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CHAPTER 1
PART FOUR: The Generalized Josephus Problem
Repertoir Method



Josephus Problem Generalization

Our function J: N — {0} — N is defined as
J(1) =1, J@n)=2J(n)-1, J@2n+1)=2J(n)+1 forn>1

We generalize it to function f: N — {0} — N defined as
follows

f(1)=a

f(2n) =2f(n)+pB, n>1

fen+1)=2f(n)+vy, n>1

Observethatd =f for a=1,=-1,y =1
NEXT STEP: Find a Closed Formula for f



From RF to CF

Problem: Given RF

f(1) =«
f(2n) = 2f(n) + B
f(2n+1) = 2f(n) +
Find a CF for it
Step 1 Find few initial values for f
Step2 Find (guess) a CF formula from Step 1
Step 3  Prove correctness of the CF formula, i.e. prove that
RF = CF
This step is s usually done by mathematical Induction over the
domain of the function f



From RF to CF

Step 1
Evaluate few initial values for

f(1) =«

f(2n) = 2f(n

) +8
f(2n+1) = 2f(n) +



Repertoire Method

n=2Kk+1 0<l<2k

20 1 @ =0 f1) = a

2! 2| 2a+1B+0y 1=2"-1-0,1=0| f2)=2f(1)+B8 1=0
2141 3| 2a+0B+1y 0=2"—1—-1, =1 f@)=2f(1)+y I=1
22 4 4a0+338 3=22-1-0 f(4)=2f2)+B 1=0
224+1 5 4a+28+y 2=22—-1-1 f5)=2f(2) +y =1
224+2 6 4da+fB+2y 2= f(6)=2f(3) +8 =2
2243 7 4q+3y 3=1 f(7)=2f3)+y 1=3
23 8 8a+78 F8)=2f(4)+8 1=0
2241 9 8 a + 68 + 3y f(9)=2f4) +y |=1




Observations

n=2Kk4+1 0<l<2k

a coefficient is 2K

B coefficient for the groups decreases by 1 down to 0
B coefficient is 2K — 1 — |

v coefficient increases by 1 up from 0

v coefficient is |



General Form of CF
Given a RC function

f(1) =a, f(2n) =2f(n)+B. f(2n+1)=2f(n)+y

A general form of CF is

f(n) = aA(n) 4+ BB(n) + yC(n)

for certain A(n),B(n),C(n) to be determined
Our quess is:



General form of CF

RF: f(1)=a, f(2n)=2f(n)+pB, f(2n+1)=2f(n)+vy
CF: f(n) = aA(n)+BB(n)+yC(n)

We prove by mathematical Induction over k that when
n=241 0<I<2ourguessis true, i.e.

An)y=2% B(n)=2k—1-1, C(n)=1I

STEP 1: We consider acase: @« = 1,8 =y = 0 and we get
RF: f(1)=1, f(2n)=2f(n), f(2n+1)=2f(n) and
CF: f(n)=A(n)



Fact 1

We use f(n) = A(n) and re-write RF in terms of A(n) as
follows

AR: A(1)=1, A(2n) =2A(n), A(2n+1)=2A(n)
Fact1 Closed formula CA for AR is:

CAR: A(n)=A(k+1)=2K o0<i<2k
Proof by induction on k

Base Case;: k=0, i.e n=2°+/ 0< /<1, and we have
that n =1 and evaluate

AR: A(1)=1, CAR: A(1)=2%=1,and hence AR = CAR



Fact 1

Inductive Assumption:

AR =A@k 4 ) =2kT 0 << 2k
Inductive Thesis:

ARk +N=ARk+ 1) =2k o0< <2k

Two cases: n € even, n < odd

Ci1: neceven

n:=2n, and we have 2K 4+ | = 2niff | € even



Fact 1

We evaluate n:
2n=2kK4+1, n=2k"141
We use n in the inductive step

Observe that the correctness of using  follows from that
fact that | € even so % € N and it can be proved formally like
on the previous slides

Proof

A(2n) __reprn A(2k 4 I) _evain 2A(2k*1 4 é) _ind

2% 2k=1 = 2k



Fact 1

C2: nec odd

n:=2n+1, and we have 2 + | = 2n + 1 iff | € odd

We evaluate n:

2n+1=2Kk4+, n=2k14+ 11

We use n in the inductive step. Observe that the correctness
of using " follows from that fact that / € odd so 5 € N
Proof:

A(2n + 1) __reprn A(Zk 4 /) __evain 2A(2k—1 4 1—71) _ind

2 5 2k=1 = 2k

It ends the proof of the Fact 1: A(n) = 2«



Repertoire Method

GENERAL PROBLEM

We have a certain recursive formula

RF: f(1) =a, f(2n)=2f(n)+p, f(2n+1)=2f(n)+vy
that depends on some parameters, in our case «, 3,7, i.e.
RF = RF(n,a,B,y)

We want to find a formula CF of the form

CF(n) = A(n)a + B(n)B + C(n)y such that CF = RF
GOAL: find A(n), B(n), C(n) - we have 3 unknowns so we
need 3 equations to find a solution and then we have to
prove

RF(n,a,B,v) = A(n)a+ B(n)B+ C(n)y forallne N

In general, when there are k parameters we need to develop
and solve k equations, and then to prove

RF(n,a1.....ax) = A1(n)ay + ... + Ax(n)ay foralln € N



Repertoire Method

METHOD: we use a repertoire of special functions

R1 = R¢(n), R2 = R2(n), R3 = R3(n) and form and solve a
system of 6 equations:

(1) RF(n,a,B,y) = Ri(n), foralne N, i=1,2,3

(2) CF(n) = A(n)a + B(n)B + C(n)y = Ri(n), for all
neN,i=1,2,3

For each repertoire function R; we evaluate corresponding
a,B,y from (1), for i=1,2,3

For each repertoire function R;, we put corresponding
solutions «, 3,y from (1) in (2) to get 3 equations on A(n),
B(n), C(n) and solve them on A(n), B(n), C(n)

This also proves that RF(n) = CF(n), foralln € N,i.e RF
=CF



Repertoire Function Ry

RF: f(1)=a, f(2n)=2f(n)+pB, f(2n+1)=2f(n)+y
CF: f(n)=A(n)a+ B(n)B+ C(n)y

We have already proved in Step 1 the formula for A(n), so we
need only to consider 2 repertoire functions

Step 2: Consider as the first repertoire function R given
by a formula
Ri(n) =1 forall neN

By (1) f(n) = Ry(n) =1 forall n € Ni.e. we have the
following condition
C1: f(n)=1 forallne N

By RF we have that f(1) = @, and by C1 : f(1) = 1, and hence
a=1



Repertoire Function Ry

RF: f(1) =«, f(2n)=2f(n)+pB, f(2n+1)=2f(n)+vy
We still consider as the first repertoire function given by the

formula
Ri(n)=1 forall neN

By (1) f(n) = Ry(n) =1 forall n € Ni.e. we have the

following condition

Ci1: f(n)=1 forallne N

By RF: f(2n) = 2f(n) + 8 and by C1 we get equation:

1=2+4p3, andhence p= —1

By RF: f(2n+ 1) = 2f(n) +y and by C1 we get equation:
1=24+vy andhence y= —1

Solution from first repertoire function Ry is

a=1 pf=-1  y=-1



Repertoire Function Ry

Now we use the first repertoire function Ry to the closed
formula

CF: f(n)=A(n)a+ B(n)B+ C(n)y

By (2) we get

f(n)=Ry=1,forallne N

We input parameters a =1, 8= —1, vy = —1 evaluated by
RF and Rq in

(2) A(n)a+ B(n)B+ C(n)y =Rq¢(n) =1),forallne N
and we get the first equation

A(n)—B(n)—C(n) =1, forall ne N

By the Repertoire Method we have that CF = RF iff the
following holds

FACT 2

A(n)-B(n)-C(n)=1, forall ne N



Repertoire Function Ry

Step 3:
RF:f(1) =, f(2n)=2f(n)+B f(2n+1)=2f(n)+7y
CF: f(n)=A(n)a+ B(n)B+ C(n)y
Consider a second repertoire function Rz given by the
formula
R2(n)=n forall neN
By (1) f(n) = R2(n) = n i.e. we have the following condition
C2: f(n)=n,forall ne N

By RF we have that f(1) = @, and by C2 : f(1) = 1, and hence
a=1



Repertoire Function Ro

RF:f(1) = a, f(2n)=2f(n)+B f(2n+1)=2f(n) +vy
We still consider as the second repertoire function given by
the formula
R2(n)=n forall neN
By (1) f(n) = R2(n) = n i.e. we have the following condition
C2: f(n)=n,forall ne N
By RF: f(2n) = 2f(n) + 8 and by C2 we get
2n=2n+p, andhence =0
By RF: f(2n+ 1) = 2f(n) +y and by C2 we get
2n+1=2n+vy andhence y =1
Solution from second repertoire function Ry is
a=1, B=0, vy=1



Repertoire Method

Now we use the second repertoire function Ra to the closed
formula

CF: f(n)=A(n)a+ B(n)B+ C(n)y

By (2) we get

f(n)=Ra=n,forallne N

We input parameters « =1, =0, y =1 evaluated by RF
and Rz in

(2) A(n)a + B(n)B+ C(n)y = Rz(n) =n, forallne N

and get the second equation

A(n) +C(n)=n, forall ne N

By the Repertoire Method we have that CF = RF iff the
following holds

FACT 3

A(n) +C(n)=n, forall ne N

Remember: we have proved that A(n) = 2%, for n=2% + |
so we do not need any more repertoire functions (and
equations)



CF for Generalized Josephus

(
E1l A(n)=2 n=2k4+] 0</<2k
(n)-B(n)-C(n)=1, forall ne N
E3 A(n)+C(n)=n, forall ne N
E3 and E1 give us that 2¢ + C(n) = 2% + |, and so
C Cn)=I
From the above and E2 we get 2 — | — B(n) =1 and so
B Bn)=2K-1-|



CF for Generalized Josephus

Observe that A, B, C are exact formulas we have guessed
and the following holds

Fact 4

CF: f(n)=2ka+ (2K —1 - B+ Iy for
n=2k4+1 0< <2k

is the closed formula for
RF:f(1) =@, f(2n)=2f(n)+B f(2n+1)=2f(n) +y

This also ends the proof that Generalized Josephus CF exists
and RF = CF



Short CF Solution

Step 2:
RF:f(1) = @, f(2n)=2f(n) +B f(2n+ 1) =2f(n) +y
Here is a short solution as presented in our Book

You can use it for your problems solutions (also on the tests)-
when you really understand what are you doing.

Consider a constant function f(n) =1, forall n € N (thisis
our first repertoire function Ry)

We evaluate now «, 3, y for it (if possible)
Solution 1=2+p8, 1=2+v, andso

a=1, f=-1, y= -1



Short CF Solution

CF: f(n)=A(n)a+ B(n)B+ C(n)y

We evaluate CF for a, 8,7y being solutions for RF and f(n) = 1
and get

CF =RF iff the following holds

Fact 2

A(n)—B(n)—C(n)=1 forall neN



Short CF Solution

Step 3

RF:f(1) = @, f(2n)=2f(n)+pB f(2n+1)=2f(n)+y
Consider a constant function f(n)=n, forall n& N
We evaluate now «, 3, y for it (if possible)
2n=2n+pB, 2n+1=2n+vy and get

Solution: ao=1,4=0,y =1



Short CF Solution

CF: f(n)=A(n)a+ B(n)B+ C(n)y
Now we evaluate CF for the solutions
a=1,=0,y=1 and f(n)=n

and we get

Fact 3

A(n)+C(n)=n, forall ne N



Final Solution for CF

Step 4

We put together Facts 1, 2, 3 to evaluate formulas for A(n),

B(n), C(n)

Fact 3 and Fact 1 give that 2¢ + C(n) = 2% + I, and so
C(n) =1

From the above and Fact 2 we get 2 — | — B(n) =1 and so
B(n)=2K-1 -1



Final Solution for CF

Given RF, CF defined as follows

RF:f(1) = a, f(2n)=2f(n)+B f(2n+1)=2f(n) +y
CF: f(n)=A(n)a+ B(n)B+ C(n)y

The final form of CF is as below

Fact 4

CF: f(n)=2ka+ (2K —1 - 1B+ Iy, where
n=2k4+1 0</<2k

Observe that the Book does not prove that CF = RF



