# cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

# **LECTURE 2**

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

# CHAPTER 1 PART THREE: The Josephus Problem

# **Josephus Story**

Flavius Josephus was a historian of 1st century During Jewish-Roman war Josephus was among 41 Jewish rebels captured by the Romans They preferred **suicide** to the **capture** and decided to form

a circle and to **kill** every third person until **no one** was left Josephus with with one friend wanted **none** of this **suicide** nonsense and **he calculated where** he and his friend should **stand** to avoid being killed and they were **saved** 

#### The Josephus Problem - Our variation

n people around the **circle** and we **eliminate** each second remaining person **until** one survives We denote by J(n) the **position** of a surviver **Example** n = 10



Problem: Determine survivor number J(n)



We get that J(3)=3



We get J(4)=1

# Picture for J(5):



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We get J(5)=3

Problem: Determine survivor number J(n)

Picture for J(6):



▲□▶▲□▶▲□▶▲□▶ ■ のへで

We get J(6)=5

We put our results in a table:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Observation

All our J(n) after the **first run** are odd numbers **Fact** 

First trip eliminates all even numbers

Fact

First trip eliminates all even numbers

# Observation

If  $n \in EVEN$  we arrive to a similar situation we started with with half as many people (numbering has changed)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



doubled and decreased by 1

Case n=2n We get J(2n)=2J(n) -1 (each person has been doubled and decreased by 1) We know that J(10)=5, so J(20) = 2J(10)-1 = 2\*5-1 = 9**Re-numbering**  $1 = 2 \times 1 - 1$ n 2 2n-1 3=2\*(2) 3=new #2 n-1 2n-3 •5 3 5=new #3 7=2\*4 new #2 = 2\*2-1=3



### Case n=2n+1

ASSUME that we start with 2n+1 people:

First looks like that



< ∃ →

∃ <\0<</p>

#### 1 is wipped out after 2n

We want to have n-elements after first round



This is like starting with n except that now each person is doubled and increased by 1

▲□▶▲□▶▲□▶▲□▶ ■ のへで



# Recurrence Formula for J(n)

The Recurrence Formula RF for J(n) is: J(1) = 1 J(2n) = 2J(n) - 1 J(2n+1) = 2J(n) + 1

Remember that J(k) is a position of the **survivor** This formula is more efficient then getting F(n) from F(n-1)It reduces *n* by factor 2 each time it is applied We need only 19 application to evaluate  $J(10^6)$ 

#### From Recursive Formula to Closed Form Formula

In order to find a **Closed Form Formula** (CF) equivalent to given **Recursive Formula** RF we ALWAYS follow the the Steps 1 - 4 listed below.

- Step 1 Compute from recurrence RF a TABLE for some initial values. In our case RF is: J(1) = 1, J(2n) = 2J(n) - 1, J(2n + 1) = 2J(n) + 1
- Step 2 Look for a pattern formed by the values in the TABLE
- Step 3 Find guess a closed form formula CF for the pattern
- Step 4 **Prove** by Mathematical Induction that RF = CF

#### TABLE FOR J(n)

| n    | 1  | 2  | 3 | 4  | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|------|----|----|---|----|---|---|---|----|---|----|----|----|----|----|----|----|
| J(n) | 1  | 1  | 3 | 1  | 3 | 5 | 7 | 1  | 3 | 5  | 7  | 9  | 11 | 13 | 15 | 1  |
|      | G1 | G2 |   | G3 |   |   |   | G4 |   |    |    |    |    |    |    | G5 |

**Observation:** J(n) = 1 for  $n = 2^k$ , k = 0, 1, ...

**Next step:** we form groups of J(n) for n consecutive powers of 2 and observe that

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

| J(n) | G1             | G2                        | G3                 | G4        | G5                 |  |
|------|----------------|---------------------------|--------------------|-----------|--------------------|--|
| n    | 2 <sup>0</sup> | 2 <sup>1</sup> + <i>I</i> | 2 <sup>2</sup> + 1 | $2^3 + I$ | 2 <sup>4</sup> + 1 |  |
|      |                |                           |                    |           |                    |  |

for  $0 \le l < 2^{(k-1)}$  and k = 1, 2, ...5,

#### Computation of J(n)

**Observe** that for each **group**  $G_k$  the corresponding **n** are  $n = 2^{k-1} + l$  for all  $0 \le l < 2^{(k-1)}$  and the value of J(n) for  $n = 2^k + l$  i.e.  $J(n) = J(2^k + l)$  **increases** by 2 within the **group** 

Let's now make a TABLE for the group G3

| J(n) | 1              | 3           | 5                  | 7 = 2l+1  |  |  |
|------|----------------|-------------|--------------------|-----------|--|--|
| n    | 2 <sup>2</sup> | $2^{2} + I$ | 2 <sup>2</sup> + 2 | $2^2 + 3$ |  |  |
|      | I=0            | l=1         | l=2                | l=3       |  |  |

### Guess for CF formula for J(n)

Given  $n = 2^{k-1} + l$  we observed that J(n) = 2l + 1We guess that our CF formula is

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $J(2^k + l) = 2l + 1,$  for any  $k \ge 0, \ 0 \le l < 2^k$ 

#### Representation of n

 $n = 2^{k} + l$  is called a **representation** of *n* when *l* is a **remainder** by dividing *n* by  $2^{k}$  and *k* is the largest power of 2 not exceeding *n* 

Observe that  $2^k \le n < 2^{k+1}$ ,  $l = n - 2^k$  and so  $0 \le l < 2^{k+1} - 2^k = 2^m$ , i.e.

 $0 \leq l < 2^k$ 

RF: J(1) = 1, J(2n) = 2J(n) - 1, J(2n + 1) = 2J(n) + 1CF:  $J(2^k + l) = 2l + 1$ , for  $n = 2^k + l$ ,  $k \ge 0, 0 \le l < 2^k$ 

**Proof:** by Mathematical Induction on k **Base Case:** k=0. Observe that  $0 \ge l < 2^0 = 1$ , and l = 0,  $n = 2^0 + 0 = 1$ , i.e. n = 1.

We evaluate J(1) = 1,  $J(2^0) = 1$ , i.e.

RF = CF

Induction Step over k has two cases

c1:  $n \in even$  and J(2n) = 2J(n) - 1c2:  $n \in odd$  and J(2n + 1) = 2J(n) + 1Induction Assumption for k is  $J(2^{k-1}+I) = 2I+1$ , for  $0 < I < 2^{k-1}$ case c1:  $n \in even$ put n:= 2n, i.e.  $2^k + l = 2n$ ,  $0 < l < 2^k$ Observe that  $2^k + l = 2n$  iff  $l \in even$ , i.e. l = 2m, and  $1/2 = m \in N$  and  $0 \le \frac{1}{2} < 2^{k-1}$ .

We evaluate *n* from  $2^k + l = 2n$  as follows  $n = \frac{2^k + l}{2}$ ,  $n = 2^{k-1} + \frac{l}{2}$ , for  $0 \le \frac{l}{2} < 2^{k-1}$ ,  $\frac{l}{2} \in N$  **Proof** in case **c1:**  $\mathbf{n} \in \mathbf{even}$  and J(2n) = 2J(n) - 1Reminder: CF:  $J(2^k + l) = 2l + 1$  for  $n = 2^k + l$ 

ション 小田 マイビット ビックタン

$$J(2^{k} + l) =^{reprn} 2J(2^{k-1} + \frac{l}{2}) - 1$$
  
=  $^{ind} 2(2\frac{l}{2} + 1) - 1 = 2l + 2 - 1$   
=  $2l + 1$ 

**Proof** in case **c2**:  $\mathbf{n} \in \mathbf{odd}$  and J(2n + 1) = 2J(n) + 1Inductive Assumption:  $J(2^{k-1} + I) = 2I + 1$ , for  $0 \le I < 2^{k-1}$ Inductive Thesis:  $J(2^k + I) = 2I + 1$ , for  $0 \le I < 2^k$ We put n := 2n + 1 and observe that  $2^k + I = 2n + 1$  iff  $I \in \mathbf{odd}$ , i.e. I = 2m+1, for certain  $m \in N$ , I - 1 = 2m, and  $\frac{I-1}{2} = m \in N$ 

#### Proof of $\mathbf{RF} = \mathbf{CF}$

Let J(2n + 1) = 2J(n) + 1We evaluate, as before *n* from  $2^k + l = 2n + 1$  $2^k + l - 1 = 2n$  and we get the representation of *n*  $n = 2^{k-1} + \frac{l-1}{2}$ Reminder: CF:  $J(2^k + l) = 2l + 1$  for  $n = 2^k + l$ **Proof** RF = CF in case c2:  $n \in odd$  and J(2n + 1) = 2J(n) + 1 is now as follows

$$J(2^{k} + l) = {}^{reprn} 2J(2^{k-1} + \frac{l-1}{2}) + 1$$
  
=  ${}^{ind} 2(2\frac{l-1}{2} + 1) + 1 = 2(l-1+1) + 1$   
=  $2l + 1$ 

# Some Facts

Fact 1  $\forall_m J(2^m) = 1$ 

Proof by induction over m

Observe that  $2^m \in even$ , so we use the formula

J(2n) = 2J(n) - 1, and get

 $J(2^m) = J(2*2^{m-1}) = {}^{Jdef} 2J(2^{m-1}) - 1 = {}^{ind} 2*1 - 1 = 1$ 

Hence we also have

# Fact 2

First person will always survive whenever n is a power of 2

# **General Case**

#### Fact 3

Let  $n = 2^m + I$ 

The first remaining person, the **survivor** is number 2l + 1

# Our solution for the proof

Observe that the number of people is **reduced** to power of 2 after there have been *I* executions

$$J(2^m+l)=2l+1$$

where  $n = 2^m + I$  and  $0 \le I < 2^m$  depends heavily on powers of 2

Let's look now at the binary expansion of n and see how we can **simplify** the computations

# Binary Expansion of n



Binary Expansion of n

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

EXAMPLE: n=100 n = (1 1 0 0 1 0 0)<sub>2</sub>  $2^{6}2^{5}2^{4}2^{3}2^{2}2^{1}2^{0}$ n =  $2^{6} + 2^{5} + 2^{2} = 64 + 32 + 4 + 100$ 

#### Binary Expansion of n

Let now :

 $\mathsf{n}=\mathsf{2}^m+\mathsf{I},\quad \mathsf{0}\leq\mathsf{I}<\mathsf{2}^m$ 

we have the following binary expansions:

1)  $l = (0, b_{m-1}, ..., b_1, b_0)_2$  as  $l < 2^m$ 2)  $2l = (b_{m-1}, ..., b_1, b_0, 0)_2$  as  $l = b_{m-1}2^{m-1} + ... + b_12 + b_0$   $2l = b_{m-1}2^m + ... + b_12^2 + b_02 + 0$ 3)  $2^m = (1, 0, ..., 0)_2$ ,  $1 = (0...1)_2$ 4)  $n = 2^m + l$   $n = (1, b_{m-1}, ..., b_1, b_0)_2$  from 1 + 35)  $2l + 1 = (b_{m-1}, b_{m-2}, ..., b_0, 1)_2$  from 2 + 3 **Binary Expansion Josephus** 

Consider now a closed formula

CF: J(n) = 2I + 1, for  $n = 2^m + I$ 

We use

5)  $2l + 1 = (b_{m-1}, b_{m-2}, .., b_0, 1)_2$ 

and re-write the **closed** formula CF as a **binary expansion** formula **BF** as follows

 $BF: J((b_m, b_{m-1}, .., b_1, b_0)_2) = (b_{m-1}, .., b_1, b_0, b_m)_2$ 

because  $b_m = 1$  in the binary expansion of n, we get

 $BF: J((1, b_{m-1}, .., b_1, b_0)_2) = (b_{m-1}, .., b_1, b_0, 1)_2$ 

### **Binary Expansion Josephus**

Example: Find J(100)  $n = 100 = (1100100)_2$  $J(100) = J((1100100)_2) = {}^{BF} (1001001)_2$ 

$$J(100) = 64 + 8 + 1 = 73$$

 $BF: J((1, b_{m-1}, .., b_1, b_0)_2) = ((b_{m-1}, .., b_1, b_0, 1)_2)$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

#### Josephus Generalization

Our function  $J: N - \{0\} \longrightarrow N$  is defined as J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1We generalize it to function  $f: N - \{0\} \longrightarrow N$  defined as follows

 $f(1) = \alpha$ 

 $f(2n) = 2f(n) + \beta, \quad n \ge 1$ 

$$f(2n+1)=2f(n)+\gamma, \quad n\geq 1$$

Observe that J = f for  $\alpha = 1, \beta = -1, \gamma = 1$ NEXT STEP: Find a **Closed** Formula for f