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CHAPTER 1
PART FIVE: Binary and Relaxed Binary Solutions for Generalized
Josephus



Binary Solution

We proved that the original J-recurrence:
J(1)=1, J@n)=2J(n)-1, J@n+1)=2J(n)+1 forn>1
has a beautiful binary CF solution

J((bm, bm—1,..-b1,b0)2) = (bm-1,bm-2,...bo, bm)2,
move by, !

where b, =1, as n=2"+|

Question: Does the generalized Josephus GJ admits a
similar solution?

Answer: YES.



Generalized Josephus GF

We generalized the function J to function
f: N—{0} — N defined as follows

f(1)=«a

f(2n) =2f(n)+pB, n=>1

fe2n+1)=2f(n)+vy, n>1

Observethat J=f for a =1, 8=-1, y =1
We call the function f a Generalized Josephus GJ



New Formula for GJ

We re-write the function f as follows

f(1) =«a;
f(2n+ j) = 2f(n) + B;
for j=0,1, n>1

Assume
k — (bm, bm—‘l s b1 s b0)2

We want to evaluate:

f(k) = f((bm, bm—1,...b1, bo)2)



Binary Representation for k=2n
Consider case when
k=2n+0, j=0.
The binary representation of k = 2n is given as:

2n = (bm, bm—1,...b1, bp)2

2n = 2"by 4+ 2" "by_y + ... + 2by + by



Binary Representation for k=2n
Weget b, =1 and by =0
Hence,

n=2""1p, + ..+ b

n = (bm,bm_1,..b1)2

Question: What happens when k =2n+1, j=17?



Binary Representation for k=2n+1

Consider case when k =2n-+j, j=1
The binary representation of k=2n +1 is given as:

2n+1 = (bm’ bm_1,...b1,b0)2

2n+1=2"b, +2™ b1 + ...+ 2by + by



Binary Representation for k=2n+1

We get

2n+1=2"by + 2™ b1 + ... + 2by + 1

2n = 2"y 4+ 2™ bp_1 + ... + 2by

n=2""1p,+2" b, 1+ ...+ by

n = (bm, bm_1,...b1)2



Binary Representation

We have proved that whether we have a binary
representation of 2n = (bm, bm_1,...b1, bo)2

or a binary representation of 2n+1 = (by,, by—1,...b1, bo)2,
the corresponding representations of n are the same:

n= (bm’ bm,‘], b1 )2

Fact

When dealing with binary representation we do not need to
consider cases of n € odd or n € even

when using our recursive formula

f(2n+j)=2f(n)+p, j=0,1



CF in Binary Representation

Here is our recursive formula
RF: f(1) =a, f(2n)=2f(n)+pBo. f(2n+1)=2f(n)+ P

By the Fact evaluate can write RF using n in binary
representation

f((bm,bm,h ...by, bo)g) = 2f((bm,bm,1, ...bq )2) —Jrﬁb/.,

where



CF in Binary Representation

We evaluate:

f((bm.bm—1...b1.b0)2) = 2f((bm, b1, ... b1)2) + Ba,
= 2(2f((bm, bm—1,.... b2)2) + Bv,) + Bhy

= 4f((bm,bm_1, ...,bg)g) + 2ﬁb1 —l—ﬂbo

= 2"™f((bm)2) + 2™ By, _, + - + 2Bb, + oy

= 2™f((1)2) + 2™ "Bo._, + - + 2Bo, + Boo



CF in Binary Representation

We know that (1) =
So we get (almost) CF formula

f((bm, bm_1,...bq, bo)z) =2Mq + 2m_1ﬁbm71 + ...+ 2ﬁb1 =+ By,

where

—
ﬁbj - ﬁo bj ]: 0..m-—1
B bj =1



Relaxed Binary CF

We define a relaxed binary representation as follows

2" + 2™ By, + ..+ Boy = (@ Bom_1» -Bbo)2
where now S, are now any numbers, not only 0,1
We write the relaxed binary CF as

f((bm, bm_1 N ...b1 . bo)g) = (a/,ﬁb"F1 , ~~,8b0)2
"normal’ = relaxed

bj =0
ﬂbj: 180 ! ]:O,,m—1
B bj:1



Example: Original Josephus

The GJ function f becomes the original Josephus when
Bo=—1,p1=1

Example

Letn =100
Use the relaxed binary CF to show that f(100) = 73 =J(n)

as we have already evaluated
n = (1100100);
(bebsbsbzbabibg)

Relaxed coordinates are

bj=0
B, = Po ! and hence
Bi bj =1

s 1 B=0
7] by = 1



Example
We have

n = (1100100);
(bsbsbsbsbz b by)

f((bm,bm,1,...b1,bo)2) = (a’,ﬁbmq,...ﬂbo)z

"normal’ = relaxed
By — —1 b; =0
Tl b=t
We evaluate

f(n)=f((1100100)2)) =" (o, B, ... Bb,)
=(1,1,-1,-1,1,-1,-1), =64 +32-16-8+4—-2—-1=73



Cyclic - Shift Property

We proved that the original J-recurrence:

J)=1, J@n)=2J(n)-1, J@n+1)=2J(n)+1 forn>1
has a beautiful binary CF solution, called cyclic - shift
property, namely

J((bm, bm—1,...b1,b0)2) = (bm—1, bm—2, ...bo, bm)2

We prove now that the cyclic - shift property holds also for
the GF function f inthe case when By = —1,81 =1, i.e.

f((bm, bm—1, ...b1,bg)2) = (bm—1, bm—2, ...bo, bm)2

We know that b, = 1, so we have to prove that:

f(1, bm—1,...b1,bo)2) = (bm—1, bm—2, ...bg, 1)2,
forf suchthat go = —1,81 =1



Cyclic - Shift Property for GJ

We have proved the relaxed binary CF solution for GJ:

CF : f((1sbm—1sb17b0)2) - (1’18bm—1""ﬂb0)2

where f(n) contains now 1 and -1 as defined by



Example

EXAMPLE
Consider n = (1,0,0,1,0,0,1)2
By CF we have that

f((1,0,0,1,0,0,1)2) = (1, -1, —1,1,—1,—1,1)2

General Observation

f transforms a BLOCK of 0’s in normal binary
representation into a BLOCK of -1’s in the relaxed
representation

£((1,0,0..0)2) = (1,1, ~1... — 1),



ONE BLOCK Transformation

We prove now the following relationship between relaxed and
normal representation
ONE BLOCK transformation

(1,-1,—1..,—1); = (0,0,0....0,1),

Proof: Letn=((—1.—1...—1)

n= (1’ —1,-1..., 71)2 _def om _ 2m—1 _ 2m—2 — = 21 _ 20
= om-1_pm-=2_ _2t_20
= om—2 _pm=3 _ _21_20
_ 21 20
= 2—1

= 1=(0,0,0,0.1)2



Many Blocks Transformation
Example for TWO BLOCKS transformation plus binary
shift

f((1,0,0,1,1,0,0,1)2) =
_1bt

(1,—1,—1,1,1,—1,—1,1),

(070717171’_15_1’1)2
=%t (0,0,1,1,0,0,1,1)>

(0,0,1,1,0,0,1,1)2
We know that f((bm, cees b1 s bo)g) = (a,ﬂbmq s ...,,Bbo)g
OBSERVE that each block of binary digits (1,0..0), is
transformed by f into (1,—1,...)> and multiple applications
of one block transformation transforms them back to
(1,0..0)2, so

(. Bom_1s- - +Bbe)2 =" (Bm—1,...b1,bo, 1)2

where mbt denotes multiple BLOK transformations, and we
know that o = 1



Cyclic - Shift Property

We now evaluate:

f((1bmrt b1 D0)2) = (0B B2
—mbt (bm71,---,b17b0’1)2

This ends the proof of the Cyclic - Shift Property for
Generalized Josephus fwitha =1, o = —1, g1 =1



Exercise 1

Given
f(1) = 5
f(2n) = 2f(n)—10
fe2n+1) = 2f(n)+ 83
Exercise 1

Evaluate f(100)
Solution: just apply proper formulas!



Exercise 2

Given

f(2n) = 3f(n)—10
f(en+1) = 3f(n)+83

Exercise 2
Evaluate f(100)

Observe that now we don’t have proper formulas! They work
only for base 2!

Goal Generalize f and develop new formulas (if possible)



RADIX Representation

We proved while solving the Generalized Josephus that
RF: f(1)=a, f(2n+}))=2f(n)+p;

where j=0,1 and n>0

has a relaxed binary CF formula

CF : f((1,bm,1, ...b1,bo)2) = (a’,ﬂbmq,...ﬂbo)z

where Sy, are defined by

b =0
Bb, = Po / j=0,...m—1
B b=1

and where the relaxed binary representation is defined as

(@.Bom_1: - Bbo)2 = 2Ma + 2m71ﬁm—1 + ... + B,



Relaxed Radix Representation

We generalize GJ as follows
RF: f(1) =«, f(2n+j)= kf(n)+p;
where k >2, j=0,1 and n>0

Exercise: PROVE that RF has a relaxed k-
representation closed formula

CF: f((1,bm_1,...b1,bg)2) = (@, Bb,_4: Loy )k
where By, are defined as before by

Bo b =0 ,
Bo = ° ! . j=0,..,m—1
B bj =1

and where we define the relaxed k- representation as
follows



Relaxed k-Radix Representation

Definition
A relaxed k- representation is defined as

(@ Bog_1> By )k = K™ + K™ B _1 + ... + by

We repeat the proof i directly from there definition following
the proof for the case k = 2



f((bm, bm71 5 eees b1 5 b0)2)

f((bms bm—1, - b1, bo)2) =

base 2 —

Proof

kf((bm, bm—1, ... b1)2) + By

k(Kf((bm, bm—1, ... b2)2) + Bb,) + B,
k2f((Bms bm—15 ..., b2)2) + KBb, + Bb,
K3f((Bms bm—15 ...s b3)2) + k?Bb, + kBb, + Bh,

kmf((bm)g) —+ km71ﬁbm_1 + ...+ kﬁm +ﬂb0
kMa + k™ 18y + ...+ k?Bp, + kBb, + B,
(. Bby_1s > Bby»Bby )i

(@, Boy_--Bby > Bbo )

base k



Example

Given RF:
f(1) =5
f(2n) = 6f(n)+3
f2n+1) = 6f(n)—10

Evaluate: f(100) by the use of the k- representation and
closed formula

CF: f((1,bm—_1,...b1,bg)2) = (@, Bb,_4- Loy )k
where Sy, are defined as before by

Bo b =0
Bb = ° ! . j=0,..,m—1
B bj =1



Example Solution

Given
f(1) = 5
f(2n) = 6f(n)+3
f2n+1) = 6f(n)—10
We evaluate
a=5
Bo=3

pr=-10



Example Solution

Evaluate: f(100)

a=56o=3p1=-10,k=6,n = (1100100),
(bgbsbsbsbab by)

b =0
ﬁbj { Fo ! B

B bj =1
Boo =3, Bby =3, Bo, = =10, Bp; = 3; Bb, =3,
ﬂb5:—10, a=5

f(100) = f((1100100),) = (5,—10,3,3,-10,3,3)g



More General GJ Function

Further Generalization of GJ

RF:
f(i) = aj, i=1,..,d—-1
f(dn+ j) = cf(n) + B;, n>1, 0<j<d
Exercise

Prove the following closed formula
CF:

f((bm.bm—1,....b1,bo)d) = (@bm.Bbm_1--Bo1:Bbs)e



By =

Example

f(1) =
f(2) =
f(3n)

fBn+1) =
fBn+2) =
Bo bj =0
B by =1
Ba  bj=2

34

5

10f(n) + 76
10f(n) — 2
10f(n) +8



Example Solution

We evaluate:

i=1,2

j=0,1,2

d=
=10

ay =34
o =

Bo =176

B1= -2

B2 =



Example

Evaluate: f(19)
19=(201)3=2-32+0-3+1

ap, = a2 =5

B, = Po =76

Bb, =p1 = =2

f(19) = f((201)3)
= (5,76,—2)10
= 5.1024+76-10—-2
= 500+ 760 — 2

= 1258



Short Solution

f((bm, bm—1,---’b1,b0)d) - (abm,ﬁbm,r"ﬁbwﬂbo)c

Take
19=(201);

Corresponding solution is

(2, Bo. Bi1)1o

we evaluate a» =5, Bo =76, B4 = —2 andget
Solution:

(5, 76, —2)10



New Generalization of GJ

New Generalization of GJ
Problem

Use the repertoire method to solve the following yet more
general four-parameter recurrence RF

h(1) =
h(2n+0) = 3h(n) +yn+ Bo;
h(2n+1) = 3h(n)+yn+py, forall n>1.

Solve means FIND a closed formula CF equivalent to RF



General Form of CF

Our RF is a FOUR parameters function and it is a
generalization of the General Josephus GJ function f
considered before

So we guess that now the general form of the CF is also a
generalization of the one we already proved for GJ , i.e.

General form of CF is

h(n) = aA(n) + yB(n) + BoC(n) + B1D(n)

The Problem asks us to use repertoire method to prove that
CF is equivalent to RF



Thinking Time

Solution requires us to develop a system of 8 equations on
@, v, Bo, B1, A(n), B(n), C(n), D(n)
and accordingly a 4 repertoire functions!

First : we observe that when y = 0, we get that h becomes
for Generalized Josephus function f below for k = 3:

f(1) =a, f(2n+j)= kf(n)+p;
where k >2, j=0,1 and n>0
It seems worth to examine the case y = 0 first



Closed Formula for GJ function f

We proved that GJ function f has the
relaxed k- representation closed formula

f((1 ,bm—1,...bq, bo)z) = (a’ﬁbm,1 s ...,Bbo)k

where Sy, are defined by

bi=0
Bo = Fo ! ; j=0,..,m—1,
ox bj =1

for the relaxed k- radix representation defined as

(@ Bop_1» By )k = K™ + K™ "B 1 4 ... + Bo,



Special Case of the function h

Consider now a special case of the function h fory =0

We know that it now has a relaxed 3 - representation closed
formula

h((1, bm—1,...b1,bo)2) = (. Bb,_1+--Bby )3
It means that we get
Fact0 Foranyn= (1,bm_1,...b1,bo)2,

h(n) = (@.Boy_¢»--Pbo )3
Observe that our general form of CF in this case becomes

h(n) = @A(n) +BoC(n) + B1D(n)

We must have h(n) = h(n), for all n, inN so from this and Fact
0 we get the following Equation 1



Equation 1

We must have h(n) =h(n), forallne N
From this and Fact 0 we get the following
Fact1 Forany n= (1,bm_1,...b1,bo)2,

aA(n) + BoC(n) + B1D(n) = (. Bby_»--Pbo)3

This provides us with the Equation 1 for finding our general
form of CF



Next Observation

Observe that A(n) in the Original Josephus was given (and
proved to be) by a formula

A(n) =2k forall n=2K+¢, 0<¢<2k
We have a similar solution for our A(n)



Special Case of the function h

We evaluate now few initial values for h in case y = 0

h(1) = «;
h(2) = h(2(1)+0)=3h(1)+ 5o
= 3a + Bo;

h(3) = h(2(1)+1)=3h(1) + B
= 3a+p;

h(4) = h(2(2)+0)=3h(2) +Bo
= 9a+4p;



Equation 2

It is pretty obvious that we do have a similar formula for A(n)
as on the Original Josephus OJ

We write it as our Fact 2 and get our
Fact 2
Forall n=2K+¢, 0<(¢<2% neN-{0}

A(n) =3k

The proof is almost identical to the one in the GJ, we re-write
is here for our case as an exercise.

This provides us with the Equation 2 for finding our general
form of CF



Reminder

Reminder

We investigate the case when y = 0, i.e. now our formulas are
RF: h(1)=a, h(2n+j)= 3h(n)+pB

where j=0,1 and n >0 and the closed formula is

CF:  h(n) = aA(n) + BoC(n) + B1D(n)



Proof of the Equation 2

Consider now a further case Sy =1 =0,and a =1, i.e.
RF: h(1)=1, h(2n) =3h(n), h(2n+ 1) =3h(n)
and CF: h(n)=A(n)

We use h(n) = A(n) and re-write RF in terms of A(n)

RA: A(1)=1, A(2n)=3A(n), A(2n+1)=3A(n)
Fact Closed formula CAR for AR is:

CA: A(n)=A(k+0)=3% o0<t<2k

Observe that this Fact is equivalent to the following Fact 2



Proof of the Fact 2

Fact2 foralln=2K+¢ 0< <2k

A(n) = 3

Proof by induction on k

Base case: k=0 i.e n=2° +¢, 0<¢<1, hencen=1 and
RA: A(1)=1, and CA:A(1) =3% =1, so we have RA = CA
Inductive Assumption

ARk 1) = A2k +£) = 3K, for 0 < ¢ <2k
Inductive Thesis

ARk + N =A@k +1) =3 for 0<I<2k

Two cases: n € even, n € odd

C1. neeven

n:=2n, andwe have 2K + ¢ =2n iff ¢ < even



Proof of the Fact 2

We evaluate n as follows
2n=2k+¢ n=2k"14¢
We use n in the inductive step

Observe that the correctness of using g follows from that fact
that ¢ € even, so é € N and it can be proved formally like on
the previous slides

Inductive Proof

A(2n) __reprn A(2k + 5) —n—eval 3A(2k—1 + g) —ind

3+ 3k-1 =3k



Proof of the Fact 2

C2: ne odd

n:i=2n+1, and we have 2 + ¢ =2n+1 iff ¢ < odd
We evaluate n as follows

2n+1=2k+¢, n=2k14 L1

We use n in the inductive step

Observe that the correctness of using % follows from that
fact that ¢ € odd, so 5! € N

Inductive Proof

A(2n + 1) __reprn A(Zk 4 f) _n—eval 3A(2k—1 4 %) —ind
3% 3k~1 =3k

It ends the proof of the Fact 2: A(n) = 3k



Repertoire Method

We return now to original functions:

RF: h(1) = a,h(2n) = 3h(n) + yn + Bo,

h(2n+ 1) = 3h(n) + yn + B4,

CF: h(n) = aA(n) +yB(n) + BoC(n) + B1D(n)

We have already developed two equations (as stated in

Facts 1, 2) so we need now to consider only 2 repertoire
functions to obtain 4 equations we need to solve the problem



Repertoire Function 1

Consider a first repertoire function : h(n) = 1, for all
neN-—{0}

We put h(n) =h(n)=1, forall ne N— {0}

We have h(1) =1, and h(1)= a, sowe get a =1

We now use h(n) = h(n) =1, forall n € N— {0} and evaluate

h(2n) = 3h(n) + yon + Bo h(2n+1) = 3h(n) + yin + B1;
1 =3+ yn+pBo 1=3+yin+p4
0=2+vyn+po 0=2+yn+p
0= (2+po) +7vo0n 0= (2+p1)+yin

Weget y=0, [o=p1=-2
Solution1: a =1, y=0, By=p1 =2



Equation 3

The general form of CF is:

h(n) = aA(n) + yB(n) 4+ BoC(n) + B1D(n)

We put h(n) = h(n) for the first repertoire function , i.e. we
put h(n)=h(n)=1, forall ne€ N— {0}, i.e.

aA(n) +yB(n) + BoC(n) + B1D(n) = h(n) =1, for all

n e N — {0}, where a,y, Bo, 1 already are evaluated in the
Solution1as a=1,y=0, Bo=p1=-2

We get that CF = RF if and only if the following holds
Fact3 Forall ne N — {0},

A(n) —2C(n) —2D(n) =1

This is our Equation 3



Repertoire Function 2

Consider a repertoire function 2: h(n) = n, for all
neN-—{0}

We put h(n) =h(n)=n, forall ne N— {0}

h(1) = @, h(1) =1 and h(n)=h(n), hence o =1

We now use h(n) = h(n) =n, forall n € N— {0} and evaluate

h(2n) = 3h(n) 4+ yn+ Bo h(2n+1) = 3h(n) +yn+ By;
2n=3n+vyn+po 2n+1=3n+yn+ B
0=(y+1)n+p0 O=(y+1)n+ (B —1)

Weget y=—-1, Bo=0, gy =1 and
Solution2: a=1, y= -1, B =0, By =1



Equation 4

CF:  h(n) = aA(n) +yB(n) +BoC(n) + B1D(n)
We evaluate CF for h(n) = h(n) =n, forall n€ N— {0} and
for the Solution 2: o =1,y = -1, o =0, 1 =1 and get

CF =RF ifandonly if the following holds
Fact4 Forall nec N— {0}

A(n)—B(n)+D(n)=n

This is our Equation 4



Repertoire Method: System of Equations

We obtained the following system of 4 equations on A(n),
B(n), C(n), D(n)

1. aA(n) +BoC(n) +B1D(n) = (. Boy_y»--Boo )3

2. A(n) =3k

3. A(n)-2C(n)-2D(n) =1

4. A(n)-B(n)+D(n)=n

We solve it on A(n), B(n), C(n), D (n) and put the solution into
h(n) = aA(n) + yB(n) + BoC(n) + B1D(n)



