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CHAPTER 1
PART FOUR: The Generalized Josephus Problem

Repertoir Method



Josephus Problem Generalization

Our function J : N − {0} −→ N is defined as

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

We generalize it to function f : N − {0} −→ N defined as
follows

f(1) = α

f(2n) = 2f(n) + β, n ≥ 1

f(2n + 1) = 2f(n) + γ, n ≥ 1

Observe that J = f for α = 1, β = −1, γ = 1

NEXT STEP: Find a Closed Formula for f



From RF to CF

Problem: Given RF

f(1) = α

f(2n) = 2f(n) + β

f(2n + 1) = 2f(n) + γ

Find a CF for it

Step 1 Find few initial values for f

Step 2 Find (guess) a CF formula from Step 1

Step 3 Prove correctness of the CF formula, i.e. prove that
RF = CF

This step is s usually done by mathematical Induction over the
domain of the function f



From RF to CF

Step 1

Evaluate few initial values for

f(1) = α

f(2n) = 2f(n) + β

f(2n + 1) = 2f(n) + γ



Repertoire Method

n = 2k + l, 0 ≤ l < 2k

20 1 α l = 0 f(1) = α

21 2 2 α + 1 β + 0 γ 1 = 21 − 1− 0, l =0 f(2) = 2f(1) + β l = 0

21 + 1 3 2 α + 0 β + 1γ 0 = 21 − 1− 1, l = 1 f(3) = 2f(1) + γ l = 1

22 4 4 α + 3β 3 = 22 − 1− 0 f(4) = 2f(2) + β l = 0

22 + 1 5 4 α + 2β + γ 2 = 22 − 1− 1 f(5) = 2f(2) + γ l = 1

22 + 2 6 4 α + β + 2γ 2 = l f(6) = 2f(3) + β l = 2

22 + 3 7 4 α + 3γ 3 = l f(7) = 2f(3) + γ l = 3

23 8 8 α + 7β F(8) = 2f(4) + β l = 0

23 + 1 9 8 α + 6β + 3γ f(9) = 2f(4) + γ l = 1



Observations

n = 2k + l, 0 ≤ l < 2k

α coefficient is 2k

β coefficient for the groups decreases by 1 down to 0

β coefficient is 2k − 1− l

γ coefficient increases by 1 up from 0

γ coefficient is l



General Form of CF

Given a RC function

f(1) = α, f(2n) = 2f(n) + β, f(2n + 1) = 2f(n) + γ

A general form of CF is

f(n) = αA(n) + βB(n) + γC(n)

for certain A(n),B(n),C(n) to be determined

Our quess is:

A(n) = 2k , B(n) = 2k − 1− l, C(n) = l

for n = 2k + l



General form of CF

RF: f(1) = α, f(2n) = 2f(n) + β, f(2n + 1) = 2f(n) + γ

CF : f(n) = αA(n) + βB(n) + γC(n)

We prove by mathematical Induction over k that when

n = 2k + l, 0 ≤ l < 2k our guess is true, i.e.

A(n) = 2k , B(n) = 2k − 1− l, C(n) = l

STEP 1: We consider a case: α = 1, β = γ = 0 and we get

RF : f(1) = 1, f(2n) = 2f(n), f(2n + 1) = 2f(n) and
CF : f(n) = A(n)



Fact 1

We use f(n) = A(n) and re-write RF in terms of A(n) as
follows

AR : A(1) = 1, A(2n) = 2A(n), A(2n + 1) = 2A(n)

Fact 1 Closed formula CA for AR is:

CAR : A(n) = A(2k + l) = 2k , 0 ≤ l < 2k

Proof by induction on k

Base Case; k=0, i.e n=20 + l, 0 ≤ l < 1, and we have
that n = 1 and evaluate

AR: A(1) = 1, CAR: A(1) = 20 = 1, and hence AR = CAR



Fact 1

Inductive Assumption:

A(2k−1 + l) = A(2k−1 + l) = 2k−1, 0 ≤ l < 2k−1

Inductive Thesis:

A(2k + l) = A(2k + l) = 2k , 0 ≤ l < 2k

Two cases: n ∈ even, n ∈ odd

C1: n ∈ even

n := 2n, and we have 2k + l = 2n iff l ∈ even



Fact 1

We evaluate n:

2n = 2k + l, n = 2k−1 + l
2

We use n in the inductive step

Observe that the correctness of using l
2 follows from that

fact that l ∈ even so l
2 ∈ N and it can be proved formally like

on the previous slides

Proof

A(2n) =reprn A(2k + l) =evaln 2A(2k−1 + l
2) =

ind

2 ∗ 2k−1 = 2k



Fact 1

C2: n ∈ odd

n:= 2n+1, and we have 2k + l = 2n + 1 iff l ∈ odd

We evaluate n:

2n + 1 = 2k + l, n = 2k−1 + l−1
2

We use n in the inductive step. Observe that the correctness
of using l−1

2 follows from that fact that l ∈ odd so l−1
2 ∈ N

Proof:

A(2n + 1) =reprn A(2k + l) =evaln 2A(2k−1 + l−1
2 ) =ind

2 ∗ 2k−1 = 2k

It ends the proof of the Fact 1: A(n) = 2k



Repertoire Method

GENERAL PROBLEM

We have a certain recursive formula

RF: f(1) = α, f(2n) = 2f(n) + β, f(2n + 1) = 2f(n) + γ

that depends on some parameters, in our case α, β, γ, i.e.

RF = RF(n, α, β, γ)

We want to find a formula CF of the form

CF(n) = A(n)α+ B(n)β+ C(n)γ such that CF = RF

GOAL: find A(n), B(n), C(n) - we have 3 unknowns so we
need 3 equations to find a solution and then we have to
prove

RF(n, α, β, γ) = A(n)α+ B(n)β+ C(n)γ for all n ∈ N

In general, when there are k parameters we need to develop
and solve k equations, and then to prove

RF(n, α1......αk ) = A1(n)α1 + ...+ Ak (n)αk for all n ∈ N



Repertoire Method

METHOD: we use a repertoire of special functions
R1 = R1(n), R2 = R2(n), R3 = R3(n) and form and solve a
system of 6 equations:

(1) RF(n, α, β, γ) = Ri(n), for all n ∈ N, i = 1, 2, 3

(2) CF(n) = A(n)α+ B(n)β+ C(n)γ = Ri(n), for all
n ∈ N, i = 1, 2, 3

For each repertoire function Ri we evaluate corresponding
α, β, γ from (1), for i = 1, 2, 3

For each repertoire function Ri , we put corresponding
solutions α, β, γ from (1) in (2) to get 3 equations on A(n),
B(n), C(n) and solve them on A(n), B(n), C(n)

This also proves that RF(n) = CF(n), for all n ∈ N, i.e RF
= CF



Repertoire Function R1

RF: f(1) = α, f(2n) = 2f(n) + β, f(2n + 1) = 2f(n) + γ

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

We have already proved in Step 1 the formula for A(n), so we
need only to consider 2 repertoire functions

Step 2: Consider as the first repertoire function R1 given
by a formula

R1(n) = 1 for all n ∈ N

By (1) f(n) = R1(n) = 1 for all n ∈ N i.e. we have the
following condition

C1: f(n) = 1 for all n ∈ N

By RF we have that f(1) = α, and by C1 : f(1) = 1, and hence
α = 1



Repertoire Function R1

RF: f(1) = α, f(2n) = 2f(n) + β, f(2n + 1) = 2f(n) + γ

We still consider as the first repertoire function given by the
formula

R1(n) = 1 for all n ∈ N

By (1) f(n) = R1(n) = 1 for all n ∈ N i.e. we have the
following condition

C1: f(n) = 1 for all n ∈ N

By RF: f(2n) = 2f(n) + β and by C1 we get equation:

1 = 2 + β, and hence β = −1

By RF: f(2n + 1) = 2f(n) + γ and by C1 we get equation:

1 = 2 + γ and hence γ = −1

Solution from first repertoire function R1 is

α = 1 β = −1 γ = −1



Repertoire Function R1

Now we use the first repertoire function R1 to the closed
formula

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

By (2) we get

f(n) = R1 = 1, for all n ∈ N

We input parameters α = 1, β = −1, γ = −1 evaluated by
RF and R1 in

(2) A(n)α+ B(n)β+ C(n)γ = R1(n) = 1), for all n ∈ N

and we get the first equation

A(n)− B(n)− C(n) = 1, for all n ∈ N

By the Repertoire Method we have that CF = RF iff the
following holds

FACT 2

A(n) - B(n) - C(n) = 1, for all n ∈ N



Repertoire Function R2

Step 3:

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

Consider a second repertoire function R2 given by the
formula

R2(n) = n for all n ∈ N

By (1) f(n) = R2(n) = n i.e. we have the following condition

C2: f(n) = n, for all n ∈ N

By RF we have that f(1) = α, and by C2 : f(1) = 1, and hence
α = 1



Repertoire Function R2

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

We still consider as the second repertoire function given by
the formula

R2(n) = n for all n ∈ N

By (1) f(n) = R2(n) = n i.e. we have the following condition

C2: f(n) = n, for all n ∈ N

By RF: f(2n) = 2f(n) + β and by C2 we get

2n = 2n + β, and hence β = 0

By RF: f(2n + 1) = 2f(n) + γ and by C2 we get

2n + 1 = 2n + γ and hence γ = 1

Solution from second repertoire function R2 is
α = 1, β = 0, γ = 1



Repertoire Method

Now we use the second repertoire function R2 to the closed
formula
CF : f(n) = A(n)α+ B(n)β+ C(n)γ
By (2) we get
f(n) = R2 = n, for all n ∈ N
We input parameters α = 1, β = 0, γ = 1 evaluated by RF
and R2 in
(2) A(n)α+ B(n)β+ C(n)γ = R2(n) = n, for all n ∈ N
and get the second equation
A(n) + C(n) = n, for all n ∈ N
By the Repertoire Method we have that CF = RF iff the
following holds
FACT 3
A(n) + C(n) = n, for all n ∈ N
Remember: we have proved that A(n) = 2k , for n = 2k + l
so we do not need any more repertoire functions (and
equations)



CF for Generalized Josephus

Step 4 A(n), B(n) and C(n) from the following equations

E1 A(n) = 2k , n = 2k + l, 0 ≤ l < 2k

E2 A(n) - B(n) - C(n) = 1, for all n ∈ N

E3 A(n) + C(n) = n, for all n ∈ N

E3 and E1 give us that 2k + C(n) = 2k + l, and so

C C(n) = l

From the above and E2 we get 2k − l − B(n) = 1 and so

B B(n) = 2k - 1 - l



CF for Generalized Josephus

Observe that A, B, C are exact formulas we have guessed
and the following holds

Fact 4

CF : f(n) = 2kα+ (2k − 1− l)β+ lγ for
n = 2k + l, 0 ≤ l < 2k

is the closed formula for

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

This also ends the proof that Generalized Josephus CF exists
and RF = CF



Short CF Solution

Step 2:

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

Here is a short solution as presented in our Book

You can use it for your problems solutions (also on the tests)-
when you really understand what are you doing.

Consider a constant function f(n) = 1, for all n ∈ N (this is
our first repertoire function R1)

We evaluate now α, β, γ for it (if possible)

Solution 1 = 2 + β, 1 = 2 + γ, and so

α = 1, β = −1, γ = −1



Short CF Solution

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

We evaluate CF for α, β, γ being solutions for RF and f(n) = 1
and get

CF = RF iff the following holds

Fact 2

A(n)− B(n)− C(n) = 1 for all n ∈ N



Short CF Solution

Step 3

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

Consider a constant function f(n) = n, for all n ∈ N

We evaluate now α, β, γ for it (if possible)

2n = 2n + β, 2n+ 1 = 2n + γ and get

Solution: α = 1, β = 0, γ = 1



Short CF Solution

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

Now we evaluate CF for the solutions

α = 1, β = 0, γ = 1 and f(n) = n

and we get

Fact 3

A(n) + C(n) = n, for all n ∈ N



Final Solution for CF

Step 4

We put together Facts 1, 2, 3 to evaluate formulas for A(n),
B(n), C(n)

Fact 3 and Fact 1 give that 2k + C(n) = 2k + l, and so

C(n) = l

From the above and Fact 2 we get 2k − l − B(n) = 1 and so

B(n) = 2k - 1 - l



Final Solution for CF

Given RF, CF defined as follows

RF: f(1) = α, f(2n) = 2f(n) + β f(2n + 1) = 2f(n) + γ

CF : f(n) = A(n)α+ B(n)β+ C(n)γ

The final form of CF is as below

Fact 4

CF : f(n) = 2kα+ (2k − 1− l)β+ lγ , where

n = 2k + l, 0 ≤ l < 2k

Observe that the Book does not prove that CF = RF


