cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 3

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

CHAPTER 1 PART FOUR: The Generalized Josephus Problem Repertoir Method

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Josephus Problem Generalization

Our function $J : N - \{0\} \longrightarrow N$ is defined as J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1We generalize it to function $f : N - \{0\} \longrightarrow N$ defined as follows

 $f(1) = \alpha$

 $f(2n) = 2f(n) + \beta, \quad n \ge 1$

 $f(2n+1)=2f(n)+\gamma, \quad n\geq 1$

Observe that J = f for $\alpha = 1, \beta = -1, \gamma = 1$ NEXT STEP: Find a Closed Formula for f

From RF to CF

Problem: Given RF

 $f(1) = \alpha$ $f(2n) = 2f(n) + \beta$ $f(2n+1) = 2f(n) + \gamma$

Find a CF for it

- Step 1 Find few initial values for f
- Step 2 Find (guess) a CF formula from Step 1

Step 3 Prove correctness of the CF formula, i.e. prove that RF = CF

This step is s usually done by mathematical Induction over the domain of the function f

From **RF** to CF

Step 1 Evaluate few initial values for

 $f(1) = \alpha$ $f(2n) = 2f(n) + \beta$ $f(2n+1) = 2f(n) + \gamma$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Repertoire Method

 $n = 2^k + l, \quad 0 \le l < 2^k$

2 ⁰	1	α I = 0	$f(1) = \alpha$	
2 ¹	2	$2 \alpha + 1 \beta + 0 \gamma$ $1 = 2^1 - 1 - 0, I = 0$	$f(2)=2f(1)+\beta$	l = 0
2 ¹ + 1	3	$2 \alpha + 0 \beta + 1 \gamma$ $0 = 2^1 - 1 - 1$, $l = 1$	$f(3)=2f(1)+\gamma$	l = 1
2 ²	4	$4 \alpha + 3\beta$ $3 = 2^2 - 1 - 0$	$f(4)=2f(2)+\beta$	l = 0
$2^{2} + 1$	5	$4 \alpha + 2\beta + \gamma$ $2 = 2^2 - 1 - 1$	$f(5)=2f(2)+\gamma$	l = 1
$2^2 + 2$	6	$4 \alpha + \beta + 2\gamma \qquad \qquad 2 = 1$	$f(6)=2f(3)+\beta$	l = 2
$2^{2} + 3$	7	$4 \alpha + 3\gamma \qquad \qquad 3 = 1$	$f(7)=2f(3)+\gamma$	I = 3
2 ³	8	8 <i>α</i> + 7 <i>β</i>	$F(8) = 2f(4) + \beta$	l = 0
2 ³ + 1	9	8 α + 6 β + 3 γ	$f(9)=2f(4)+\gamma$	l = 1

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Observations

 $n=2^k+l, \quad 0\leq l<2^k$

- α coefficient is 2^k
- β coefficient for the groups **decreases** by 1 **down to** 0

- β coefficient is $2^k 1 I$
- γ coefficient increases by 1 up from 0

γ coefficient is I

General Form of CF

Given a RC function

 $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n + 1) = 2f(n) + \gamma$

A general form of CF is

$$f(n) = \alpha A(n) + \beta B(n) + \gamma C(n)$$

for certain A(n), B(n), C(n) to be determined Our **quess** is:

$$A(n) = 2^k$$
, $B(n) = 2^k - 1 - I$, $C(n) = I$

for $n = 2^k + l$

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

General form of CF

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n+1) = 2f(n) + \gamma$ CF: $f(n) = \alpha A(n) + \beta B(n) + \gamma C(n)$

We **prove** by mathematical Induction over **k** that when $n = 2^k + l$, $0 \le l < 2^k$ our **guess** is true, i.e.

$$A(n) = 2^k$$
, $B(n) = 2^k - 1 - l$, $C(n) = l$

STEP 1: We consider a case: $\alpha = 1, \beta = \gamma = 0$ and we get RF: f(1) = 1, f(2n) = 2f(n), f(2n+1) = 2f(n) and CF: f(n) = A(n)

We use f(n) = A(n) and re-write RF in terms of A(n) as follows

AR: A(1) = 1, A(2n) = 2A(n), A(2n+1) = 2A(n)

Fact 1 Closed formula CA for AR is:

CAR:
$$A(n) = A(2^{k} + l) = 2^{k}, \quad 0 \le l < 2^{k}$$

Proof by induction on k

Base Case; k=0, i.e $n=2^0 + I$, $0 \le I < 1$, and we have that n = 1 and evaluate

AR: A(1) = 1, CAR: $A(1) = 2^0 = 1$, and hence AR = CAR

Inductive Assumption:

 $A(2^{k-1}+I) = A(2^{k-1}+I) = 2^{k-1}, \quad 0 \le I < 2^{k-1}$

Inductive Thesis:

$$A(2^{k} + I) = A(2^{k} + I) = 2^{k}, \quad 0 \le I < 2^{k}$$

Two cases: $n \in even$, $n \in odd$

C1: *n* ∈ *even*

n := 2n, and we have $2^k + l = 2n$ iff $l \in even$

We evaluate n:

 $2n = 2^k + l$, $n = 2^{k-1} + \frac{l}{2}$

We use n in the inductive step

Observe that the **correctness** of using $\frac{l}{2}$ follows from that fact that $l \in even$ so $\frac{l}{2} \in N$ and it can be proved formally like on the previous slides

- コン・1日・1日・1日・1日・1日・

Proof

$$A(2n) = {}^{reprn} A(2^{k} + I) = {}^{evaln} 2A(2^{k-1} + \frac{I}{2}) = {}^{ind} 2 * 2^{k-1} = 2^{k}$$

C2: *n* ∈ *odd*

n:= 2n+1, and we have $2^k + l = 2n + 1$ iff $l \in odd$ We evaluate n:

 $2n + 1 = 2^k + l$, $n = 2^{k-1} + \frac{l-1}{2}$

We use **n** in the inductive step. Observe that the correctness of using $\frac{l-1}{2}$ follows from that fact that $l \in odd$ so $\frac{l-1}{2} \in N$ Proof:

ション 小田 マイビット ビー シックション

 $\begin{array}{l} A(2n+1) = {}^{reprn} A(2^{k}+l) = {}^{evaln} 2A(2^{k-1} + \frac{l-1}{2}) = {}^{ind} \\ 2 * 2^{k-1} = 2^{k} \end{array}$

It ends the proof of the **Fact 1**: $A(n) = 2^{k}$

Repertoire Method

GENERAL PROBLEM

We have a certain recursive formula

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n + 1) = 2f(n) + \gamma$ that depends on some parameters, in our case α, β, γ , i.e. $RF = RF(n, \alpha, \beta, \gamma)$

We want to find a formula CF of the form

 $CF(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$ such that CF = RF

GOAL: find A(n), B(n), C(n) - we have **3 unknowns** so we need **3 equations** to find a solution and then we have to **prove**

 $RF(n, \alpha, \beta, \gamma) = A(n)\alpha + B(n)\beta + C(n)\gamma$ for all $n \in N$

In general, when there are ${\bf k}$ parameters we need to develop and ${\bf solve}\ {\bf k}$ equations, and then to ${\bf prove}$

 $RF(n,\alpha_1,\ldots,\alpha_k) = A_1(n)\alpha_1 + \ldots + A_k(n)\alpha_k \text{ for all } n \in N$

Repertoire Method

METHOD: we use a **repertoire** of special functions $R_1 = R_1(n), R_2 = R_2(n), R_3 = R_3(n)$ and form and solve a system of 6 equations:

(1) $RF(n, \alpha, \beta, \gamma) = \mathbf{R}_{i}(\mathbf{n})$, for all $n \in N$, i = 1, 2, 3(2) $CF(n) = A(n)\alpha + B(n)\beta + C(n)\gamma = \mathbf{R}_{i}(\mathbf{n})$, for all $n \in N$, i = 1, 2, 3

For each **repertoire** function \mathbf{R}_i we evaluate corresponding α, β, γ from (1), for i = 1, 2, 3

For each **repertoire** function \mathbf{R}_{i} , we put corresponding **solutions** α , β , γ from (1) in (2) to get **3 equations** on A(n), B(n), C(n) and **solve** them on A(n), B(n), C(n)

This also **proves** that RF(n) = CF(n), for all $n \in N$, i.e RF = CF

Repertoire Function R₁

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n+1) = 2f(n) + \gamma$ CF: $f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

We have already proved in **Step 1** the formula for A(n), so we need only to consider **2 repertoire functions**

Step 2: Consider as the first repertoire function R_1 given by a formula

$$\mathbf{R}_1(\mathbf{n}) = \mathbf{1}$$
 for all $n \in N$

By (1) $f(n) = \mathbf{R}_1(\mathbf{n}) = \mathbf{1}$ for all $n \in N$ i.e. we have the following condition

C1: f(n) = 1 for all $n \in N$

By RF we have that $f(1) = \alpha$, and by C1 : f(1) = 1, and hence $\alpha = 1$

(日本本語を本書を本書を、日本の(へ)

Repertoire Function R₁

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n + 1) = 2f(n) + \gamma$ We still consider as the first **repertoire** function given by the formula

$$\mathbf{R}_1(\mathbf{n}) = \mathbf{1}$$
 for all $n \in N$

By (1) $f(n) = \mathbf{R}_1(\mathbf{n}) = \mathbf{1}$ for all $n \in N$ i.e. we have the following condition

C1: f(n) = 1 for all $n \in N$

By RF: $f(2n) = 2f(n) + \beta$ and by C1 we get equation:

 $1 = 2 + \beta$, and hence $\beta = -1$

By RF: $f(2n+1) = 2f(n) + \gamma$ and by C1 we get equation:

 $1 = 2 + \gamma$ and hence $\gamma = -1$

Solution from first repertoire function R_1 is

$$\alpha = 1$$
 $\beta = -1$ $\gamma = -1$

(日本本語を本書を本書を、日本の(へ)

Now we use the first $\ensuremath{\textbf{repertoire}}$ function $\ensuremath{\textbf{R}_1}$ to the closed formula

 $CF: f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

By (2) we get

 $f(n) = \mathbf{R}_1 = \mathbf{1}$, for all $n \in N$

We input parameters $\alpha = 1$, $\beta = -1$, $\gamma = -1$ evaluated by RF and **R**₁ in

(2) $A(n)\alpha + B(n)\beta + C(n)\gamma = \mathbf{R}_1(\mathbf{n}) = \mathbf{1}$, for all $n \in N$

and we get the first equation

A(n) - B(n) - C(n) = 1, for all $n \in N$

By the Repertoire Method we have that CF = RF iff the following holds

FACT 2

A(n) - B(n) - C(n) = 1, for all $n \in N$

Step 3:

 $\begin{aligned} \mathsf{RF:} \ &f(1) = \alpha, \ \ f(2n) = 2f(n) + \beta \quad f(2n+1) = 2f(n) + \gamma \\ CF: \ \ &f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \end{aligned}$

Consider a second **repertoire** function \mathbf{R}_2 given by the formula

$$\mathbf{R_2}(\mathbf{n}) = \mathbf{n}$$
 for all $n \in N$

By (1) $f(n) = \mathbf{R}_2(\mathbf{n}) = \mathbf{n}$ i.e. we have the following condition **C2**: f(n) = n, for all $n \in N$ By RF we have that $f(1) = \alpha$, and by **C2** : f(1) = 1, and hence $\alpha = 1$

(日本本語を本書を本書を、日本の(へ)

Repertoire Function R₂

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$ $f(2n + 1) = 2f(n) + \gamma$

We still consider as the second **repertoire** function given by the formula

$$\mathbf{R_2}(\mathbf{n}) = \mathbf{n}$$
 for all $n \in N$

By (1) $f(n) = \mathbf{R}_2(\mathbf{n}) = \mathbf{n}$ i.e. we have the following condition **C2**: f(n) = n, for all $n \in N$

By RF: $f(2n) = 2f(n) + \beta$ and by **C2** we get

 $2n = 2n + \beta$, and hence $\beta = 0$

By RF: $f(2n+1) = 2f(n) + \gamma$ and by **C2** we get

 $2n + 1 = 2n + \gamma$ and hence $\gamma = 1$

Solution from second repertoire function R_2 is $\alpha = 1$, $\beta = 0$, $\gamma = 1$

Repertoire Method

Now we use the second $\ensuremath{\textit{repertoire}}$ function $\ensuremath{\textit{R}_2}$ to the closed formula

 $CF: f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

By (2) we get

 $f(n) = \mathbf{R_2} = \mathbf{n}$, for all $n \in N$

We input parameters $\alpha = 1$, $\beta = 0$, $\gamma = 1$ evaluated by RF and **R**₂ in

(2) $A(n)\alpha + B(n)\beta + C(n)\gamma = R_2(n) = n$, for all $n \in N$ and get the second equation

A(n) + C(n) = n, for all $n \in N$

By the Repertoire Method we have that CF = RF iff the following holds

FACT 3

A(n) + C(n) = n, for all $n \in N$

Remember: we have proved that $A(n) = 2^k$, for $n = 2^k + 1$ so we do not need any more repertoire functions (and equations)

CF for Generalized Josephus

Step 4 A(n), B(n) and C(n) from the following equations

- **E1** $A(n) = 2^k, n = 2^k + l, 0 \le l < 2^k$
- **E2** A(n) B(n) C(n) = 1, for all $n \in N$
- **E3** A(n) + C(n) = n, for all $n \in N$
- **E3** and **E1** give us that $2^k + C(n) = 2^k + I$, and so
- **C C**(n) = I

From the above and **E2** we get $2^k - I - B(n) = 1$ and so

(日本本語を本書を本書を、日本の(へ)

B $B(n) = 2^k - 1 - 1$

CF for Generalized Josephus

Observe that A, B, C are exact formulas we have guessed and the following holds

Fact 4

$$CF: f(n) = 2^{k}\alpha + (2^{k} - 1 - l)\beta + l\gamma$$
 for
 $n = 2^{k} + l, \ 0 \le l < 2^{k}$

is the closed formula for

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$ $f(2n + 1) = 2f(n) + \gamma$

This also ends the proof that Generalized Josephus CF exists and RF = CF

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Step 2:

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$ $f(2n + 1) = 2f(n) + \gamma$

Here is a short solution as presented in our Book

You can use it for your problems solutions (also on the tests)when you really understand what are you doing.

Consider a constant function f(n) = 1, for all $n \in N$ (this is our first repertoire function R_1)

We evaluate now α, β, γ for it (if possible)

Solution $1 = 2 + \beta$, $1 = 2 + \gamma$, and so

 $\alpha = 1, \ \beta = -1, \ \gamma = -1$

 $\begin{array}{ll} CF: & f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \\ \text{We evaluate CF for } \alpha, \beta, \gamma & \text{being solutions for RF and } f(n) = 1 \\ \text{and get} \\ \text{CF} = \text{RF} & \text{iff the following holds} \\ \text{Fact 2} \end{array}$

A(n) - B(n) - C(n) = 1 for all $n \in N$

Step 3

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$ $f(2n + 1) = 2f(n) + \gamma$ Consider a constant function f(n) = n, for all $n \in N$ We evaluate now α, β, γ for it (if possible) $2n = 2n + \beta$, $2n + 1 = 2n + \gamma$ and get

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Solution: $\alpha = 1, \beta = 0, \gamma = 1$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

CF: $f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$ Now we evaluate CF for the solutions $\alpha = 1, \beta = 0, \gamma = 1$ and f(n) = nand we get **Fact 3**

A(n) + C(n) = n, for all $n \in N$

Final Solution for CF

Step 4

We put together Facts 1, 2, 3 to evaluate formulas for A(n), B(n), C(n)

Fact 3 and Fact 1 give that $2^k + C(n) = 2^k + I$, and so C(n) = I

From the above and Fact 2 we get $2^k - I - B(n) = 1$ and so $B(n) = 2^k - 1 - I$

Final Solution for CF

Given RF, CF defined as follows RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$ $f(2n + 1) = 2f(n) + \gamma$ *CF*: $f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$ The final form of CF is as below **Fact 4** *CF*: $f(n) = 2^k \alpha + (2^k - 1 - l)\beta + l\gamma$, where $n = 2^k + l$, $0 \le l < 2^k$

Observe that the **Book does not prove** that CF = RF