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CHAPTER 1
PART FIVE: Binary and Relaxed Binary Solutions for Generalized

Josephus



Binary Solution

We proved that the original J-recurrence:

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

has a beautiful binary CF solution

J((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2,

move bm !

where bm = 1, as n = 2m + l

Question: Does the generalized Josephus GJ admits a
similar solution?

Answer: YES.



Generalized Josephus GF

We generalized the function J to function
f : N − {0} −→ N defined as follows

f(1) = α

f(2n) = 2f(n) + β, n ≥ 1

f(2n + 1) = 2f(n) + γ, n ≥ 1

Observe that J = f for α = 1, β = −1, γ = 1

We call the function f a Generalized Josephus GJ



New Formula for GJ

We re-write the function f as follows

f(1) = α;

f(2n + j) = 2f(n) + βj

for j = 0, 1, n ≥ 1

Assume
k = (bm, bm−1, ...b1, b0)2

We want to evaluate:

f(k) = f((bm, bm−1, ...b1, b0)2)



Binary Representation for k=2n

Consider case when

k = 2n + 0, j = 0.

The binary representation of k = 2n is given as:

2n = (bm, bm−1, ...b1, b0)2

2n = 2mbm + 2m−1bm−1 + ...+ 2b1 + b0



Binary Representation for k=2n

We get bm = 1 and b0 = 0

Hence,
n = 2m−1bm + ...+ b1

n = (bm,bm−1, ...b1)2

Question: What happens when k = 2n + 1, j = 1?



Binary Representation for k=2n+1

Consider case when k = 2n + j, j = 1

The binary representation of k=2n +1 is given as:

2n + 1 = (bm, bm−1, ...b1, b0)2

2n + 1 = 2mbm + 2m−1bm−1 + ...+ 2b1 + b0

b0 = 1, bm = 1



Binary Representation for k=2n+1

We get

2n + 1 = 2mbm + 2m−1bm−1 + ...+ 2b1 + 1

2n = 2mbm + 2m−1bm−1 + ...+ 2b1

n = 2m−1bm + 2m−1bm−1 + ...+ b1

n = (bm,bm−1, ...b1)2



Binary Representation

We have proved that whether we have a binary
representation of 2n = (bm, bm−1, ...b1, b0)2

or a binary representation of 2n+1 = (bm, bm−1, ...b1, b0)2,

the corresponding representations of n are the same:

n = (bm,bm−1, ...b1)2

Fact

When dealing with binary representation we do not need to
consider cases of n ∈ odd or n ∈ even

when using our recursive formula

f(2n + j) = 2f(n) + βj , j = 0, 1



CF in Binary Representation

Here is our recursive formula

RF: f(1) = α, f(2n) = 2f(n) + β0, f(2n + 1) = 2f(n) + β1

By the Fact evaluate can write RF using n in binary
representation

f((bm, bm−1, ...b1, b0)2) = 2f((bm, bm−1, ...b1)2) + βbi ,

where

βbj =

 β0 bj = 0

β1 bj = 1
j = 0...m − 1



CF in Binary Representation

We evaluate:

f((bm,bm−1, ...b1,b0)2) = 2f((bm, bm−1, ..., b1)2) + βb0

= 2(2f((bm, bm−1, ..., b2)2) + βb1) + βb0

= 4f((bm, bm−1, ..., b2)2) + 2βb1 + βb0

...

= 2mf((bm)2) + 2m−1βbm−1 + ...+ 2βb1 + βb0

= 2mf((1)2) + 2m−1βbm−1 + ...+ 2βb1 + βb0



CF in Binary Representation

We know that f(1) = α

So we get (almost) CF formula

f((bm,bm−1, ...b1,b0)2) = 2mα+ 2m−1βbm−1 + ...+ 2βb1 + βb0

where

βbj =

 β0 bj = 0

β1 bj = 1
j = 0...m − 1



Relaxed Binary CF

We define a relaxed binary representation as follows

2mα+ 2m−1βbm−1 + ...+ βb0 = (α, βbm−1 , ...βb0)2

where now βbk are now any numbers, not only 0,1

We write the relaxed binary CF as

f((bm,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

”normal” = relaxed

βbj =

 β0 bj = 0

β1 bj = 1
j = 0, ...,m − 1



Example: Original Josephus

The GJ function f becomes the original Josephus when
β0 = −1, β1 = 1
Example
Let n = 100
Use the relaxed binary CF to show that f(100) = 73 =J(n)
as we have already evaluated

n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

Relaxed coordinates are

βbj =

 β0 bj = 0

β1 bj = 1
and hence

βbj =

 −1 bj = 0

1 bj = 1



Example

We have
n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

f((bm,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

”normal” = relaxed

βbj =

 −1 bj = 0

1 bj = 1

We evaluate

f(n) = f(( 1 1 0 0 1 0 0 )2)) =
relax (α, βb5 , . . . βb0)

= (1, 1,−1,−1, 1,−1,−1)2 = 64 + 32− 16− 8 + 4− 2− 1 = 73



Cyclic - Shift Property

We proved that the original J-recurrence:

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

has a beautiful binary CF solution, called cyclic - shift
property, namely

J((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2

We prove now that the cyclic - shift property holds also for
the GF function f in the case when β0 = −1, β1 = 1, i.e.

f((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2

We know that bm = 1, so we have to prove that:

f(1, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, 1)2,

for f such that β0 = −1, β1 = 1



Cyclic - Shift Property for GJ

We have proved the relaxed binary CF solution for GJ:

CF : f((1, bm−1, ...b1, b0)2) = (1, βbm−1 , ...βb0)2

where f(n) contains now 1 and -1 as defined by

βbj =

 −1 bj = 0

1 bj = 1



Example

EXAMPLE

Consider n = (1, 0, 0, 1, 0, 0, 1)2

By CF we have that

f((1, 0, 0, 1, 0, 0, 1)2) = (1,−1,−1, 1,−1,−1, 1)2

General Observation

f transforms a BLOCK of 0’s in normal binary
representation into a BLOCK of -1’s in the relaxed
representation

f((1, 0, 0...0)2) = (1,−1,−1...− 1)2



ONE BLOCK Transformation

We prove now the following relationship between relaxed and
normal representation
ONE BLOCK transformation

(1,−1,−1...,−1)2 = (0, 0, 0..., 0, 1)2

Proof: Let n = ((−1,−1...,−1)2

n = (1,−1,−1...,−1)2 =def 2m − 2m−1 − 2m−2 − ...− 21 − 20

= 2m−1 − 2m−2 − ...− 21 − 20

= 2m−2 − 2m−3 − ...− 21 − 20

...

= 21 − 20

= 2− 1

= 1 = (0, 0, 0, 0,1)2



Many Blocks Transformation

Example for TWO BLOCKS transformation plus binary
shift

f((1, 0, 0, 1, 1, 0, 0, 1)2) = (1,−1,−1, 1, 1,−1,−1, 1)2

=1bt (0, 0, 1, 1, 1,−1,−1, 1)2

=1bt (0, 0, 1, 1, 0, 0, 1, 1)2

= (0, 0, 1, 1, 0, 0, 1, 1)2

We know that f((bm, ..., b1, b0)2) = (α, βbm−1 , ..., βb0)2

OBSERVE that each block of binary digits (1, 0..0)2 is
transformed by f into (1,−1, ...)2 and multiple applications
of one block transformation transforms them back to
(1, 0..0)2, so

((α, βbm−1 , . . . , βb0)2 =mbt (bm−1, ...b1,b0, 1)2

where mbt denotes multiple BLOK transformations, and we
know that α = 1



Cyclic - Shift Property

We now evaluate:

f((1, bm−1, ..., b1, b0)2) = (α, βbm−1 , ..., βb0)2

=mbt (bm−1, ..., b1, b0, 1)2

This ends the proof of the Cyclic - Shift Property for
Generalized Josephus f with α = 1, β0 = −1, β1 = 1



Exercise 1

Given
f(1) = 5

f(2n) = 2f(n)− 10

f(2n + 1) = 2f(n) + 83

Exercise 1

Evaluate f(100)

Solution: just apply proper formulas!



Exercise 2

Given
f(1) = 5

f(2n) = 3f(n)− 10

f(2n + 1) = 3f(n) + 83

Exercise 2

Evaluate f(100)

Observe that now we don’t have proper formulas! They work
only for base 2!

Goal Generalize f and develop new formulas (if possible)



RADIX Representation

We proved while solving the Generalized Josephus that

RF: f(1) = α, f(2n + j) = 2f(n) + βj

where j = 0, 1 and n ≥ 0

has a relaxed binary CF formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

where βbj are defined by

βbj =

 β0 bj = 0

β1 bj = 1
j = 0, ...,m − 1

and where the relaxed binary representation is defined as

(α, βbm−1 , ..., βb0)2 = 2mα+ 2m−1βm−1 + ...+ βb0



Relaxed Radix Representation

We generalize GJ as follows

RF: f(1) = α, f(2n + j) = k f(n) + βj ,

where k ≥ 2, j = 0, 1 and n ≥ 0

Exercise: PROVE that RF has a relaxed k-
representation closed formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined as before by

βbj =

 β0 bj = 0

β1 bj = 1
; j = 0, ...,m − 1

and where we define the relaxed k- representation as
follows



Relaxed k-Radix Representation

Definition

A relaxed k- representation is defined as

(α, βbm−1 , ..., βb0)k = αkm + km−1βm−1 + ...+ βb0

We repeat the proof i directly from there definition following
the proof for the case k = 2



Proof

f((bm, bm−1, ..., b1, b0)2) = k f((bm, bm−1, ..., b1)2) + βb0

= k(k f((bm, bm−1, ..., b2)2) + βb1) + βb0

= k 2f((bm, bm−1, ..., b2)2) + kβb1 + βb0

= k 3f((bm, bm−1, ..., b3)2) + k 2βb2 + kβb1 + βb0

...

= k mf((bm)2) + k m−1βbm−1 + ...+ kβb1 + βb0

= k mα+ k m−1βbm−1 + ...+ k 2βb2 + kβb1 + βb0

= (α, βbm−1 , ..., βb1 , βb0)k

f((bm, bm−1, ..., b1, b0)2) = (α, βbm−1 ...βb1 , βb0)k

base 2 → base k



Example

Given RF:
f(1) = 5

f(2n) = 6f(n) + 3

f(2n + 1) = 6f(n)− 10

Evaluate: f(100) by the use of the k- representation and
closed formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined as before by

βbj =

 β0 bj = 0

β1 bj = 1
; j = 0, ...,m − 1



Example Solution

Given
f(1) = 5

f(2n) = 6f(n) + 3

f(2n + 1) = 6f(n)− 10

We evaluate
α = 5

β0 = 3

β1 = −10



Example Solution

Evaluate: f(100)

α = 5, β0 = 3, β1 = −10, k = 6, n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

βbj =

 β0 bj = 0

β1 bj = 1
, j = 0, ...,m − 1,

βb0 = 3, βb1 = 3, βb2 = −10, βb3 = 3; βb4 = 3,

βb5 = −10, α = 5

f(100) = f(( 1 1 0 0 1 0 0 )2) = (5,−10, 3, 3,−10, 3, 3)6



More General GJ Function

Further Generalization of GJ

RF:

f(i) = αi , i = 1, ..., d − 1

f(dn + j) = cf(n) + βj , n ≥ 1, 0 ≤ j < d

Exercise

Prove the following closed formula
CF:

f((bm,bm−1, ...,b1,b0)d) = (αbm , βbm−1 ...βb1 , βb0)c



Example

f(1) = 34

f(2) = 5

f(3n) = 10f(n) + 76

f(3n + 1) = 10f(n)− 2

f(3n + 2) = 10f(n) + 8

βbj =


β0 bj = 0

β1 bj = 1

β2 bj = 2

, j = 0, ..., d − 1,



Example Solution

We evaluate:
i = 1, 2

j = 0, 1, 2

d = 3

c = 10

α1 = 34

α2 = 5

β0 = 76

β1 = −2

β2 = 8



Example

Evaluate: f(19)

19 = (201)3 = 2 · 32 + 0 · 3 + 1

αb2 = α2 = 5

βb0 = β0 = 76

βb1 = β1 = −2

f(19) = f((201)3)

= (5, 76,−2)10

= 5 · 102 + 76 · 10− 2

= 500 + 760− 2

= 1258



Short Solution

f((bm,bm−1, ...,b1,b0)d) = (αbm , βbm−1 ...βb1 , βb0)c

Take
19 = (2 0 1)3

Corresponding solution is

(α2, β0, β1)10

we evaluate α2 = 5, β0 = 76, β1 = −2 and get

Solution:

(5, 76, −2)10



New Generalization of GJ

New Generalization of GJ

Problem

Use the repertoire method to solve the following yet more
general four-parameter recurrence RF

h(1) = α;

h(2n + 0) = 3h(n) + γn + β0;

h(2n + 1) = 3h(n) + γn + β1, for all n ≥ 1.

Solve means FIND a closed formula CF equivalent to RF



General Form of CF

Our RF is a FOUR parameters function and it is a
generalization of the General Josephus GJ function f
considered before

So we guess that now the general form of the CF is also a
generalization of the one we already proved for GJ , i.e.

General form of CF is

h(n) = αA(n) + γB(n) + β0C(n) + β1D(n)

The Problem asks us to use repertoire method to prove that
CF is equivalent to RF



Thinking Time

Solution requires us to develop a system of 8 equations on
α, γ, β0, β1, A(n), B(n), C(n), D(n)

and accordingly a 4 repertoire functions!

First : we observe that when γ = 0, we get that h becomes
for Generalized Josephus function f below for k = 3:

f(1) = α, f(2n + j) = k f(n) + βj ,

where k ≥ 2, j = 0, 1 and n ≥ 0

It seems worth to examine the case γ = 0 first



Closed Formula for GJ function f

We proved that GJ function f has the
relaxed k- representation closed formula

f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined by

βbj =

 β0 bj = 0

β1 bj = 1
; j = 0, ...,m − 1,

for the relaxed k- radix representation defined as

(α, βbm−1 , ..., βb0)k = αkm + km−1βm−1 + ...+ βb0



Special Case of the function h

Consider now a special case of the function h for γ = 0

We know that it now has a relaxed 3 - representation closed
formula

h((1, bm−1, ...b1, b0)2) = (α, βbm−1 , ...βb0)3

It means that we get

Fact 0 For any n = (1, bm−1, ...b1, b0)2,

h(n) = (α, βbm−1 , ...βb0)3

Observe that our general form of CF in this case becomes

h(n) = αA(n) + β0C(n) + β1D(n)

We must have h(n) = h(n), for all n, inN so from this and Fact
0 we get the following Equation 1



Equation 1

We must have h(n) = h(n), for all n ∈ N

From this and Fact 0 we get the following

Fact 1 For any n = (1, bm−1, ...b1, b0)2,

αA(n) + β0C(n) + β1D(n) = (α, βbm−1 , ...βb0)3

This provides us with the Equation 1 for finding our general
form of CF



Next Observation

Observe that A(n) in the Original Josephus was given (and
proved to be) by a formula

A(n) = 2k , for all n = 2k + `, 0 ≤ ` < 2k

We have a similar solution for our A(n)



Special Case of the function h

We evaluate now few initial values for h in case γ = 0

h(1) = α;

h(2) = h(2(1) + 0) = 3h(1) + β0

= 3α+ β0;

h(3) = h(2(1) + 1) = 3h(1) + β1

= 3α+ β1;

h(4) = h(2(2) + 0) = 3h(2) + β0

= 9α+ 4β0;



Equation 2

It is pretty obvious that we do have a similar formula for A(n)
as on the Original Josephus OJ

We write it as our Fact 2 and get our

Fact 2

For all n = 2k + `, 0 ≤ ` < 2k , n ∈ N − {0}

A(n) = 3k

The proof is almost identical to the one in the GJ, we re-write
is here for our case as an exercise.

This provides us with the Equation 2 for finding our general
form of CF



Reminder

Reminder

We investigate the case when γ = 0, i.e. now our formulas are

RF: h(1) = α, h(2n + j) = 3h(n) + βj

where j = 0, 1 and n ≥ 0 and the closed formula is

CF: h(n) = αA(n) + β0C(n) + β1D(n)



Proof of the Equation 2

Consider now a further case β0 = β1 =0, and α = 1, i.e.

RF : h(1) = 1, h(2n) = 3h(n), h(2n + 1) = 3h(n)
and CF : h(n) = A(n)

We use h(n) = A(n) and re-write RF in terms of A(n)

RA : A(1) = 1, A(2n) = 3A(n), A(2n + 1) = 3A(n)

Fact Closed formula CAR for AR is:
CA: A(n) = A(2k + `) = 3k , 0 ≤ ` < 2k

Observe that this Fact is equivalent to the following Fact 2



Proof of the Fact 2

Fact 2 for all n = 2k + `, 0 ≤ ` < 2k

A(n) = 3k

Proof by induction on k

Base case: k=0 i.e n=20 + `, 0 ≤ ` < 1, hence n = 1 and
RA: A(1) = 1, and CA: A(1) = 30 = 1, so we have RA = CA

Inductive Assumption
A(2k−1 + `) = A(2k−1 + `) = 3k−1, for 0 ≤ ` < 2k−1

Inductive Thesis
A(2k + l) = A(2k + l) = 3k , for 0 ≤ l < 2k

Two cases: n ∈ even, n ∈ odd

C1: n ∈ even

n := 2n, and we have 2k + ` = 2n iff ` ∈ even



Proof of the Fact 2

We evaluate n as follows

2n = 2k + `, n = 2k−1 + `
2

We use n in the inductive step

Observe that the correctness of using `
2 follows from that fact

that ` ∈ even, so `
2 ∈ N and it can be proved formally like on

the previous slides

Inductive Proof

A(2n) =reprn A(2k + `) =n−eval 3A(2k−1 + `
2) =

ind

3 ∗ 3k−1 = 3k



Proof of the Fact 2

C2: n ∈ odd

n:= 2n+1, and we have 2k + ` = 2n + 1 iff ` ∈ odd

We evaluate n as follows

2n + 1 = 2k + `, n = 2k−1 + `−1
2

We use n in the inductive step

Observe that the correctness of using `−1
2 follows from that

fact that ` ∈ odd, so `−1
2 ∈ N

Inductive Proof

A(2n + 1) =reprn A(2k + `) =n−eval 3A(2k−1 + `−1
2 ) =ind

3 ∗ 3k−1 = 3k

It ends the proof of the Fact 2: A(n) = 3k



Repertoire Method

We return now to original functions:

RF: h(1) = α, h(2n) = 3h(n) + γn + β0,

h(2n + 1) = 3h(n) + γn + β1,

CF: h(n) = αA(n) + γB(n) + β0C(n) + β1D(n)

We have already developed two equations (as stated in
Facts 1, 2) so we need now to consider only 2 repertoire
functions to obtain 4 equations we need to solve the problem



Repertoire Function 1

Consider a first repertoire function : h(n) = 1, for all
n ∈ N − {0}
We put h(n) = h(n) = 1, for all n ∈ N − {0}
We have h(1) = 1, and h(1)= α, so we get α = 1
We now use h(n) = h(n) = 1, for all n ∈ N−{0} and evaluate

h(2n) = 3h(n) + γ0n + β0 h(2n + 1) = 3h(n) + γ1n + β1;

1 = 3 + γ0n + β0 1 = 3 + γ1n + β1

0 = 2 + γ0n + β0 0 = 2 + γ1n + β1

0 = (2 + β0) + γ0n 0 = (2 + β1) + γ1n

We get γ = 0, β0 = β1 = −2

Solution 1: α = 1, γ = 0, β0 = β1 = −2



Equation 3

The general form of CF is:
h(n) = αA(n) + γB(n) + β0C(n) + β1D(n)

We put h(n) = h(n) for the first repertoire function , i.e. we
put h(n) = h(n) = 1, for all n ∈ N − {0}, i.e.

αA(n) + γB(n) + β0C(n) + β1D(n) = h(n) = 1, for all
n ∈ N − {0}, where α, γ, β0, β1 already are evaluated in the
Solution 1 as α = 1, γ = 0, β0 = β1 = −2

We get that CF = RF if and only if the following holds

Fact 3 For all n ∈ N − {0},

A(n)− 2C(n)− 2D(n) = 1

This is our Equation 3



Repertoire Function 2

Consider a repertoire function 2: h(n) = n, for all
n ∈ N − {0}
We put h(n) = h(n) = n, for all n ∈ N − {0}
h(1) = α, h(1) = 1 and h(n)=h(n), hence α = 1
We now use h(n) = h(n) = n, for all n ∈ N−{0} and evaluate

h(2n) = 3h(n) + γn + β0 h(2n + 1) = 3h(n) + γn + β1;

2n = 3n + γn + β0 2n + 1 = 3n + γn + β1

0 = (γ + 1)n + β0 0 = (γ + 1)n + (β1 − 1)

We get γ = −1, β0 = 0, β1 = 1 and

Solution 2: α = 1, γ = −1, β0 = 0, β1 = 1



Equation 4

CF: h(n) = αA(n) + γB(n) + β0C(n) + β1D(n)

We evaluate CF for h(n) = h(n) = n, for all n ∈ N − {0} and
for the Solution 2: α = 1, γ = −1, β0 = 0, β1 = 1 and get

CF = RF if and only if the following holds

Fact 4 For all n ∈ N − {0}

A(n)− B(n) + D(n) = n

This is our Equation 4



Repertoire Method: System of Equations

We obtained the following system of 4 equations on A(n),
B(n), C(n), D(n)

1. αA(n) + β0C(n) + β1D(n) = (α, βbm−1 , ...βb0)3

2. A(n) = 3k

3. A(n) - 2C(n) - 2D(n) = 1

4. A(n) - B(n) + D(n) = n

We solve it on A(n), B(n), C(n), D (n) and put the solution into

h(n) = αA(n) + γB(n) + β0C(n) + β1D(n)


