cse547, DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 4

CHAPTER 1
 PART FIVE: Binary and Relaxed Binary Solutions for Generalized Josephus

Binary Solution

We proved that the original J-recurrence:

$$
J(1)=1, \quad J(2 n)=2 J(n)-1, \quad J(2 n+1)=2 J(n)+1 \quad \text { for } n>1
$$

has a beautiful binary CF solution

$$
\begin{aligned}
J\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)= & \left(b_{m-1}, b_{m-2}, \ldots b_{0}, b_{m}\right)_{2}, \\
& \text { move } b_{m}!
\end{aligned}
$$

where $b_{m}=1$, as $n=2^{m}+1$
Question: Does the generalized Josephus GJ admits a similar solution?

Answer: YES.

Generalized Josephus GF

We generalized the function J to function $f: N-\{0\} \rightarrow N$ defined as follows

$$
\begin{gathered}
f(1)=\alpha \\
f(2 n)=2 f(n)+\beta, \quad n \geq 1 \\
f(2 n+1)=2 f(n)+\gamma, \quad n \geq 1
\end{gathered}
$$

Observe that $\mathrm{J}=\mathrm{f}$ for $\alpha=1, \beta=-1, \gamma=1$
We call the function f a Generalized Josephus GJ

New Formula for GJ

We re-write the function f as follows

$$
\begin{aligned}
& f(1)=\alpha ; \\
& f(2 n+j)=2 f(n)+\beta_{j} \\
& \text { for } j=0,1, \quad n \geq 1
\end{aligned}
$$

Assume

$$
k=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}
$$

We want to evaluate:

$$
f(k)=f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)
$$

Binary Representation for $\mathrm{k}=2 \mathrm{n}$

Consider case when

$$
k=2 n+0, \quad j=0
$$

The binary representation of $k=2 n$ is given as:

$$
\begin{aligned}
& 2 n=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2} \\
& 2 n=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1}+b_{0}
\end{aligned}
$$

Binary Representation for $\mathrm{k}=2 \mathrm{n}$

We get $b_{m}=1$ and $b_{0}=0$

Hence,

$$
\begin{aligned}
& n=2^{m-1} b_{m}+\ldots+b_{1} \\
& \mathbf{n}=\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{\mathbf{1}}\right)_{\mathbf{2}}
\end{aligned}
$$

Question: What happens when $k=2 n+1, j=1$?

Binary Representation for $\mathrm{k}=2 \mathrm{n}+1$

Consider case when $k=2 n+j, j=1$
The binary representation of $\mathrm{k}=2 \mathrm{n}+1$ is given as:

$$
\begin{aligned}
& 2 n+1=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2} \\
& 2 n+1=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1}+b_{0} \\
& b_{0}=1, b_{m}=1
\end{aligned}
$$

Binary Representation for $\mathrm{k}=2 \mathrm{n}+1$

We get

$$
\begin{aligned}
& 2 n+1=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1}+1 \\
& 2 n=2^{m} b_{m}+2^{m-1} b_{m-1}+\ldots+2 b_{1} \\
& n=2^{m-1} b_{m}+2^{m-1} b_{m-1}+\ldots+b_{1} \\
& \mathbf{n}=\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{\mathbf{1}}\right)_{\mathbf{2}}
\end{aligned}
$$

Binary Representation

We have proved that whether we have a binary representation of $2 n=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$ or a binary representation of $2 n+1=\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$, the corresponding representations of n are the same:

$$
\mathrm{n}=\left(\mathrm{b}_{\mathbf{m}}, \mathrm{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathrm{b}_{1}\right)_{\mathbf{2}}
$$

Fact

When dealing with binary representation we do not need to consider cases of $\mathbf{n} \in$ odd or $\mathbf{n} \in$ even
when using our recursive formula

$$
f(2 n+j)=2 f(n)+\beta_{j}, \quad j=0,1
$$

CF in Binary Representation

Here is our recursive formula
RF: $\quad f(1)=\alpha, \quad f(2 n)=2 f(n)+\beta_{0}, \quad f(2 n+1)=2 f(n)+\beta_{1}$

By the Fact evaluate can write RF using n in binary representation

$$
f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=2 f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}\right)_{2}\right)+\beta_{b_{i}},
$$

where

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} \quad j=0 \ldots m-1\right.
$$

CF in Binary Representation

We evaluate:

$$
\begin{aligned}
\mathbf{f}\left(\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathrm{m}-1}, \ldots \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{2}\right)= & 2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
= & 2\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
= & 4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& \vdots \\
= & 2^{m} f\left(\left(b_{m}\right)_{2}\right)+2^{m-1} \beta_{b_{m-1}}+\ldots+2 \beta_{b_{1}}+\beta_{b_{0}} \\
= & 2^{m} f\left((1)_{2}\right)+2^{m-1} \beta_{\mathbf{b}_{m-1}}+\ldots+2 \beta_{\mathbf{b}_{1}}+\beta_{\mathbf{b}_{0}}
\end{aligned}
$$

CF in Binary Representation

We know that $f(1)=\alpha$
So we get (almost) CF formula

$$
\mathbf{f}\left(\left(\mathbf{b}_{\mathrm{m}}, \mathbf{b}_{\mathrm{m}-1}, \ldots \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{2}\right)=2^{\mathrm{m}} \alpha+2^{\mathrm{m}-1} \beta_{\mathbf{b}_{\mathrm{m}-1}}+\ldots+2 \beta_{\mathbf{b}_{1}}+\beta_{\mathbf{b}_{0}}
$$

where

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} \quad j=0 \ldots m-1\right.
$$

Relaxed Binary CF

We define a relaxed binary representation as follows

$$
2^{\mathbf{m}} \alpha+\mathbf{2}^{\mathbf{m}-1} \beta_{\mathbf{b}_{\mathrm{m}-1}}+\ldots+\beta_{\mathbf{b}_{0}}=\left(\alpha, \beta_{\mathbf{b}_{\mathrm{m}-1}}, \ldots \beta_{\mathrm{b}_{0}}\right)_{2}
$$

where now $\beta_{b_{k}}$ are now any numbers, not only 0,1 We write the relaxed binary CF as

$$
\begin{aligned}
& \mathbf{f}\left(\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{1}, \mathbf{b}_{\mathbf{0}}\right)_{\mathbf{2}}\right) \\
& \text { "normal" } \\
& = \\
& = \\
& \quad\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots, \beta_{\mathbf{b}_{0}}\right)_{2} \\
& \beta_{b_{j}}=\left\{\begin{array}{lll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1 & j=0, \ldots, m-1
\end{array}\right.
\end{aligned}
$$

Example: Original Josephus

The GJ function f becomes the original Josephus when $\beta_{0}=-1, \beta_{1}=1$

Example

Let $\mathrm{n}=100$
Use the relaxed binary CF to show that $f(100)=73=J(n)$ as we have already evaluated

$$
\begin{aligned}
n= & (11100100)_{2} \\
& \left(b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)
\end{aligned}
$$

Relaxed coordinates are

$$
\begin{gathered}
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} \quad\right. \text { and hence } \\
\beta_{b_{j}}= \begin{cases}-1 & b_{j}=0 \\
1 & b_{j}=1\end{cases}
\end{gathered}
$$

Example

We have

$$
\begin{aligned}
n= & (11000100)_{2} \\
& \left(b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{f}\left(\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{2}\right) & =\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots \beta_{\mathbf{b}_{0}}\right)_{2} \\
" \text { normal" } & =\text { relaxed }
\end{aligned}
$$

$$
\beta_{b_{j}}= \begin{cases}-1 & b_{j}=0 \\ 1 & b_{j}=1\end{cases}
$$

We evaluate

$$
\begin{gathered}
\left.f(n)=f\left((11000100)_{2}\right)\right)=r^{\text {relax }}\left(\alpha, \beta_{b_{5}}, \ldots \beta_{b_{0}}\right) \\
=(1,1,-1,-1,1,-1,-1)_{2}=64+32-16-8+4-2-1=73
\end{gathered}
$$

Cyclic - Shift Property

We proved that the original J-recurrence:

$$
J(1)=1, \quad J(2 n)=2 J(n)-1, \quad J(2 n+1)=2 J(n)+1 \quad \text { for } n>1
$$

has a beautiful binary CF solution, called cyclic - shift property, namely

$$
J\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(b_{m-1}, b_{m-2}, \ldots b_{0}, b_{m}\right)_{2}
$$

We prove now that the cyclic - shift property holds also for the GF function f in the case when $\beta_{0}=-1, \beta_{1}=1$, i.e.

$$
f\left(\left(b_{m}, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(b_{m-1}, b_{m-2}, \ldots b_{0}, b_{m}\right)_{2}
$$

We know that $b_{m}=1$, so we have to prove that:

$$
\left.f\left(1, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(b_{m-1}, b_{m-2}, \ldots b_{0}, 1\right)_{2}
$$

for f such that $\beta_{0}=-1, \beta_{1}=1$

Cyclic - Shift Property for GJ

We have proved the relaxed binary CF solution for GJ:

$$
\text { CF: } f\left(\left(1, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(1, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{2}
$$

where $f(n)$ contains now 1 and -1 as defined by

$$
\beta_{b_{j}}= \begin{cases}-1 & b_{j}=0 \\ 1 & b_{j}=1\end{cases}
$$

Example

EXAMPLE

Consider $n=(1,0,0,1,0,0,1)_{2}$
By CF we have that

$$
f\left((1,0,0,1,0,0,1)_{2}\right)=(1,-1,-1,1,-1,-1,1)_{2}
$$

General Observation

f transforms a BLOCK of 0's in normal binary representation into a BLOCK of -1 's in the relaxed representation

$$
f\left((1,0,0 \ldots 0)_{2}\right)=(1,-1,-1 \ldots-1)_{2}
$$

ONE BLOCK Transformation

We prove now the following relationship between relaxed and normal representation
ONE BLOCK transformation

$$
(1,-1,-1 \ldots,-1)_{2}=(0,0,0 \ldots, 0,1)_{2}
$$

Proof: Let $n=\left((-1,-1 \ldots,-1)_{2}\right.$

$$
\begin{aligned}
\mathbf{n}=(\mathbf{1},-1,-1 \ldots,-1)_{2} & =\text { def } 2^{m}-2^{m-1}-2^{m-2}-\ldots-2^{1}-2^{0} \\
& =2^{m-1}-2^{m-2}-\ldots-2^{1}-2^{0} \\
& =2^{m-2}-2^{m-3}-\ldots-2^{1}-2^{0} \\
& \vdots \\
& =2^{1}-2^{0} \\
& =2-1 \\
& =\mathbf{1}=(0,0,0,0,1)_{2}
\end{aligned}
$$

Many Blocks Transformation

Example for TWO BLOCKS transformation plus binary shift

$$
\begin{aligned}
f\left((1,0,0,1,1,0,0,1)_{2}\right) & =\quad(1,-1,-1,1,1,-1,-1,1)_{2} \\
& ={ }^{1 b t}(0,0,1,1,1,-1,-1,1)_{2} \\
& ={ }^{1 b t}(0,0,1,1,0,0,1,1)_{2} \\
& =(0,0,1,1,0,0,1,1)_{2}
\end{aligned}
$$

We know that $f\left(\left(b_{m}, \ldots, b_{1}, b_{0}\right)_{2}\right)=\left(\alpha, \beta_{b_{m-1}}, \ldots, \beta_{b_{0}}\right)_{2}$
OBSERVE that each block of binary digits $(1,0 . .0)_{2}$ is transformed by f into $(1,-1, \ldots)_{2}$ and multiple applications of one block transformation transforms them back to $(1,0 . .0)_{2}$, so

$$
\left(\left(\alpha, \beta_{\mathrm{b}_{\mathrm{m}-1}}, \ldots, \beta_{\mathrm{b}_{0}}\right)_{2}=^{\mathrm{mbt}}\left(\mathbf{b}_{\mathrm{m}-1}, \ldots \mathrm{~b}_{1}, \mathbf{b}_{0}, 1\right)_{2}\right.
$$

where mbt denotes multiple BLOK transformations, and we know that $\alpha=1$

Cyclic - Shift Property

We now evaluate:

$$
\begin{aligned}
f\left(\left(1, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =\quad\left(\alpha, \beta_{b_{m-1}}, \ldots, \beta_{b_{0}}\right)_{2} \\
& ={ }^{m b t} \quad\left(b_{m-1}, \ldots, b_{1}, b_{0}, 1\right)_{2}
\end{aligned}
$$

This ends the proof of the Cyclic - Shift Property for Generalized Josephus \mathfrak{f} with $\alpha=1, \beta_{0}=-1, \beta_{1}=1$

Exercise 1

Given

$$
\begin{array}{ll}
f(1) & =5 \\
f(2 n) & =2 f(n)-10 \\
f(2 n+1) & =2 f(n)+83
\end{array}
$$

Exercise 1

Evaluate f(100)
Solution: just apply proper formulas!

Exercise 2

Given

$$
\begin{array}{ll}
f(1) & =5 \\
f(2 n) & =3 f(n)-10 \\
f(2 n+1) & =3 f(n)+83
\end{array}
$$

Exercise 2

Evaluate f(100)
Observe that now we don't have proper formulas! They work only for base 2!
Goal Generalize f and develop new formulas (if possible)

RADIX Representation

We proved while solving the Generalized Josephus that
RF: $f(1)=\alpha, \quad f(2 n+j)=2 f(n)+\beta_{j}$
where $j=0,1$ and $n \geq 0$
has a relaxed binary CF formula

$$
C F: \quad \mathbf{f}\left(\left(\mathbf{1}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{1}, \mathbf{b}_{\mathbf{0}}\right)_{2}\right)=\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots \beta_{\mathbf{b}_{0}}\right)_{\mathbf{2}}
$$

where $\beta_{b_{j}}$ are defined by

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} \quad j=0, \ldots, m-1\right.
$$

and where the relaxed binary representation is defined as

$$
\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots, \beta_{\mathbf{b}_{0}}\right)_{\mathbf{2}}=\mathbf{2}^{\mathbf{m}} \alpha+\mathbf{2}^{\mathbf{m}-\mathbf{1}} \beta_{\mathbf{m}-\mathbf{1}}+\ldots+\beta_{\mathbf{b}_{0}}
$$

Relaxed Radix Representation

We generalize GJ as follows
RF: $f(1)=\alpha, \quad f(2 n+j)=k f(n)+\beta_{j}$,
where $k \geq 2, \quad j=0,1$ and $n \geq 0$
Exercise: PROVE that RF has a relaxed k representation closed formula

$$
C F: \quad \mathbf{f}\left(\left(\mathbf{1}, \mathbf{b}_{\mathbf{m}-1}, \ldots \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{\mathbf{2}}\right)=\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots \beta_{\mathbf{b}_{0}}\right)_{\mathbf{k}}
$$

where $\beta_{b_{j}}$ are defined as before by

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} ; \quad j=0, \ldots, m-1\right.
$$

and where we define the relaxed k - representation as follows

Relaxed k-Radix Representation

Definition

A relaxed k - representation is defined as

$$
\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots, \beta_{\mathbf{b}_{0}}\right)_{\mathbf{k}}=\alpha \mathbf{k}^{\mathbf{m}}+\mathbf{k}^{\mathbf{m}-\mathbf{1}} \beta_{\mathbf{m}-\mathbf{1}}+\ldots+\beta_{\mathbf{b}_{0}}
$$

We repeat the proof \mathbf{i} directly from there definition following the proof for the case $\mathrm{k}=2$

Proof

$$
\begin{aligned}
& f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right)= k f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
&= k\left(k f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
&= k^{2} f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+k \beta_{b_{1}}+\beta_{b_{0}} \\
&= k^{3} f\left(\left(b_{m}, b_{m-1}, \ldots, b_{3}\right)_{2}\right)+k^{2} \beta_{b_{b_{2}}}+k \beta_{b_{1}}+\beta_{b_{0}} \\
& \vdots \\
&= k^{m} f\left(\left(b_{m}\right)_{2}\right)+k^{m-1} \beta_{b_{m-1}}+\ldots+k \beta_{b_{1}}+\beta_{b_{0}} \\
&= k^{m} \alpha+k^{m-1} \beta_{b_{m-1}}+\ldots+k^{2} \beta_{b_{2}}+k \beta_{b_{1}}+\beta_{b_{0}} \\
&=\left(\alpha, \beta_{b_{m-1}}, \ldots, \beta_{b_{1}}, \beta_{b_{0}}\right)_{k} \\
& \\
& f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right)=\left(\alpha, \beta_{b_{m-1}} \ldots \beta_{b_{1}}, \beta_{b_{0}}\right)_{k} \\
& \text { base } 2
\end{aligned}
$$

Example

Given RF:

$$
\begin{array}{ll}
f(1) & =5 \\
f(2 n) & =6 f(n)+3 \\
f(2 n+1) & =6 f(n)-10
\end{array}
$$

Evaluate: $f(100)$ by the use of the k - representation and closed formula

$$
C F: \quad \mathbf{f}\left(\left(\mathbf{1}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots \mathbf{b}_{1}, \mathbf{b}_{\mathbf{0}}\right)_{\mathbf{2}}\right)=\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots \beta_{\mathbf{b}_{0}}\right)_{\mathbf{k}}
$$

where $\beta_{b_{j}}$ are defined as before by

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} ; \quad j=0, \ldots, m-1\right.
$$

Example Solution

Given

$$
\begin{array}{ll}
f(1) & =5 \\
f(2 n) & =6 f(n)+3 \\
f(2 n+1) & =6 f(n)-10
\end{array}
$$

We evaluate

$$
\begin{aligned}
& \alpha=5 \\
& \beta_{0}=3 \\
& \beta_{1}=-10
\end{aligned}
$$

Example Solution

Evaluate: f(100)

$$
\begin{aligned}
\alpha=5, \beta_{0}=3, \beta_{1}=-10, k=6, n= & (1100100)_{2} \\
& \left(b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)
\end{aligned}
$$

$$
\begin{gathered}
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array}, \quad j=0, \ldots, m-1,\right. \\
\beta_{b_{0}}=3, \quad \beta_{b_{1}}=3, \quad \beta_{b_{2}}=-10, \quad \beta_{b_{3}}=3 ; \quad \beta_{b_{4}}=3, \\
\beta_{b_{5}}=-10, \quad \alpha=5
\end{gathered}, \begin{aligned}
& \mathbf{f}(100)=\mathbf{f}\left((1100100)_{2}\right)=(5,-10,3,3,-10,3,3)_{6}
\end{aligned}
$$

More General GJ Function

Further Generalization of GJ
RF:

$$
\begin{array}{lc}
f(i)=\alpha_{i}, & i=1, \ldots, d-1 \\
f(d n+j)=c f(n)+\beta_{j}, & n \geq 1,0 \leq j<d
\end{array}
$$

Exercise

Prove the following closed formula CF:

$$
\mathbf{f}\left(\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-1}, \ldots, \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{\mathbf{d}}\right)=\left(\alpha_{\mathbf{b}_{\mathbf{m}}}, \beta_{\mathbf{b}_{\mathbf{m}-1} \ldots} \ldots \beta_{\mathbf{b}_{1}}, \beta_{\mathbf{b}_{0}}\right)_{\mathbf{c}}
$$

Example

$$
\begin{aligned}
& f(1)=34 \\
& f(2)=5 \\
& f(3 n)=10 f(n)+76 \\
& f(3 n+1)=10 f(n)-2 \\
& f(3 n+2)=10 f(n)+8 \\
& \beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1 \\
\beta_{2} & b_{j}=2
\end{array}, \quad j=0, \ldots, d-1,\right.
\end{aligned}
$$

Example Solution

We evaluate:

$$
\begin{aligned}
& i=1,2 \\
& j=0,1,2 \\
& d=3 \\
& c=10 \\
& \alpha_{1}=34 \\
& \alpha_{2}=5 \\
& \beta_{0}=76 \\
& \beta_{1}=-2 \\
& \beta_{2}=8
\end{aligned}
$$

Example

Evaluate: f(19)

$$
\begin{aligned}
& 19=(201)_{3}=2 \cdot 3^{2}+0 \cdot 3+1 \\
& \alpha_{b_{2}}=\alpha_{2}=5 \\
& \beta_{b_{0}}=\beta_{0}=76 \\
& \beta_{b_{1}}=\beta_{1}=-2 \\
& \\
& \begin{aligned}
f(19) & =f\left((201)_{3}\right) \\
& =(5,76,-2)_{10} \\
& =5 \cdot 10^{2}+76 \cdot 10-2 \\
& =500+760-2 \\
& =1258
\end{aligned}
\end{aligned}
$$

Short Solution

$$
\mathbf{f}\left(\left(\mathbf{b}_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \ldots, \mathbf{b}_{1}, \mathbf{b}_{\mathbf{0}}\right)_{\mathrm{d}}\right)=\left(\alpha_{\mathbf{b}_{\mathbf{m}}}, \beta_{\mathbf{b}_{\mathbf{m}-1}} \ldots \beta_{\mathbf{b}_{1}}, \beta_{\mathbf{b}_{0}}\right)_{\mathrm{c}}
$$

Take

$$
19=\left(\begin{array}{lll}
2 & 0 & 1
\end{array}\right)_{3}
$$

Corresponding solution is

$$
\left(\alpha_{2}, \beta_{0}, \beta_{1}\right)_{10}
$$

we evaluate $\alpha_{2}=5, \quad \beta_{0}=76, \quad \beta_{1}=-2$ and get Solution:

$$
(5,76,-2)_{10}
$$

New Generalization of GJ

New Generalization of GJ

Problem

Use the repertoire method to solve the following yet more general four-parameter recurrence RF

$$
\begin{array}{ll}
h(1) & =\alpha \\
h(2 n+0) & =3 h(n)+\gamma n+\beta_{0} \\
h(2 n+1) & =3 h(n)+\gamma n+\beta_{1}, \text { for all } n \geq 1
\end{array}
$$

Solve means FIND a closed formula CF equivalent to RF

General Form of CF

Our RF is a FOUR parameters function and it is a generalization of the General Josephus GJ function f considered before

So we guess that now the general form of the CF is also a generalization of the one we already proved for GJ , i.e.
General form of CF is

$$
h(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)
$$

The Problem asks us to use repertoire method to prove that $C F$ is equivalent to RF

Thinking Time

Solution requires us to develop a system of 8 equations on $\alpha, \gamma, \beta_{0}, \beta_{1}, \mathrm{~A}(\mathrm{n}), \mathrm{B}(\mathrm{n}), \mathrm{C}(\mathrm{n}), \mathrm{D}(\mathrm{n})$ and accordingly a 4 repertoire functions!

First : we observe that when $\gamma=0$, we get that h becomes for Generalized Josephus function f below for $\mathrm{k}=3$:
$f(1)=\alpha, \quad f(2 n+j)=k f(n)+\beta_{j}$,
where $k \geq 2, j=0,1$ and $n \geq 0$
It seems worth to examine the case $\gamma=0$ first

Closed Formula for GJ function f

We proved that GJ function f has the relaxed k- representation closed formula

$$
\mathbf{f}\left(\left(1, \mathbf{b}_{\mathbf{m}-1}, \ldots \mathbf{b}_{1}, \mathbf{b}_{0}\right)_{2}\right)=\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots \beta_{\mathbf{b}_{0}}\right)_{\mathbf{k}}
$$

where $\beta_{b_{j}}$ are defined by

$$
\beta_{b_{j}}=\left\{\begin{array}{ll}
\beta_{0} & b_{j}=0 \\
\beta_{1} & b_{j}=1
\end{array} ; \quad j=0, \ldots, m-1,\right.
$$

for the relaxed k- radix representation defined as

$$
\left(\alpha, \beta_{\mathbf{b}_{\mathbf{m}-1}}, \ldots, \beta_{\mathbf{b}_{0}}\right)_{\mathbf{k}}=\alpha \mathbf{k}^{\mathbf{m}}+\mathbf{k}^{\mathbf{m}-1} \beta_{\mathbf{m}-1}+\ldots+\beta_{\mathbf{b}_{0}}
$$

Special Case of the function h

Consider now a special case of the function h for $\gamma=0$
We know that it now has a relaxed 3 - representation closed formula

$$
h\left(\left(1, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}\right)=\left(\alpha, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{3}
$$

It means that we get
Fact 0 For any $n=\left(1, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$,

$$
h(n)=\left(\alpha, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{3}
$$

Observe that our general form of CF in this case becomes

$$
h(n)=\alpha A(n)+\beta_{0} C(n)+\beta_{1} D(n)
$$

We must have $h(n)=h(n)$, for all n, inN so from this and Fact 0 we get the following Equation 1

Equation 1

We must have $h(n)=h(n)$, for all $n \in N$
From this and Fact 0 we get the following
Fact 1 For any $n=\left(1, b_{m-1}, \ldots b_{1}, b_{0}\right)_{2}$,

$$
\alpha A(n)+\beta_{0} C(n)+\beta_{1} D(n)=\left(\alpha, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{3}
$$

This provides us with the Equation 1 for finding our general form of CF

Next Observation

Observe that $A(n)$ in the Original Josephus was given (and proved to be) by a formula
$A(n)=2^{k}$, for all $n=2^{k}+\ell, \quad 0 \leq \ell<2^{k}$
We have a similar solution for our $A(n)$

Special Case of the function h

We evaluate now few initial values for h in case $\gamma=0$

$$
\begin{aligned}
h(1) & =\alpha ; \\
h(2) & =h(2(1)+0)=3 h(1)+\beta_{0} \\
& =3 \alpha+\beta_{0} ; \\
h(3) & =h(2(1)+1)=3 h(1)+\beta_{1} \\
& =3 \alpha+\beta_{1} ; \\
& \\
h(4) & =h(2(2)+0)=3 h(2)+\beta_{0} \\
& =9 \alpha+4 \beta_{0} ;
\end{aligned}
$$

Equation 2

It is pretty obvious that we do have a similar formula for $\mathrm{A}(\mathrm{n})$ as on the Original Josephus OJ
We write it as our Fact 2 and get our

Fact 2

For all $n=2^{k}+\ell, \quad 0 \leq \ell<2^{k}, n \in N-\{0\}$

$$
A(n)=3^{k}
$$

The proof is almost identical to the one in the GJ, we re-write is here for our case as an exercise.
This provides us with the Equation 2 for finding our general form of CF

Reminder

Reminder

We investigate the case when $\gamma=0$, i.e. now our formulas are RF: $\quad h(1)=\alpha, \quad h(2 n+j)=3 h(n)+\beta_{j}$
where $j=0,1$ and $n \geq 0$ and the closed formula is
CF: $\quad h(n)=\alpha A(n)+\beta_{0} C(n)+\beta_{1} D(n)$

Proof of the Equation 2

Consider now a further case $\beta_{0}=\beta_{1}=0$, and $\alpha=1$, i.e. RF: $\quad h(1)=1, \quad h(2 n)=3 h(n), \quad h(2 n+1)=3 h(n)$ and CF: $\quad h(n)=A(n)$
We use $h(n)=A(n)$ and re-write RF in terms of $A(n)$
$R A: \quad A(1)=1, \quad A(2 n)=3 A(n), \quad A(2 n+1)=3 A(n)$
Fact Closed formula CAR for AR is:
CA: $A(n)=A\left(2^{k}+\ell\right)=3^{k}, \quad 0 \leq \ell<2^{k}$
Observe that this Fact is equivalent to the following Fact 2

Proof of the Fact 2

Fact 2 for all $n=2^{k}+\ell, \quad 0 \leq \ell<2^{k}$

$$
A(n)=3^{k}
$$

Proof by induction on k
Base case: $\mathrm{k}=0$ i.e $\mathrm{n}=2^{0}+\ell, 0 \leq \ell<1$, hence $\mathrm{n}=1$ and RA: $A(1)=1$, and $C A: A(1)=3^{0}=1$, so we have $R A=C A$ Inductive Assumption
$A\left(2^{k-1}+\ell\right)=A\left(2^{k-1}+\ell\right)=3^{k-1}$, for $0 \leq \ell<2^{k-1}$
Inductive Thesis
$A\left(2^{k}+I\right)=A\left(2^{k}+I\right)=3^{k}$, for $0 \leq 1<2^{k}$
Two cases: $n \in$ even, $n \in$ odd
C1: $n \in$ even
$\mathrm{n}:=2 \mathrm{n}$, and we have $2^{k}+\ell=2 n$ iff $\ell \in$ even

Proof of the Fact 2

We evaluate n as follows
$2 n=2^{k}+\ell, \quad n=2^{k-1}+\frac{\ell}{2}$
We use n in the inductive step
Observe that the correctness of using $\frac{\ell}{2}$ follows from that fact that $\ell \in$ even, so $\frac{\ell}{2} \in N$ and it can be proved formally like on the previous slides
Inductive Proof

$$
\begin{aligned}
& A(2 n)=\text { reprn } A\left(2^{k}+\ell\right)={ }^{n-\text { eval }} 3 A\left(2^{k-1}+\frac{\ell}{2}\right)={ }^{\text {ind }} \\
& 3 * 3^{k-1}=3^{k}
\end{aligned}
$$

Proof of the Fact 2

C2: $n \in$ odd
$\mathrm{n}:=2 \mathrm{n}+1$, and we have $2^{k}+\ell=2 n+1$ iff $\ell \in$ odd
We evaluate n as follows
$2 n+1=2^{k}+\ell, \quad n=2^{k-1}+\frac{\ell-1}{2}$
We use n in the inductive step
Observe that the correctness of using $\frac{\ell-1}{2}$ follows from that fact that $\ell \in$ odd, so $\frac{\ell-1}{2} \in N$

Inductive Proof

$A(2 n+1)={ }^{\text {reprn }} A\left(2^{k}+\ell\right)={ }^{n-\text { eval }} 3 A\left(2^{k-1}+\frac{\ell-1}{2}\right)=$ ind
$3 * 3^{k-1}=3^{k}$
It ends the proof of the Fact 2: $A(n)=3^{k}$

Repertoire Method

We return now to original functions:
RF: $h(1)=\alpha, h(2 n)=3 h(n)+\gamma n+\beta_{0}$,
$h(2 n+1)=3 h(n)+\gamma n+\beta_{1}$,
CF: $h(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)$
We have already developed two equations (as stated in
Facts 1, 2) so we need now to consider only 2 repertoire functions to obtain 4 equations we need to solve the problem

Repertoire Function 1

Consider a first repertoire function : $\mathbf{h (n)}=\mathbf{1}$, for all $n \in N-\{0\}$
We put $h(n)=\mathbf{h}(\mathbf{n})=\mathbf{1}$, for all $n \in N-\{0\}$
We have $\mathbf{h}(1)=1$, and $\mathrm{h}(1)=\alpha$, so we get $\alpha=1$
We now use $h(n)=\mathbf{h}(\mathbf{n})=\mathbf{1}$, for all $n \in N-\{0\}$ and evaluate

$$
\begin{array}{c|c}
h(2 n)=3 h(n)+\gamma_{0} n+\beta_{0} & h(2 n+1)=3 h(n)+\gamma_{1} n+\beta_{1} \\
1=3+\gamma_{0} n+\beta_{0} & 1=3+\gamma_{1} n+\beta_{1} \\
0=2+\gamma_{0} n+\beta_{0} & 0=2+\gamma_{1} n+\beta_{1} \\
0=\left(2+\beta_{0}\right)+\gamma_{0} n & 0=\left(2+\beta_{1}\right)+\gamma_{1} n
\end{array}
$$

We get $\gamma=0, \quad \beta_{0}=\beta_{1}=-2$
Solution 1: $\alpha=1, \quad \gamma=0, \quad \beta_{0}=\beta_{1}=-2$

Equation 3

The general form of CF is:
$h(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)$
We put $h(n)=\mathbf{h}(\mathbf{n})$ for the first repertoire function, i.e. we put $h(n)=\mathbf{h}(\mathbf{n})=\mathbf{1}$, for all $n \in N-\{0\}$, i.e.
$\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)=\mathbf{h}(\mathbf{n})=\mathbf{1}$, for all
$n \in N-\{0\}$, where $\alpha, \gamma, \beta_{0}, \beta_{1}$ already are evaluated in the
Solution 1 as $\alpha=1, \gamma=0, \quad \beta_{0}=\beta_{1}=-2$
We get that CF = RF if and only if the following holds
Fact 3 For all $n \in N-\{0\}$,

$$
A(n)-2 C(n)-2 D(n)=1
$$

This is our Equation 3

Repertoire Function 2

Consider a repertoire function $\mathbf{2}$: $\mathbf{h}(\mathbf{n})=\mathbf{n}$, for all $n \in N-\{0\}$
We put $h(n)=\mathbf{h}(\mathbf{n})=\mathbf{n}$, for all $n \in N-\{0\}$
$\mathrm{h}(1)=\alpha, \mathbf{h}(\mathbf{1})=1$ and $\mathrm{h}(\mathrm{n})=\mathbf{h}(\mathbf{n})$, hence $\alpha=1$
We now use $h(n)=\mathbf{h}(\mathbf{n})=\mathbf{n}$, for all $n \in N-\{0\}$ and evaluate

$$
\begin{array}{c|c}
h(2 n)=3 h(n)+\gamma n+\beta_{0} & h(2 n+1)=3 h(n)+\gamma n+\beta_{1} ; \\
2 n=3 n+\gamma n+\beta_{0} & 2 n+1=3 n+\gamma n+\beta_{1} \\
0=(\gamma+1) n+\beta_{0} & 0=(\gamma+1) n+\left(\beta_{1}-1\right)
\end{array}
$$

We get $\gamma=-1, \beta_{0}=0, \beta_{1}=1$ and
Solution 2: $\alpha=1, \quad \gamma=-1, \quad \beta_{0}=0, \beta_{1}=1$

Equation 4

CF: $\quad h(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)$
We evaluate CF for $\mathrm{h}(\mathrm{n})=\mathbf{h}(\mathbf{n})=\mathbf{n}$, for all $n \in N-\{0\}$ and for the Solution 2: $\alpha=1, \gamma=-1, \beta_{0}=0, \beta_{1}=1$ and get $\mathrm{CF}=\mathrm{RF}$ if and only if the following holds
Fact 4 For all $n \in N-\{0\}$

$$
A(n)-B(n)+D(n)=n
$$

This is our Equation 4

Repertoire Method: System of Equations

We obtained the following system of 4 equations on $A(n)$, $B(n), C(n), D(n)$

1. $\alpha A(n)+\beta_{0} C(n)+\beta_{1} D(n)=\left(\alpha, \beta_{b_{m-1}}, \ldots \beta_{b_{0}}\right)_{3}$
2. $A(n)=3^{k}$
3. $A(n)-2 C(n)-2 D(n)=1$
4. $A(n)-B(n)+D(n)=n$

We solve it on $A(n), B(n), C(n), D(n)$ and put the solution into
$h(n)=\alpha A(n)+\gamma B(n)+\beta_{0} C(n)+\beta_{1} D(n)$

