cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 3

CHAPTER 1

PART FOUR: The Generalized Josephus Problem Repertoir Method

Josephus Problem Generalization

Our function $J: N-\{0\} \longrightarrow N$ is defined as
$J(1)=1, \quad J(2 n)=2 J(n)-1, \quad J(2 n+1)=2 J(n)+1 \quad$ for $n>1$ We generalize it to function $f: N-\{0\} \rightarrow N$ defined as follows

$$
\begin{gathered}
f(1)=\alpha \\
f(2 n)=2 f(n)+\beta, \quad n \geq 1 \\
f(2 n+1)=2 f(n)+\gamma, \quad n \geq 1
\end{gathered}
$$

Observe that $\mathrm{J}=\mathrm{f}$ for $\alpha=1, \beta=-1, \gamma=1$ NEXT STEP: Find a Closed Formula for f

From RF to CF

Problem: Given RF

$$
\begin{gathered}
f(1)=\alpha \\
f(2 n)=2 f(n)+\beta \\
f(2 n+1)=2 f(n)+\gamma
\end{gathered}
$$

Find a CF for it
Step 1 Find few initial values for f
Step 2 Find (guess) a CF formula from Step 1
Step 3 Prove correctness of the CF formula, i.e. prove that RF = CF

This step is s usually done by mathematical Induction over the domain of the function f

From RF to CF

Step 1

Evaluate few initial values for

$$
\begin{gathered}
f(1)=\alpha \\
f(2 n)=2 f(n)+\beta \\
f(2 n+1)=2 f(n)+\gamma
\end{gathered}
$$

Repertoire Method

$$
n=2^{k}+1, \quad 0 \leq 1<2^{k}
$$

2^{0}	1	α	$\mathrm{I}=0$	$\mathrm{f}(1)=\alpha$	
2^{1}	2	$2 \alpha+1 \beta+0 \gamma$	$1=2^{1}-1-0, \mathrm{I}=0$	$\mathrm{f}(2)=2 \mathrm{f}(1)+\beta$	$\mathrm{I}=0$
$2^{1}+1$	3	$2 \alpha+0 \beta+1 \gamma$	$0=2^{1}-1-1, \mathrm{I}=1$	$\mathrm{f}(3)=2 \mathrm{f}(1)+\gamma$	$\mathrm{I}=1$
2^{2}	4	$4 \alpha+3 \beta$	$3=2^{2}-1-0$	$\mathrm{f}(4)=2 \mathrm{f}(2)+\beta$	$\mathrm{I}=0$
$2^{2}+1$	5	$4 \alpha+2 \beta+\gamma$	$2=2^{2}-1-1$	$\mathrm{f}(5)=2 \mathrm{f}(2)+\gamma$	$\mathrm{I}=1$
$2^{2}+2$	6	$4 \alpha+\beta+2 \gamma$	$2=\mathrm{I}$	$\mathrm{f}(6)=2 \mathrm{f}(3)+\beta$	$\mathrm{I}=2$
$2^{2}+3$	7	$4 \alpha+3 \gamma$	$3=\mathrm{I}$	$\mathrm{f}(7)=2 \mathrm{f}(3)+\gamma$	$\mathrm{I}=3$
2^{3}	8	$8 \alpha+7 \beta$	$\mathrm{~F}(8)=2 \mathrm{f}(4)+\beta$	$\mathrm{I}=0$	
$2^{3}+1$	9	$8 \alpha+6 \beta+3 \gamma$	$\mathrm{f}(9)=2 \mathrm{f}(4)+\gamma$	$\mathrm{I}=1$	

Observations

$n=2^{k}+1, \quad 0 \leq 1<2^{k}$
α coefficient is 2^{k}
β coefficient for the groups decreases by 1 down to 0 β coefficient is $2^{k}-1-1$
γ coefficient increases by 1 up from 0
γ coefficient is ।

General Form of CF

Given a RC function

$$
f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta, \quad f(2 n+1)=2 f(n)+\gamma
$$

A general form of CF is

$$
f(n)=\alpha A(n)+\beta B(n)+\gamma C(n)
$$

for certain $A(n), B(n), C(n)$ to be determined Our quess is:

$$
A(n)=2^{k}, \quad B(n)=2^{k}-1-1, \quad C(n)=1
$$

for

$$
n=2^{k}+1
$$

General form of CF

RF: $\quad f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta, \quad f(2 n+1)=2 f(n)+\gamma$
CF: $\quad f(n)=\alpha A(n)+\beta B(n)+\gamma C(n)$
We prove by mathematical Induction over k that when $n=2^{k}+I, \quad 0 \leq I<2^{k}$ our guess is true, i.e.

$$
A(n)=2^{k}, \quad B(n)=2^{k}-1-I, \quad C(n)=1
$$

STEP 1: We consider a case: $\alpha=1, \beta=\gamma=0$ and we get $R F: f(1)=1, \quad f(2 n)=2 f(n), \quad f(2 n+1)=2 f(n)$ and CF: $f(n)=A(n)$

Fact 1

We use $f(n)=A(n)$ and re-write RF in terms of $A(n)$ as follows
$A R: \quad A(1)=1, \quad A(2 n)=2 A(n), \quad A(2 n+1)=2 A(n)$
Fact 1 Closed formula CA for AR is:

$$
\text { CAR: } \quad A(n)=A\left(2^{k}+l\right)=2^{k}, \quad 0 \leq 1<2^{k}
$$

Proof by induction on k
Base Case; $k=0$, i.e $n=2^{0}+I, \quad 0 \leq I<1$, and we have that $\mathrm{n}=1$ and evaluate
AR: $A(1)=1, \quad$ CAR: $A(1)=2^{0}=1$, and hence $A R=C A R$

Fact 1

Inductive Assumption:

$$
A\left(2^{k-1}+I\right)=A\left(2^{k-1}+I\right)=2^{k-1}, \quad 0 \leq I<2^{k-1}
$$

Inductive Thesis:
$A\left(2^{k}+I\right)=A\left(2^{k}+I\right)=2^{k}, \quad 0 \leq I<2^{k}$
Two cases: $n \in$ even, $n \in$ odd
C1: $n \in$ even
$\mathrm{n}:=2 \mathrm{n}$, and we have $2^{k}+I=2 n$ iff $I \in$ even

Fact 1

We evaluate n :

$$
2 n=2^{k}+1, \quad n=2^{k-1}+\frac{1}{2}
$$

We use n in the inductive step
Observe that the correctness of using $\frac{1}{2}$ follows from that fact that $I \in$ even so $\frac{1}{2} \in N$ and it can be proved formally like on the previous slides

Proof

$$
\begin{aligned}
& A(2 n)=\text { reprn } A\left(2^{k}+l\right)==^{\text {evaln }} 2 A\left(2^{k-1}+\frac{l}{2}\right)=\text { ind } \\
& 2 * 2^{k-1}=2^{k}
\end{aligned}
$$

Fact 1

C2: $n \in$ odd
$\mathrm{n}:=2 \mathrm{n}+1$, and we have $2^{k}+I=2 n+1 \mathrm{iff} I \in$ odd
We evaluate n :
$2 n+1=2^{k}+I, \quad n=2^{k-1}+\frac{I-1}{2}$
We use n in the inductive step. Observe that the correctness of using $\frac{l-1}{2}$ follows from that fact that $I \in$ odd so $\frac{l-1}{2} \in N$ Proof:
$A(2 n+1)={ }^{\text {reprn }} A\left(2^{k}+I\right)={ }^{\text {evaln }} 2 A\left(2^{k-1}+\frac{l-1}{2}\right)=$ ind $^{\text {ind }}$
$2 * 2^{k-1}=2^{k}$
It ends the proof of the Fact 1: $\quad A(n)=2^{k}$

Repertoire Method

GENERAL PROBLEM

We have a certain recursive formula
RF: $f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta, \quad f(2 n+1)=2 f(n)+\gamma$ that depends on some parameters, in our case α, β, γ, i.e.
$R F=R F(n, \alpha, \beta, \gamma)$
We want to find a formula CF of the form
$C F(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$ such that CF $=R F$
GOAL: find $A(n), B(n), C(n)$ - we have 3 unknowns so we need 3 equations to find a solution and then we have to prove
$\operatorname{RF}(n, \alpha, \beta, \gamma)=A(n) \alpha+B(n) \beta+C(n) \gamma$ for all $n \in N$
In general, when there are k parameters we need to develop and solve k equations, and then to prove $R F\left(n, \alpha_{1} \ldots \ldots \alpha_{k}\right)=A_{1}(n) \alpha_{1}+\ldots+A_{k}(n) \alpha_{k}$ for all $n \in N$

Repertoire Method

METHOD: we use a repertoire of special functions
$\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{1}}(\mathbf{n}), \mathbf{R}_{\mathbf{2}}=\mathbf{R}_{\mathbf{2}}(\mathbf{n}), \mathbf{R}_{\mathbf{3}}=\mathbf{R}_{\mathbf{3}}(\mathbf{n})$ and form and solve a system of 6 equations:
(1) $R F(n, \alpha, \beta, \gamma)=\mathbf{R}_{\mathbf{i}}(\mathbf{n})$, for all $n \in N, i=1,2,3$
(2) $C F(n)=A(n) \alpha+B(n) \beta+C(n) \gamma=\mathbf{R}_{\mathbf{i}}(\mathbf{n})$, for all
$n \in N, i=1,2,3$
For each repertoire function $\mathbf{R}_{\mathbf{i}}$ we evaluate corresponding α, β, γ from (1), for $i=1,2,3$
For each repertoire function $\mathbf{R}_{\mathbf{i}}$, we put corresponding solutions α, β, γ from (1) in (2) to get 3 equations on $\mathrm{A}(\mathrm{n})$, $B(n), C(n)$ and solve them on $A(n), B(n), C(n)$
This also proves that $R F(n)=C F(n)$, for all $n \in N$, i.e RF = CF

Repertoire Function R_{1}

RF: $\quad f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta, \quad f(2 n+1)=2 f(n)+\gamma$
CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
We have already proved in Step 1 the formula for $A(n)$, so we need only to consider 2 repertoire functions
Step 2: Consider as the first repertoire function \mathbf{R}_{1} given by a formula

$$
\mathbf{R}_{\mathbf{1}}(\mathbf{n})=\mathbf{1} \quad \text { for all } \quad n \in N
$$

By (1) $f(n)=\mathbf{R}_{\mathbf{1}}(\mathbf{n})=\mathbf{1}$ for all $n \in N$ i.e. we have the following condition
C1: $f(n)=1$ for all $n \in N$
By RF we have that $f(1)=\alpha$, and by $\mathbf{C 1}: \mathfrak{f}(1)=1$, and hence $\alpha=1$

Repertoire Function R_{1}

RF: $\quad f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta, \quad f(2 n+1)=2 f(n)+\gamma$
We still consider as the first repertoire function given by the formula

$$
\mathbf{R}_{\mathbf{1}}(\mathbf{n})=\mathbf{1} \quad \text { for all } \quad n \in N
$$

By (1) $f(n)=\mathbf{R}_{\mathbf{1}}(\mathbf{n})=\mathbf{1}$ for all $n \in N$ i.e. we have the following condition
C1: $f(n)=1$ for all $n \in N$
By RF: $f(2 n)=2 f(n)+\beta$ and by C1 we get equation:
$1=2+\beta$, and hence $\beta=-1$
By RF: $f(2 n+1)=2 f(n)+\gamma$ and by C1 we get equation:
$1=2+\gamma$ and hence $\gamma=-1$
Solution from first repertoire function $\mathbf{R}_{\mathbf{1}}$ is

$$
\alpha=1 \quad \beta=-1 \quad \gamma=-1
$$

Repertoire Function R_{1}

Now we use the first repertoire function $\mathbf{R}_{\mathbf{1}}$ to the closed formula
CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
By (2) we get
$f(n)=\mathbf{R}_{\mathbf{1}}=\mathbf{1}$, for all $n \in N$
We input parameters $\alpha=1, \beta=-1, \gamma=-1$ evaluated by RF and $\mathbf{R}_{\mathbf{1}}$ in
(2) $\left.A(n) \alpha+B(n) \beta+C(n) \gamma=\mathbf{R}_{\mathbf{1}}(\mathbf{n})=\mathbf{1}\right)$, for all $n \in N$ and we get the first equation
$A(n)-B(n)-C(n)=1$, for all $n \in N$
By the Repertoire Method we have that CF = RF iff the following holds

FACT 2

$A(n)-B(n)-C(n)=1, \quad$ for all $n \in N$

Repertoire Function R_{2}

Step 3:

RF: $\mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$
CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
Consider a second repertoire function $\mathbf{R}_{\mathbf{2}}$ given by the formula

$$
\mathbf{R}_{\mathbf{2}}(\mathbf{n})=\mathbf{n} \quad \text { for all } \quad n \in N
$$

By (1) $f(n)=\mathbf{R}_{\mathbf{2}}(\mathbf{n})=\mathbf{n}$ i.e. we have the following condition
C2: $f(n)=n$, for all $n \in N$
By RF we have that $f(1)=\alpha$, and by $\mathbf{C 2}: f(1)=1$, and hence $\alpha=1$

Repertoire Function R_{2}

RF: $\mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$
We still consider as the second repertoire function given by the formula

$$
\mathbf{R}_{\mathbf{2}}(\mathbf{n})=\mathbf{n} \quad \text { for all } \quad n \in N
$$

By (1) $f(n)=\mathbf{R}_{\mathbf{2}}(\mathbf{n})=\mathbf{n}$ i.e. we have the following condition
C2: $f(n)=n$, for all $n \in N$
By RF: $f(2 n)=2 f(n)+\beta$ and by $\mathbf{C 2}$ we get
$2 n=2 n+\beta$, and hence $\beta=0$
By RF: $f(2 n+1)=2 f(n)+\gamma$ and by C2 we get
$2 n+1=2 n+\gamma$ and hence $\gamma=1$
Solution from second repertoire function $\mathbf{R}_{\mathbf{2}}$ is
$\alpha=1, \quad \beta=0, \quad \gamma=1$

Repertoire Method

Now we use the second repertoire function $\mathbf{R}_{\mathbf{2}}$ to the closed formula
CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
By (2) we get
$f(n)=\mathbf{R}_{\mathbf{2}}=\mathbf{n}$, for all $n \in N$
We input parameters $\alpha=1, \beta=0, \gamma=1$ evaluated by RF and $\mathbf{R}_{\mathbf{2}}$ in
(2) $A(n) \alpha+B(n) \beta+C(n) \gamma=\mathbf{R}_{\mathbf{2}}(\mathbf{n})=\mathbf{n}$, for all $n \in N$
and get the second equation
$\mathrm{A}(\mathrm{n})+\mathrm{C}(\mathrm{n})=\mathrm{n}$, for all $n \in N$
By the Repertoire Method we have that CF = RF iff the following holds
FACT 3
$\mathrm{A}(\mathrm{n})+\mathrm{C}(\mathrm{n})=\mathrm{n}, \quad$ for all $n \in N$
Remember: we have proved that $A(n)=2^{k}$, for $n=2^{k}+1$
so we do not need any more repertoire functions (and equations)

CF for Generalized Josephus

Step $4 A(n), B(n)$ and $C(n)$ from the following equations
E1 $A(n)=2^{k}, \quad n=2^{k}+I, \quad 0 \leq 1<2^{k}$
E2 $A(n)-B(n)-C(n)=1$, for all $n \in N$
E3 $\quad \mathrm{A}(\mathrm{n})+\mathrm{C}(\mathrm{n})=\mathrm{n}$, for all $n \in N$
E3 and E1 give us that $2^{k}+C(n)=2^{k}+I$, and so
C $\quad \mathrm{C}(\mathrm{n})=1$
From the above and E2 we get $2^{k}-I-B(n)=1$ and so
B $\quad B(n)=2^{k}-1-$ I

CF for Generalized Josephus

Observe that A, B, C are exact formulas we have guessed and the following holds

Fact 4

CF: $f(n)=2^{k} \alpha+\left(2^{k}-1-l\right) \beta+l \gamma$ for $n=2^{k}+l, \quad 0 \leq 1<2^{k}$
is the closed formula for
$\mathrm{RF}: \mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$

This also ends the proof that Generalized Josephus CF exists and $R F=C F$

Short CF Solution

Step 2:

RF: $\mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$
Here is a short solution as presented in our Book
You can use it for your problems solutions (also on the tests)when you really understand what are you doing.
Consider a constant function $f(n)=1$, for all $n \in N$ (this is our first repertoire function R_{1})
We evaluate now α, β, γ for it (if possible)
Solution $1=2+\beta, 1=2+\gamma$, and so

$$
\alpha=1, \quad \beta=-1, \quad \gamma=-1
$$

Short CF Solution

CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
We evaluate CF for α, β, γ being solutions for RF and $\mathrm{f}(\mathrm{n})=1$ and get
CF = RF iff the following holds
Fact 2

$$
A(n)-B(n)-C(n)=1 \quad \text { for all } \quad n \in N
$$

Short CF Solution

Step 3

RF: $\mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$
Consider a constant function $f(n)=n$, for all $n \in N$
We evaluate now α, β, γ for it (if possible)
$2 \mathrm{n}=2 \mathrm{n}+\beta, \quad 2 \mathrm{n}+1=2 \mathrm{n}+\gamma \quad$ and get
Solution: $\alpha=1, \beta=0, \gamma=1$

Short CF Solution

CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
Now we evaluate CF for the solutions
$\alpha=1, \beta=0, \gamma=1$ and $\mathrm{f}(\mathrm{n})=\mathrm{n}$
and we get
Fact 3
$\mathrm{A}(\mathrm{n})+\mathrm{C}(\mathrm{n})=\mathrm{n}, \quad$ for all $n \in N$

Final Solution for CF

Step 4

We put together Facts 1, 2, 3 to evaluate formulas for $A(n)$,
$B(n), C(n)$
Fact 3 and Fact 1 give that $2^{k}+C(n)=2^{k}+I$, and so

$$
C(n)=1
$$

From the above and Fact 2 we get $2^{k}-I-B(n)=1$ and so

$$
B(n)=2^{k}-1-I
$$

Final Solution for CF

Given RF, CF defined as follows
$R \mathrm{~F}: \mathrm{f}(1)=\alpha, \quad \mathrm{f}(2 \mathrm{n})=2 \mathrm{f}(\mathrm{n})+\beta \quad \mathrm{f}(2 \mathrm{n}+1)=2 \mathrm{f}(\mathrm{n})+\gamma$
CF: $\quad f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma$
The final form of CF is as below
Fact 4
CF: $\quad f(n)=2^{k} \alpha+\left(2^{k}-1-l\right) \beta+l \gamma$, where $n=2^{k}+l, \quad 0 \leq 1<2^{k}$

Observe that the Book does not prove that CF = RF

