

Alphabet Examples

E1 $\Sigma=\{\neq \emptyset, \partial, \oint, \otimes, \vec{a}, \nabla\}$

E2 $\Sigma=\{a, b, c\}$

E3 $\Sigma=\left\{n \in N: n \leq 10^{5}\right\}$

E4 $\Sigma=\{0,1\}$ is called a binary alphabet

Alphabet Examples

For simplicity and consistence we will use only as symbols of the alphabet letters (with indices if necessary) or other common characters when needed and specified

We also write $\sigma \in \Sigma$ for a general form of an element in Σ
Σ is a finite set and we will write

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \text { for } n \geq 0
$$

Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function
$f:\{1,2, \ldots, n\} \longrightarrow A$ for $n \in N$

We call $f(n)=a_{n}$ the n-th element of the sequence f
We call n the length of the sequence

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

Case $\mathrm{n}=0$
In this case the function f is empty and we call it an empty sequence and denote by e

Words over Σ

Let Σ be an alphabet

We call finite sequences of the alphabet Σ words or strings over Σ

We denote by e the empty word over Σ

Some books use symbol λ for the empty word

Words over Σ

E5 Let $\Sigma=\{a, b\}$
We will write some words (strings) over Σ in a shorthand notaiton as for example

$$
a a a, a b, b b b
$$

instead using the formal definition:

$$
f:\{1,2,3\} \longrightarrow \Sigma
$$

such that $f(1)=a, f(2)=a, f(3)=a$ for the word aaa or $g:\{1,2\} \longrightarrow \Sigma$ such that $g(1)=b, g(2)=b$ for the word bb .. etc..

Words in Σ^{*}

Let Σ be an alphabet. We denote by

$$
\Sigma^{*}
$$

the set of all finite sequences over Σ
Elements of Σ^{*} are called words over Σ
We write $w \in \Sigma^{*}$ to express that w is a word over Σ

Symbols for words are

$$
\begin{gathered}
w, z, v, x, y, z, \alpha, \beta, \gamma \in \Sigma^{*} \\
x_{1}, x_{2}, \ldots \in \Sigma^{*} \quad y_{1}, y_{2}, \ldots \in \Sigma^{*}
\end{gathered}
$$

Words in Σ^{*}

Observe that the set of all finite sequences include the empty sequence i.e. $e \in \Sigma^{*}$ and we hence have the following

Fact

For any alphabet Σ,

$$
\Sigma^{*} \neq \emptyset
$$

Some Short Questions and Answers

Short Questions

Q1 Let $\Sigma=\{a, b\}$
How many are there all possible words of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences; Hence words of a length 5 are functions

$$
f:\{1,2, \ldots, 5\} \longrightarrow\{a, b\}
$$

So we have by the Counting Functions Theorem that there are 2^{5} words of a length 5 over $\Sigma=\{a, b\}$

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A, B, there are

$$
|B|^{|A|}
$$

functions that map A into B

The proof is in Part 5

Short Questions

Q2

Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ where $k \geq 1$
How many are there possible words of length $\leq n$ for $n \geq 0$ in \sum^{*} ?

A2
By the Counting Functions Theorem there are

$$
k^{0}+k^{1}+\cdots+k^{n}
$$

words of length $\leq n$ over Σ because for each m there are k^{m} words of length m over $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ and $m=0,1 \ldots n$

Short Questions

Q3 Given an alphabet $\Sigma \neq \emptyset$
How many are there words in the set Σ^{*} ?
A3
There are infinitely countably many words in Σ^{*} by the Theorem 5 (Lecture 2) that says: " for any non empty, finite set $A,\left|A^{*}\right|=\aleph_{0} "$
We hence proved the following

Theorem

For any alphabet $\Sigma \neq \emptyset$, the set Σ^{*} of all words over Σ is countably infinite

Languages over Σ

Language Definition

Given an alphabet Σ, any set L such that

$$
L \subseteq \Sigma^{*}
$$

is called a language over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Languages over Σ

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are uncountably many languages over Σ

More precisely, there are exactly $C=|R|$ of languages over any non - empty alphabet Σ

Languages over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable Proof

By definition, a set is countable if and only if is finite or countably infinite

1. Let $\Sigma=\emptyset$, hence $\Sigma^{*}=\{e\}$ and we have two languages
$\emptyset,\{e\}$ over Σ, both finite, so countable
2. Let $\Sigma \neq \emptyset$, then Σ^{*} is countably infinite, so obviously any
$L \subseteq \Sigma^{*}$ is finite or countably infinite, hence countable

Languages over Σ

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are exactly $C=|R|$ of languages
over any non - empty alphabet Σ

Proof

We proved that $\left|\Sigma^{*}\right|=\aleph_{0}$
By definition $L \subseteq \Sigma^{*}$, so there is as many languages over Σ as all subsets of a set of cardinality \aleph_{0} that is as many as $2^{N_{0}}=C$

Languages over Σ

Q4 Let $\Sigma=\{a\}$
There is \aleph_{0} languages over Σ
NO
We just proved that that there is uncountably many, more precisely, exactly C languages over $\Sigma \neq \emptyset$ and we know that

$$
\aleph_{0}<C
$$

Languages over Σ

Definition

Given an alphabet Σ and a word $w \in \Sigma^{*}$
We say that w has a length $n=|w|$ when

$$
w:\{1,2, \ldots n\} \longrightarrow \Sigma
$$

We re-write w as

$$
w:\{1,2,|w|\} \longrightarrow \Sigma
$$

Definition

Given $\sigma \in \Sigma$ and $w \in \Sigma^{*}$, we say $\sigma \in \Sigma$ occurs in the j-th position in $w \in \Sigma^{*}$ if and only if $w(j)=\sigma$ for
$1 \leq j \leq|w|$

Some Examples

E6 Consider a word w written in a shorthand as

$$
w=\text { anita }
$$

By formal definition we have
$w(1)=a, w(2)=n, w(3)=i, w(4)=t, w(5)=a$ and a occurs in the 1st and 5th position
E7 Let $\Sigma=\{0,1\}$ and $w=01101101$ (shorthand)
Formally $w:\{1,2,8\} \longrightarrow\{0,1\}$ is such that
$w(1)=0, w(2)=1, w(3)=1, w(4)=0, w(5)=1$,
$w(6)=1, w(7)=0, w(8)=1$
1 occurs in the positions 2, 3, 5, 6 and 8
0 occurs in the positions 1,4, 7

Informal Concatenation

Informal Definition

Given an alphabet Σ and any words $x, y \in \Sigma^{*}$
We define informally a concatenation of words x, y as a word w obtained from x, y by writing the word x followed by the word y
We write the concatenation of words x, y as

$$
w=x \circ y
$$

We use the symbol \circ of concatenation when it is needed formally, otherwise we will write simply

$$
w=x y
$$

Formal Concatenation

Definition

Given an alphabet Σ and any words $x, y \in \Sigma^{*}$ We define:

$$
w=x \circ y
$$

if and only if

1. $|w|=|x|+|y|$
2. $w(j)=x(j)$ for $j=1,2, \ldots,|x|$
3. $w(|x|+j)=j(j)$ for $j=1,2, \ldots,|y|$

Formal Concatenation

Properties

Directly from definition we have that

$$
\begin{gathered}
w \circ e=e \circ w=w \\
(x \circ y) \circ z=x \circ(y \circ z)=x \circ y \circ z
\end{gathered}
$$

Remark: we need to define a concatenation of two words and then we define

$$
x_{1} \circ x_{2} \circ \cdots \circ x_{n}=\left(x_{1} \circ x_{2} \circ \cdots \circ x_{n-1}\right) \circ x_{n}
$$

and prove by Mathematical Induction that
$w=x_{1} \circ x_{2} \circ \cdots \circ x_{n}$ is well defined for all $n \geq 2$

Substring

Definition

A word $v \in \Sigma^{*}$ is a substring (sub-word) of w iff there are $x, y \in \Sigma^{*}$ such that

$$
w=x \vee y
$$

Remark: the words $x, y \in \Sigma^{*}$, i.e. they can also be empty
P1 w is a substring of w
P2 e is a substring of any string (any word w)
as we have that $\mathrm{ew}=\mathrm{we}=\mathrm{w}$
Definition Let $w=x y$
x is called a prefix and y is called a suffix of w

Power wi

Definition

We define a power w^{i} of w by Mathematical Induction as follows

$$
\begin{gathered}
w^{0}=e \\
w^{i+1}=w^{i} \circ w
\end{gathered}
$$

E8
$w^{0}=e, w^{1}=w^{0} \circ w=e \circ w=w, w^{2}=w^{1} \circ w=w \circ w$
E9
$a_{n i t a}{ }^{2}=$ anita $^{1} \circ$ anita $=e \circ$ anita \circ anita $=$ anita \circ anita

Reversal w^{R}

Definition

Reversal w^{R} of w is defined by induction over length $|w|$ of w as follows

1. If $|w|=0$, then $w^{R}=w=e$
2. If $|w|=n+1>0$, then $w=u a$ for some $a \in \Sigma$, and $u \in \Sigma^{*}$ and we define

$$
w^{R}=a u^{R} \text { for }|u|<n+1
$$

Short Definition of w^{R}

1. $e^{R}=e$
2. $(u a)^{R}=a u^{R}$

Reversal Proof

We prove now as an example of Inductive proof the following simple fact

Fact

For any $w, x \in \Sigma^{*}$

$$
(w x)^{R}=x^{R} w^{R}
$$

Proof by Mathematical Induction over the length $|x|$ of x with $|w|=$ constant
Base case $\mathrm{n}=0$
$|x|=0$, i.e. $x=e$ and by definition

$$
(w e)^{R}=e w^{R}=e^{R} w^{R}
$$

Reversal Proof

Inductive Assumption

$$
(w x)^{R}=x^{R} w^{R} \quad \text { for all } \quad|x| \leq n
$$

Let now $|x|=n+1$, so $x=u a$ for certain $a \in \Sigma$ and $|u|=n$
We evaluate

$$
\begin{gathered}
(w x)^{R}=(w(u a))^{R}=((w u) a)^{R} \\
={ }^{\operatorname{def}} a(w u)^{R}=^{i n d} a u^{R} w^{R}={ }^{\operatorname{def}}(u a)^{R}=x^{R} w^{R}
\end{gathered}
$$

Languages over Σ

Definition

Given an alphabet Σ, any set L such that $L \subseteq \Sigma^{*}$ is called a language over Σ

Observe that $\emptyset, \quad \Sigma, \quad \Sigma^{*}$ are all languages over Σ
We have proved
Theorem
Any language L over Σ, is finite or infinitely countable

Languages over Σ

Languages are sets so we can define them in
ways we did for sets, by listing elements (for small finite sets)
or by giving a property $P(w)$ defining L, i.e. by setting

$$
L=\left\{w \in \Sigma^{*}: P(w)\right\}
$$

E1

$$
L_{1}=\left\{w \in\{0,1\}^{*}: w \text { has an even number of } 0 \text { 's }\right\}
$$

E2

$$
L_{2}=\left\{w \in\{a, b\}^{*}: w \text { has ab as a sub-string }\right\}
$$

Languages Examples

E3

$$
L_{3}=\left\{w \in\{0,1\}^{*}:|w| \leq 2\right\}
$$

E4

$$
L_{4}=\{e, 0,1,00,01,11,10\}
$$

Observe that $\quad L_{3}=L_{4}$

Languages Examples

Languages are sets so we can define set operations of union, intersection, generalized union, generalized intersection, complement, Cartesian product, ... etc ... of languages as we did for any sets

For example, given $L, L_{1}, L_{2} \subseteq \Sigma^{*}$, we consider

$$
\begin{gathered}
L_{1} \cup L_{2}, \quad L_{1} \cap L_{2}, \quad L_{1}-L_{2}, \\
-L=\Sigma^{*}-L, \quad L_{1} \times L_{2},, \ldots \text { etc }
\end{gathered}
$$

and we have that all properties of algebra of sets hold for any languages over a given alphabet Σ

Special Operations on Languages

We define now a special operation on languages, different from any of the set operation

Concatenation Definition

Given $L_{1}, L_{2} \subseteq \Sigma^{*}$, a language

$$
L_{1} \circ L_{2}=\left\{w \in \Sigma^{*}: w=x y \text { for some } x \in L_{1}, y \in L_{2}\right\}
$$

is called a concatenation of the languages L_{1} and L_{2}

Concatenation of Languages

The concatenation $L_{1} \circ L_{2}$ domain issue

We can have that the languages L_{1}, L_{2} are defined over different domains, i.e they have two alphabets $\Sigma_{1} \neq \Sigma_{2}$ for

$$
L_{1} \subseteq \Sigma_{1}^{*} \quad \text { and } \quad L_{2} \subseteq \Sigma_{2}^{*}
$$

In this case we always take

$$
\Sigma=\Sigma_{1} \cup \Sigma_{2} \text { and get } L_{1}, L_{2} \subseteq \Sigma^{*}
$$

Concatenation Examples

E5

Let L_{1}, L_{2} be languages defined below

$$
\begin{array}{ll}
L_{1}=\left\{w \in\{a, b\}^{*}:\right. & |w| \leq 1\} \\
L_{2}=\left\{w \in\{0,1\}^{*}:\right. & |w| \leq 2\}
\end{array}
$$

Describe the concatenation $L_{1} \circ L_{2}$ of L_{1} and L_{2}

Domain Σ of $L_{1} \circ L_{2}$
We have that $\Sigma_{1}=\{a, b\}$ and $\Sigma_{2}=\{0,1\}$
so we take $\Sigma=\Sigma_{1} \cup \Sigma_{2}=\{a, b, 0,1\}$ and

$$
L_{1} \circ L_{2} \subseteq \Sigma
$$

Concatenation Examples

Let L_{1}, L_{2} be languages defined below

$$
\begin{array}{ll}
L_{1}=\left\{w \in\{a, b\}^{*}:\right. & |w| \leq 1\} \\
L_{2}=\left\{w \in\{0,1\}^{*}:\right. & |w| \leq 2\}
\end{array}
$$

We write now a general formula for $L_{1} \circ L_{2}$ as follows

$$
L_{1} \circ L_{2}=\left\{w \in \Sigma^{*}: w=x y\right\}
$$

where

$$
x \in\{a, b\}^{*}, \quad y \in\{0,1\}^{*} \text { and }|x| \leq 1, \quad|y| \leq 2
$$

Concatenation Examples

E5 revisited

Describe the concatenation of $L_{1}=\left\{w \in\{a, b\}^{*}:|w| \leq 1\right\}$
and $L_{2}=\left\{w \in\{0,1\}^{*}: \quad|w| \leq 2\right\}$
As both languages are finite, we list their elements and get
$L_{1}=\{e, a, b\}, \quad L_{2}=\{e, 0,1,01,00,11,10\}$
We describe their concatenation as

$$
L_{1} \circ L_{2}=\left\{e y: y \in L_{2}\right\} \cup\left\{a y: y \in L_{2}\right\} \cup\left\{b y: y \in L_{2}\right\}
$$

Here is another general formula for $L_{1} \circ L_{2}$

$$
L_{1} \circ L_{2}=e \circ L_{2} \cup\left(\{a\} \circ L_{2}\right) \cup\left(\{b\} \circ L_{2}\right)
$$

Concatenation Examples

E6
Describe concatenations $L_{1} \circ L_{2}$ and $L_{2} \circ L_{1}$ of

$$
L_{1}=\left\{w \in\{0,1\}^{*}: \quad w \text { has an even number of } 0 \text { 's }\right\}
$$

and

$$
L_{2}=\left\{w \in\{0,1\}^{*}: \quad w=0 x x, x \in \Sigma^{*}\right\}
$$

Here the are

$$
\begin{gathered}
L_{1} \circ L_{2}=\left\{w \in \Sigma^{*}: w \text { has an odd number of } 0 ' s\right\} \\
L_{2} \circ L_{1}=\left\{w \in \Sigma^{*}: w \text { starts with } 0\right\}
\end{gathered}
$$

Concatenation Examples

We have that
$L_{1} \circ L_{2}=\left\{w \in \Sigma^{*}: \quad w\right.$ has an odd number of 0 's $\}$
$L_{2} \circ L_{1}=\left\{w \in \Sigma^{*}: w\right.$ starts with 0$\}$
Observe that

$$
1000 \in L_{1} \circ L_{2} \quad \text { and } \quad 1000 \notin L_{2} \circ L_{1}
$$

This proves that

$$
L_{1} \circ L_{2} \neq L_{2} \circ L_{1}
$$

We hence proved the following

Fact

Concatenation of languages is not commutative

Concatenation Examples

E8
Let L_{1}, L_{2} be languages defined below for $\Sigma=\{0,1\}$
$L_{1}=\left\{w \in \Sigma^{*}: \quad w=x 1, \quad x \in \Sigma^{*}\right\}$
$L_{2}=\left\{w \in \Sigma^{*}: \quad w=0 x, x \in \Sigma^{*}\right\}$
Describe the language $L_{2} \circ L_{1}$
Here it is

$$
L_{2} \circ L_{1}=\left\{w \in \Sigma^{*}: \quad w=0 x y 1, \quad x, y \in \Sigma^{*}\right\}
$$

Observe that $L_{2} \circ L_{1}$ can be also defined by a property as follows

$$
L_{2} \circ L_{1}=\left\{w \in \Sigma^{*}: w \text { starts with } 0 \text { and ends with1 }\right\}
$$

Distributivity of Concatenation

Theorem

Concatenation is distributive over union of languages

More precisely, given languages $L, L_{1}, L_{2}, \ldots, L_{n}$, the following holds for any $n \geq 2$

$$
\begin{aligned}
& \left(L_{1} \cup L_{2} \cup \cdots \cup L_{n}\right) \circ L=\left(L_{1} \circ L\right) \cup \cdots \cup\left(L_{n} \circ L\right) \\
& L \circ\left(L_{1} \cup L_{2} \cup \cdots \cup L_{n}\right)=\left(L \circ L_{1}\right) \cup \cdots \cup\left(L \circ L_{n}\right)
\end{aligned}
$$

Proof by Mathematical Induction over $n \in N, n \geq 2$

Distributivity of Concatenation Proof

We prove the base case for the first equation and leave the Inductive argument and a similar proof of the second equation as an exercise
Base Case $n=2$
We have to prove that

$$
\left(L_{1} \cup L_{2}\right) \circ L=\left(L_{1} \circ L\right) \cup\left(L_{2} \circ L\right)
$$

$w \in\left(L_{1} \cup L_{2}\right) \circ L \quad$ iff \quad (by definition of \circ)
($w \in L_{1}$ or $w \in L_{2}$) and $w \in L \quad$ iff (by distributivity of and over or)
$\left(w \in L_{1}\right.$ and $\left.w \in L\right)$ or $\left(w \in L_{2}\right.$ and $\left.w \in L\right) \quad$ iff \quad (by definition of \circ)
$\left(w \in L_{1} \circ L\right)$ or $\left(w \in L_{2} \circ L\right) \quad$ iff \quad (by definition of \cup)
$w \in\left(L_{1} \circ L\right) \cup\left(L_{2} \circ L\right)$

Kleene Star - L^{*}

Kleene Star L^{*} of a language L is yet another operation specific to languages

It is named after Stephen Cole Kleene (1909-1994), an American mathematician and world famous logician who also helped lay the foundations for theoretical computer science

We define L^{*} as the set of all strings obtained by concatenating zero or more strings from L

Remember that concatenation of zero strings is e, and concatenation of one string is the string itself

Kleene Star - L* *

We define L^{*} formally as

$$
L^{*}=\left\{w_{1} w_{2} \ldots w_{k}: \text { for some } k \geq 0 \text { and } w_{1}, \ldots, w_{k} \in L\right\}
$$

We also write as

$$
L^{*}=\left\{w_{1} w_{2} \ldots w_{k}: \quad k \geq 0, \quad w_{i} \in L, \quad i=1,2, \ldots, k\right\}
$$

or in a form of Generalized Union

$$
L^{*}=\bigcup_{k \geq 0}\left\{w_{1} w_{2} \ldots w_{k}: w_{1}, \ldots, w_{k} \in L\right\}
$$

Remark we write $x y z$ for $x \circ y \circ z$. We use the concatenation symbol \circ when we want to stress that we talk about some properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic properties

P1 $e \in L^{*}$, for all L
Follows directly from the definition as we have case $k=0$

P2 $\quad L^{*} \neq \emptyset$, for all L
Follows directly from $\mathbf{P 1}$, as $e \in L^{*}$

P3 $\quad \emptyset^{*} \neq \emptyset$
Because $L^{*}=\emptyset^{*}=\{e\} \neq \emptyset$

Kleene Star Properties

Some more Kleene Star basic properties

P4 $\quad L^{*}=\Sigma^{*}$ for some L
Take $L=\Sigma$

P6 $\quad L^{*} \neq \Sigma^{*}$ for some L
Take $L=\{00,11\}$ over $\Sigma=\{0,1\}$
We have that

$$
01 \notin L^{*} \quad \text { and } \quad 01 \in \Sigma^{*}
$$

Example

Observation

The property P4 provides a quite trivial example of a language L over an alphabet Σ such that $L^{*}=\Sigma^{*}$, namely just $L=\Sigma$

A natural question arises: is there any language $L \neq \Sigma$ such that nevertheless $L^{*}=\Sigma^{*}$?

Example

Example

Take $\Sigma=\{0,1\}$ and take
$L=\left\{w \in \Sigma^{*}: w\right.$ has an unequal number of 0 and 1$\}$
Some words in and out of L are

$$
100 \in L, \quad 00111 \in L \quad 100011 \notin L
$$

We now prove that

$$
L^{*}=\{0,1\}^{*}=\Sigma^{*}
$$

Example Proof

Given
$L=\left\{w \in\{0,1\}^{*}: w\right.$ has an unequal number of 0 and 1$\}$
We now prove that

$$
L^{*}=\{0,1\}^{*}=\Sigma^{*}
$$

Proof

By definition we have that $L \subseteq\{0,1\}^{*}$ and $\{0,1\}^{* *}=\{0,1\}^{*}$
By the the following property of languages:
P: If $L_{1} \subseteq L_{2}$, then $L_{1}{ }^{\star} \subseteq L_{2}{ }^{\star}$
and get that

$$
L^{*} \subseteq\{0,1\}^{* *}=\{0,1\}^{*} \text { i.e. } L^{*} \subseteq \Sigma^{*}
$$

Example Proof

Now we have to show that $\Sigma^{*} \subseteq L^{*}$, i.e.
$\{0,1\}^{*} \subseteq\left\{w \in 0,1^{*}: w\right.$ has an unequal number of 0 and 1$\}$
Observe that
$0 \in L$ because 0 regarded as a string over Σ has an unequal number appearances of 0 and 1
The number of appearances of 1 is zero and the number of appearances of 0 is one
$1 \in L$ for the same reason a $0 \in L$
So we proved that $\{0,1\} \subseteq L$
We now use the property \mathbf{P} and get

$$
\{0,1\}^{*} \subseteq L^{*} \text { i.e } \Sigma^{*} \subseteq L^{*}
$$

what ends the proof that $\Sigma^{*}=L^{*}$

$$
L^{*} \text { and } L^{+}
$$

We define
$L^{+}=\left\{w_{1} w_{2} \ldots w_{k}:\right.$ for some $k \geq 1$ and some $\left.w_{1}, \ldots, w_{k} \in L\right\}$
We write it also as follows

$$
L^{+}=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 1 \quad w_{i} \in L, \quad i=1,2, \ldots, k\right\}
$$

Properties

$$
\text { P1: } \quad L^{+}=L \circ L^{*} \quad \mathbf{P 2}: \quad e \in L^{+} \text {iff } \quad e \in L
$$

L^{*} and L^{+}

We know that

$$
e \in L^{*} \quad \text { for all } L
$$

Show that
For some language L we have that $e \in L^{+}$and
for some language L we can have that $e \notin L^{+}$
E1
Obviously, for any L such that $e \in L$ we have that $e \in L^{+}$
E2
If L is such that $e \notin L$ we have that $e \notin L^{+}$as L^{+}does not have a case $k=0$

Discrete Mathematics Basics

PART 8: Finite Representation of Languages

Finite Representation of Languages Introduction

We can represent a finite language by finite means for example listing all its elements

Languages are often infinite and so a natural question arises if a finite representation is possible and when it is possible when a language is infinite

The representation of languages by finite specifications is a central issue of the theory of computation

Of course we have to define first formally what do we mean by representation by finite specifications, or more precisely by a finite representation

Idea of Finite Representation

We start with an example: let

$$
L=\{a\}^{*} \cup\left(\{b\} \circ\{a\}^{*}\right)=\{a\}^{*} \cup\left(\{b\}\{a\}^{*}\right)
$$

Observe that by definition of Kleene's star

$$
\{a\}^{*}=\{e, a, \text { aa, aaa } \ldots\}
$$

and L is an infinite set

$$
\begin{gathered}
L=\{e, \text { a, aa, aaa } \ldots\} \cup\{b\}\{e, \text { a, aa, aaa } \ldots\} \\
L=\{e, a, \text { aa, aaa } \ldots\} \cup\{b, \text { ba, baa, baaa } \ldots\} \\
L=\{e, a, b, \text { aa, ba, aaa baa } \ldots\}
\end{gathered}
$$

Idea of Finite Representation

The expression $\{a\}^{*} \cup\left(\{b\}\{a\}^{*}\right)$ is built out of a finite number of symbols:

$$
\{,\},(,), *, \cup
$$

and describe an infinite set

$$
L=\{e, a, b, a a, b a, \text { aaa baa, } \ldots\}
$$

We write it in a simplified form - we skip the set symbols $\{$,$\} as we know that languages are sets$ and we have

$$
a^{*} \cup\left(b a^{*}\right)
$$

Idea of Finite Representation

We will call such expressions as

$$
a^{*} \cup\left(b a^{*}\right)
$$

a finite representation of a language L

The idea of the finite representation is to use symbols

$$
(,), *, \cup, \emptyset, \quad \text { and symbols } \sigma \in \Sigma
$$

to write expressions that describe the language L

Example of a Finite Representation

Let L be a language defined as follows
$L=\left\{w \in\{0,1\}^{*}: \quad w\right.$ has two or three occurrences of 1 the first and the second of which are not consecutive \}

The language L can be expressed as

$$
L=\{0\}^{*}\{1\}\{0\}^{*}\{0\} \circ\{1\}\{0\}^{*}\left(\{1\}\{0\}^{*} \cup \emptyset^{*}\right)
$$

We will define and write the finite representation of L as

$$
L=0^{*} 10^{*} 010^{*}\left(10^{*} \cup \emptyset^{*}\right)
$$

We call expression above (and others alike) a regular expression

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet $\Sigma \neq \emptyset$?

Observation
O1. Different languages must have different representations

O2. Finite representations are finite strings over a finite set, so we have that
there are \aleph_{0} possible finite representations

Problem with Finite Representation

O3. There are uncountably many, precisely exactly
$C=|R|)$ of possible languages over any alphabet $\quad \Sigma \neq \emptyset$

Proof

For any $\Sigma \neq \emptyset$ we have proved that

$$
\left|\Sigma^{*}\right|=\aleph_{0}
$$

By definition of language

$$
L \subseteq \Sigma^{*}
$$

so there are as many languages as subsets of Σ^{*} that is as many as

$$
\left|2^{\Sigma^{*}}\right|=2^{\aleph_{0}}=C
$$

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
$\Sigma \neq \emptyset$?

Answer
No, we can't
By $\mathbf{O 2}$ and $\mathbf{O 3}$ there are countably many (exactly \aleph_{0}) possible finite representations and there are uncountably many (exactly C) possible languages over any $\Sigma \neq \emptyset$

This proves that
NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED

Problem with Finite Representation

Moreover

There are uncountably many and exactly as many as Real numbers, i.e. C languages that can not be finitely represented

We can finitely represent only a small, countable portion of languages

We define and study here only two classes of languages:

REGULAR and CONTEXT FREE languages

Regular Expressions Definition

Definition

We define a \mathcal{R} of regular expressions over an alphabet Σ as follows
$\mathcal{R} \subseteq(\Sigma \cup\{(,), \emptyset, \cup, *\})^{*}$ and \mathcal{R} is the smallest set such that

1. $\emptyset \in \mathcal{R} \quad$ and $\quad \Sigma \subseteq \mathcal{R}$, i.e. we have that

$$
\emptyset \in \mathcal{R} \text { and } \forall_{\sigma \in \Sigma}(\sigma \in \mathcal{R})
$$

2. If $\alpha, \beta \in \mathcal{R}$, then

$$
\begin{gathered}
(\alpha \beta) \in \mathcal{R} \quad \text { concatenation } \\
(\alpha \cup \beta) \in \mathcal{R} \quad \text { union } \\
\alpha^{*} \in \mathcal{R} \quad \text { Kleene's Star }
\end{gathered}
$$

Regular Expressions Theorem

Theorem

The set \mathcal{R} of regular expressions over an alphabet Σ is
countably infinite

Proof

Observe that the set $\Sigma \cup\{(),, \emptyset, \cup, *\}$ is non-empty and finite, so the set $(\Sigma \cup\{(,), \emptyset, \cup, *\})^{*}$ is countably infinite, and by definition

$$
\mathcal{R} \subseteq(\Sigma \cup\{(,), \emptyset, \cup, *\})^{*}
$$

hence we $|\mathcal{R}| \leq \aleph_{0}$
The set \mathcal{R} obviously includes an infinitely countable set

$$
\emptyset, \emptyset \emptyset, \emptyset \emptyset \emptyset, \ldots, \ldots
$$

what proves that $|\mathcal{R}|=\aleph_{0}$

Regular Expressions

Example

Given $\Sigma=\{0,1\}$, we have that

1. $\emptyset \in \mathcal{R}, \quad 1 \in \mathcal{R}, \quad 0 \in \mathcal{R}$
2. $(01) \in \mathcal{R} 1^{*} \in \mathcal{R}, 0^{*} \in \mathcal{R}, \quad \emptyset^{*} \in \mathcal{R},(\emptyset \cup 1) \in \mathcal{R}, \ldots$, $\ldots, \quad\left(\left(\left(0^{*} \cup 1^{*}\right) \cup \emptyset\right) 1\right)^{*} \in \mathcal{R}$

Shorthand Notation when writing regular expressions we will keep only essential parenthesis
For example, we will write

$$
\begin{array}{cc}
\left(\left(0^{*} \cup 1^{*} \cup \emptyset\right) 1\right)^{*} \quad \text { instead of } \quad\left(\left(\left(0^{*} \cup 1^{*}\right) \cup \emptyset\right) 1\right)^{*} \\
1^{*} 01^{*} \cup(01)^{*} \quad \text { instead of } \quad\left(\left(\left(1^{*} 0\right) 1^{*}\right) \cup(01)^{*}\right)
\end{array}
$$

Regular Expressions and Regular Languages

We use the regular expressions from the set \mathcal{R} as a representation of languages

Languages represented by regular expressions are called regular languages

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

$$
1^{*} 01^{*} \cup(01)^{*}
$$

represents a language

$$
L=\{1\}^{*}\{0\}\{1\}^{*} \cup\{01\}^{*}
$$

Definition of Representation

Definition

The representation relation between regular expressions and languages they represent is establish by a function \mathcal{L} such that
if $\alpha \in \mathcal{R}$ is any regular expression, then $\mathcal{L}(\alpha)$ is the language represented by α

Definition of Representation

Formal Definition
The function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^{*}}$ is defined recursively as follows

1. $\mathcal{L}(\emptyset)=\emptyset, \quad \mathcal{L}(\sigma)=\{\sigma\}$ for all $\sigma \in \Sigma$
2. If $\alpha, \beta \in \mathcal{R}$, then

$$
\begin{gathered}
\mathcal{L}(\alpha \beta)=\mathcal{L}(\alpha) \circ \mathcal{L}(\beta) \quad \text { concatenation } \\
\mathcal{L}(\alpha \cup \beta)=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta) \quad \text { union } \\
\mathcal{L}\left(\alpha^{*}\right)=\mathcal{L}(\alpha)^{*} \quad \text { Kleene's Star }
\end{gathered}
$$

Regular Language Definition

Definition

A language $L \subseteq \Sigma^{*}$ is regular
if and only if
L is represented by a regular expression, i.e. when there is $\quad \alpha \in \mathcal{R}$ such that $L=\mathcal{L}(\alpha)$
where $\quad \mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^{*}}$ is the representation function

We use a shorthand notation

$$
L=\alpha \quad \text { for } \quad L=\mathcal{L}(\alpha)
$$

Examples

E1
Given $\alpha \in \mathcal{R}$, for $\alpha=\left((a \cup b)^{*} a\right)$

Evaluate L over an alphabet $\Sigma=\{a, b\}$, such that $L=\mathcal{L}(\alpha)$
We write

$$
\alpha=\left((a \cup b)^{*} a\right)
$$

in the shorthand notation as

$$
\alpha=(a \cup b)^{*} a
$$

Examples

We evaluate $L=(a \cup b)^{*} a$ as follows

$$
\begin{aligned}
& \mathcal{L}\left((a \cup b)^{*} a\right)=\mathcal{L}\left((a \cup b)^{*}\right) \circ \mathcal{L}(a)=\mathcal{L}\left((a \cup b)^{*}\right) \circ\{a\}= \\
& \quad(\mathcal{L}(a \cup b))^{*}\{a\}=(\mathcal{L}(a) \cup \mathcal{L}(b))^{*}\{a\}=(\{a\} \cup\{b\})^{*}\{a\}
\end{aligned}
$$

Observe that

$$
(\{a\} \cup\{b\})^{*}\{a\}=\{a, b\}^{*}\{a\}=\Sigma^{*}\{a\}
$$

so we get

$$
\begin{gathered}
L=\mathcal{L}\left((a \cup b)^{*} a\right)=\Sigma^{*}\{a\} \\
L=\left\{w \in\{a, b\}^{*}: w \text { ends with } a\right\}
\end{gathered}
$$

Examples

E2 Given $\alpha \in \mathcal{R}$, for $\alpha=\left(\left(c^{*} a\right) \cup\left(b c^{*}\right)^{*}\right)$
Evaluate $L=\mathcal{L}(\alpha)$, i.e describe $L=\alpha$

We write α in the shorthand notation as

$$
\alpha=c^{*} a \cup\left(b c^{*}\right)^{*}
$$

and evaluate $L=c^{*} a \cup\left(b c^{*}\right)^{*} \quad$ as follows
$\mathcal{L}\left(\left(c^{*} a \cup\left(b c^{*}\right)^{*}\right)=\mathcal{L}\left(c^{*} a\right) \cup\left(\mathcal{L}\left(b c^{*}\right)\right)^{*}=\{c\}^{*}\{a\} \cup\left(\{b\}\{c\}^{*}\right)^{*}\right.$
and we get that

$$
L=\{c\}^{*}\{a\} \cup\left(\{b\}\{c\}^{*}\right)^{*}
$$

Examples

E3 Given $\alpha \in \mathcal{R}$, for

$$
\alpha=\left(0^{*} \cup\left(\left(\left(0^{*}(1 \cup(11))\right)\left(\left(00^{*}\right)(1 \cup(11))\right)^{*}\right) 0^{*}\right)\right)
$$

Evaluate $L=\mathcal{L}(\alpha)$, i.e describe the language $L=\alpha$ We write α in the shorthand notation as

$$
\alpha=0^{*} \cup 0^{*}(1 \cup 11)\left(\left(00^{*}(1 \cup 11)\right)^{*}\right) 0^{*}
$$

and evaluate

$$
L=\mathcal{L}(\alpha)=0^{*} \cup 0^{*}\{1,11\}\left(00^{*}\{1,11\}\right)^{*} 0^{*}
$$

Observe that 00^{*} contains at least one 0 that separates $0^{*}\{1,11\}$ on the left with $\left(00^{*}(\{1,11\})^{*}\right.$ that follows it, so we get that
$L=\left\{w \in\{0,1\}^{*}: w\right.$ does not contain a substring 111\}

Class RL of Regular Languages

Definition

Class RL of regular languages over an alphabet Σ contains all L such that $L=\mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$, i.e.

$$
\mathbf{R L}=\left\{L \subseteq \Sigma^{*}: \quad L=\mathcal{L}(\alpha) \quad \text { for certain } \quad \alpha \in \mathcal{R}\right\}
$$

Theorem

There \aleph_{0} regular languages over $\Sigma \neq \emptyset$ i.e.

$$
|\mathbf{R L}|=\boldsymbol{\aleph}_{0}
$$

Proof

By definition that each regular language is $L=\mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$ and the interpretation function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^{*}}$ has an infinitely countable domain, hence $|R L|=\aleph_{0}$

Class RL of Regular Languages

We can also think about languages in terms of closure and get immediately from definitions the following

Theorem

Class RL of regular languages is the closure of the set of languages

$$
\{\{\sigma\}: \quad \sigma \in \Sigma\} \cup\{0\}
$$

with respect to union, concatenation and Kleene Star

Languages that are NOT Regular

Given an alphabet $\Sigma \neq \emptyset$
We have just proved that there are \aleph_{0} regular languages, and we have also there are C of all languages over $\Sigma \neq \emptyset$, so we have the following

Fact

There is C languages that are not regular

Natural Questions

Q1 How to prove that a given language is regular?
A1 Find a regular expression α, such that $L=\alpha$, i.e.
$L=\mathcal{L}(\alpha)$

Languages that are NOT Regular

Q2 How to prove that a given language is not regular?
A2 Not easy!
There is a Theorem, called Pumping Lemma which provides a criterium for proving that a given language
is not regular
E1 A language

$$
L=0^{*} 1^{*}
$$

is is regular as it is given by a regular expression $\alpha=0^{*} 1^{*}$
E2 We will prove, using the Pumping Lemma that the language

$$
L=\left\{0^{n} 1^{n}: \quad n \geq 1, \quad n \in N\right\}
$$

is not regular

