cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 2

CHAPTER 1
 PART THREE: The Josephus Problem

Josephus Story

Flavius Josephus was a historian of 1st century
During Jewish-Roman war Josephus was among 41 Jewish rebels captured by the Romans
They preferred suicide to the capture and decided to form a circle and to kill every third person until no one was left Josephus with with one friend wanted none of this suicide nonsense and he calculated where he and his friend should stand to avoid being killed and they were saved
n people around the circle and we eliminate each second remaining person until one survives
We denote by $J(n)$ the position of a surviver
Example $\mathrm{n}=10$

Elimination order: 2, 4, 6, 8, 10, 3, 7, 1, 9.
As a result, number 5 survives, i.e. $J(10)=5$

Problem: Determine survivor number J(n)

We evaluate now $J(n)$ for $n=1,2, \ldots 6$
$J(1)=1, \quad J(2)=1, \quad J(3):$

We get that $J(3)=3$

Determine survivor number $\mathrm{J}(\mathrm{n})$

Picture for $J(4)$:

We get $J(4)=1$

Determine survivor number $\mathrm{J}(\mathrm{n})$

Picture for $J(5)$:

We get $J(5)=3$

Problem: Determine survivor number J(n)

Picture for $J(6)$:

We get $J(6)=5$

Determine survivor number J(n)

We put our results in a table:

n	1	2	3	4	5	6
$\mathrm{~J}(\mathrm{n})$	1	1	3	1	3	5

Observation
All our $\mathrm{J}(\mathrm{n})$ after the first run are odd numbers
Fact
First trip eliminates all even numbers

Determine survivor number J(n)

Fact

First trip eliminates all even numbers

Observation

If $n \in E V E N$ we arrive to a similar situation we started with with half as many people (numbering has changed)

Determine survivor number $\mathrm{J}(\mathrm{n})$

ASSUME that we START with $2 n$ people
After first trip we have

3 goes out next
This is like starting with n except each person has been doubled and decreased by 1

Determine survivor number $\mathrm{J}(\mathrm{n})$
Case n=2n
We get $J(2 n)=2 J(n)-1 \quad$ (each person has been doubled and decreased by 1)
We know that $J(10)=5$, so $J(20)=2 J(10)-1=2 * 5-1=9$ Re-numbering

Determine survivor number J(n)

Case n=2n+1
ASSUME that we start with $2 n+1$ people:
First looks like that

1 is wipped out after $2 n$
We want to have n-elements after first round

Determine survivor number J(n)

After the first trip we have

This is like starting with n except that now each person is doubled and increased by 1

Determine survivor number $\mathrm{J}(\mathrm{n})$
CASE $\mathrm{n}=2 \mathrm{n}+1$ c.d.
Re-numbering

$$
\begin{aligned}
& 3=2^{\star} 1-1 \\
& 5=2^{\star} 2+1 \\
& 7=2^{\star} 3+1 \\
& 3=\text { new \#1 } \quad 3=2^{\star} 1+1 \\
& 5=\text { new \#2 } \quad 5=2^{\star} 2+1 \\
& \text { new } 1=2^{\star} 1+1=(3) \rightarrow \text { Old } \\
& \text { new } 2=2^{\star} 2+1=(5) \rightarrow \text { Old } \\
& \text { new } 3=2^{\star} 3+1=(7) \rightarrow \text { Old }
\end{aligned}
$$

Formula: new number $\mathrm{k}=2 \mathrm{k}+1$
$J(2 n+1)=$ new number $J(n)$
$J(2 n+1)=2 J(n)+1$

Recurrence Formula for $J(n)$

The Recurrence Formula RF for $J(n)$ is:
$J(1)=1$
$J(2 n)=2 J(n)-1$
$J(2 n+1)=2 J(n)+1$
Remember that $J(k)$ is a position of the survivor
This formula is more efficient then getting $F(n)$ from $F(n-1)$
It reduces n by factor 2 each time it is applied We need only 19 application to evaluate $J\left(10^{6}\right)$

From Recursive Formula to Closed Form Formula

In order to find a Closed Form Formula (CF) equivalent to given Recursive Formula RF we ALWAYS follow the the Steps 1-4 listed below.

Step 1 Compute from recurrence RF a TABLE for some initial values. In our case RF is:
$J(1)=1, J(2 n)=2 J(n)-1, J(2 n+1)=2 J(n)+1$
Step 2 Look for a pattern formed by the values in the TABLE
Step 3 Find - guess a closed form formula CF for the pattern
Step 4 Prove by Mathematical Induction that RF = CF

TABLE FOR J(n)

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{~J}(\mathrm{n})$	1	1	3	1	3	5	7	1	3	5	7	9	11	13	15	1
	G1	G 2		G3				G 4								G5

Observation: $J(n)=1$ for $n=2^{k}, \quad k=0,1, .$.
Next step: we form groups of $J(n)$ for n consecutive powers of 2 and observe that

$\mathrm{J}(\mathrm{n})$	G 1	G2	G3	G4	G5	\ldots
n	2^{0}	$2^{1}+1$	$2^{2}+1$	$2^{3}+1$	$2^{4}+1$	\ldots

for $0 \leq 1<2^{(k-1)}$ and $k=1,2, \ldots 5$,

Computation of $J(n)$

Observe that for each group G_{k} the corresponding n are $n=2^{k-1}+1$ for all $0 \leq 1<2^{(k-1)}$ and the value of $J(n)$ for $n=2^{k}+l$ i.e. $J(n)=J\left(2^{k}+l\right)$ increases by 2 within the group

Let's now make a TABLE for the group G3

$J(n)$	1	3	5	$7=2 \mathrm{l}+1$
n	2^{2}	$2^{2}+\mathrm{l}$	$2^{2}+2$	$2^{2}+3$
	$\mathrm{I}=0$	$\mathrm{I}=1$	$\mathrm{I}=2$	$\mathrm{I}=3$

Guess for CF formula for J(n)

Given $n=2^{k-1}+I$ we observed that $J(n)=2 I+1$
We guess that our CF formula is

$$
J\left(2^{k}+I\right)=2 I+1
$$

for any $k \geq 0, \quad 0 \leq 1<2^{k}$

Representation of n

$n=2^{k}+1$ is called a representation of n when
1 is a remainder by dividing n by 2^{k} and
k is the largest power of 2 not exceeding n

Observe that $2^{k} \leq n<2^{k+1}, I=n-2^{k}$ and so $0 \leq 1<2^{k+1}-2^{k}=2^{m}$, i.e.

$$
0 \leq 1<2^{k}
$$

Proof RF = CF

RF: $J(1)=1, J(2 n)=2 J(n)-1, J(2 n+1)=2 J(n)+1$
CF: $J\left(2^{k}+l\right)=2 I+1$, for $n=2^{k}+l, \quad k \geq 0,0 \leq I<2^{k}$

Proof: by Mathematical Induction on k Base Case: k=0.
Observe that $0 \geq I<2^{0}=1$, and $\mathrm{I}=0, n=2^{0}+0=1$, i.e. $n=1$.
We evaluate $J(1)=1, J\left(2^{0}\right)=1$, i.e.

$$
R F=C F
$$

Proof RF = CF

Induction Step over k has two cases
c1: $\mathbf{n} \in$ even and $J(2 n)=2 J(n)-1$
c2: $\mathbf{n} \in$ odd and $J(2 n+1)=2 J(n)+1$
Induction Assumption for k is
$J\left(2^{k-1}+I\right)=2 I+1$, for $0 \leq I<2^{k-1}$
case c1: $n \in$ even
put $n:=2 n$, i.e. $\quad 2^{k}+I=2 n, \quad 0 \leq 1<2^{k}$
Observe that
$2^{k}+I=2 n$ iff $I \in$ even, i.e. $I=2 m$, and
$\mathrm{l} / 2=\mathrm{m} \in N$ and $0 \leq \frac{1}{2}<2^{k-1}$.

Proof RF = CF

We evaluate n from $2^{k}+I=2 n$ as follows
$n=\frac{2^{k}+1}{2}$,
$n=2^{k-1}+\frac{1}{2}$, for $0 \leq \frac{1}{2}<2^{k-1}, \quad \frac{1}{2} \in N$
Proof in case c1: $\mathbf{n} \in$ even and $J(2 n)=2 J(n)-1$
Reminder: CF: $J\left(2^{k}+I\right)=2 I+1$ for $n=2^{k}+I$
$J\left(2^{k}+I\right)={ }^{\text {reprn }} 2 J\left(2^{k-1}+\frac{1}{2}\right)-1$
$=$ ind $2\left(2 \frac{!}{2}+1\right)-1=2 I+2-1$
$=2 I+1$

Proof RF = CF

Proof in case c2: $\mathbf{n} \in$ odd and $J(2 n+1)=2 J(n)+1$ Inductive Assumption: $J\left(2^{k-1}+I\right)=2 I+1$, for
$0 \leq 1<2^{k-1}$
Inductive Thesis: $J\left(2^{k}+I\right)=2 I+1$, for $0 \leq I<2^{k}$
We put $n:=2 n+1$ and observe that
$2^{k}+I=2 n+1 \quad$ iff $\quad I \in$ odd, i.e.
$I=2 m+1$, for certain $m \in N, I-1=2 m, \quad$ and $\frac{l-1}{2}=m \in N$

Proof of RF = CF

Let $J(2 n+1)=2 J(n)+1$
We evaluate, as before n from $2^{k}+I=2 n+1$
$2^{k}+I-1=2 n$ and we get the representation of n
$n=2^{k-1}+\frac{l-1}{2}$
Reminder: CF: $J\left(2^{k}+I\right)=2 I+1$ for $n=2^{k}+I$
Proof RF = CF in case c2: $\mathbf{n} \in$ odd and
$J(2 n+1)=2 J(n)+1$ is now as follows

$$
\begin{aligned}
& J\left(2^{k}+I\right)=\text { reprn } 2 J\left(2^{k-1}+\frac{l-1}{2}\right)+1 \\
& ={ }^{\text {ind }} 2\left(2 \frac{l-1}{2}+1\right)+1=2(I-1+1)+1 \\
& =2 I+1
\end{aligned}
$$

Some Facts

Fact $1 \quad \forall_{m} J\left(2^{m}\right)=1$
Proof by induction over m
Observe that $2^{m} \in$ even, so we use the formula
$J(2 n)=2 J(n)-1$, and get
$J\left(2^{m}\right)=J\left(2 * 2^{m-1}\right)={ }^{J d e f} 2 J\left(2^{m-1}\right)-1=^{\text {ind }} 2 * 1-1=1$
Hence we also have
Fact 2
First person will always survive whenever n is a power of 2

General Case

Fact 3

Let $n=2^{m}+1$
The first remaining person, the survivor is number $2 l+1$

Our solution for the proof
Observe that the number of people is reduced to power of 2 after there have been / executions

$$
J\left(2^{m}+I\right)=2 I+1
$$

where $n=2^{m}+1$ and $0 \leq 1<2^{m}$ depends heavily on powers of 2
Let's look now at the binary expansion of n and see how we can simplify the computations

Binary Expansion of n

Definition

$$
n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

stands for

$$
n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+. . b_{1} 2+b_{0}
$$

for

$$
b_{i} \in 0,1, \quad b_{m}=1
$$

Binary Expansion of n

EXAMPLE: $\mathrm{n}=100$

$$
\begin{gathered}
\mathrm{n}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right)_{2} \\
2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}
\end{gathered}
$$

$$
n=2^{6}+2^{5}+2^{2}=64+32+4+100
$$

Binary Expansion of n

Let now :

$$
\mathrm{n}=2^{m}+l, \quad 0 \leq I<2^{m}
$$

we have the following binary expansions:

1) $I=\left(0, b_{m-1}, . ., b_{1}, b_{0}\right)_{2}$ as $I<2^{m}$
2) $2 I=\left(b_{m-1}, . ., b_{1}, b_{0}, 0\right)_{2}$ as

$$
\begin{gathered}
I=b_{m-1} 2^{m-1}+. .+b_{1} 2+b_{0} \\
2 I=b_{m-1} 2^{m}+. .+b_{1} 2^{2}+b_{0} 2+0
\end{gathered}
$$

3) $2^{m}=(1,0, \ldots, 0)_{2}, \quad 1=(0 \ldots 1)_{2}$
4) $n=2^{m}+1$
$n=\left(1, b_{m-1}, . ., b_{1}, b_{0}\right)_{2}$ from $1+3$
5) $2 I+1=\left(b_{m-1}, b_{m-2}, . ., b_{0}, 1\right)_{2}$ from $2+3$

Binary Expansion Josephus

Consider now a closed formula
CF: $J(n)=2 I+1$, for $n=2^{m}+I$
We use
5) $2 I+1=\left(b_{m-1}, b_{m-2}, . ., b_{0}, 1\right)_{2}$
and re-write the closed formula CF as a binary expansion formula BF as follows
$B F: J\left(\left(b_{m}, b_{m-1}, . ., b_{1}, b_{0}\right)_{2}\right)=\left(b_{m-1}, . ., b_{1}, b_{0}, b_{m}\right)_{2}$ because $b_{m}=1$ in the binary expansion of n, we get

$$
B F: \quad J\left(\left(1, b_{m-1}, . ., b_{1}, b_{0}\right)_{2}\right)=\left(b_{m-1}, . ., b_{1}, b_{0}, 1\right)_{2}
$$

Binary Expansion Josephus

$$
\begin{aligned}
& \text { Example: Find } J(100) \\
& n=100=(1100100)_{2} \\
& \qquad J(100)=J\left((1100100)_{2}\right)={ }^{B F}(1001001)_{2} \\
& J(100)=64+8+1=73
\end{aligned}
$$

$$
B F: \quad J\left(\left(1, b_{m-1}, . ., b_{1}, b_{0}\right)_{2}\right)=\left(\left(b_{m-1}, . ., b_{1}, b_{0}, 1\right)_{2}\right.
$$

Josephus Generalization

Our function $J: N-\{0\} \longrightarrow N$ is defined as $J(1)=1, \quad J(2 n)=2 J(n)-1, \quad J(2 n+1)=2 J(n)+1 \quad$ for $n>1$ We generalize it to function $f: N-\{0\} \longrightarrow N$ defined as follows

$$
\begin{gathered}
f(1)=\alpha \\
f(2 n)=2 f(n)+\beta, \quad n \geq 1 \\
f(2 n+1)=2 f(n)+\gamma, \quad n \geq 1
\end{gathered}
$$

Observe that $\mathrm{J}=\mathrm{f}$ for $\alpha=1, \beta=-1, \gamma=1$
NEXT STEP: Find a Closed Formula for f

