cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 4a

CHAPTER 1, Problem 20 SOLUTION

Problem

Use the repertoire method to solve the general five-parameter recurrence RF

Solve means FIND the closed formula CF equivalent to following RF

$$h(1) = \alpha;$$

 $h(2n+0) = 4h(n) + \gamma_0 n + \beta_0;$
 $h(2n+1) = 4h(n) + \gamma_1 n + \beta_1, \text{ for all } n \ge 1.$

General Form of CF

Our RF for h is a FIVE parameters function and it is a **generalization** of the General Josephus GJ function f considered before

So we guess that now the **general form** of the CF is also a generalization of the one we already proved for GJ, i.e.

General form of CF is

$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

The **Problem 20** asks us to use the repertoire method to prove that **CF** is **equivalent** to **RF**

Thinking Time

Solution requires a system of **10 equations** on α , γ_0 , β_0 , γ_1 , β_1 , A(n), B(n), C(n), D(n), E(n) and accordingly a **5 repertoire functions**

Let's THINK a bit before we embark on quite complicated calculations and without certainty that they would succeed (look at the solution to the **Problem 16** in Lecture 4)

First: we observe that when when $\gamma_0 = \gamma_1 = 0$, we get that teh function h becomes for Generalize Josephus function f below for k = 4:

$$f(1) = \alpha$$
, $f(2n+j) = kf(n) + \beta_j$,
where $k \ge 2$, $j = 0, 1$ and $n \ge 0$

It seems worth to examine first the case $\gamma_0 = \gamma_1 = 0$

GJ f Closed Formula Solution

We **proved** that GJ function f has a relaxed k-representation closed formula

$$f((1,b_{m-1},...b_1,b_0)_2) = (\alpha,\beta_{b_{m-1}},...\beta_{b_0})_k$$

where β_{b_i} are defined by

$$eta_{b_j} = \left\{ egin{array}{ll} eta_0 & b_j = 0 \ eta_1 & b_j = 1 \end{array}
ight. ; \quad j = 0,...,m-1,$$

for the relaxed k- radix representation defined as

$$(\alpha, \beta_{b_{m-1}}, ..., \beta_{b_0})_{\mathbf{k}} = \alpha_{\mathbf{k}}^{\mathbf{m}} + \mathbf{k}^{\mathbf{m}-1}\beta_{\mathbf{m}-1} + ... + \beta_{b_0}$$

Special Case of h

Consider now a special case of our h, when $\gamma_0=\gamma_1=0$ We know that it now has a relaxed 4 - representation closed formula

$$h((1,b_{m-1},...b_1,b_0)_2)=(\alpha,\beta_{b_{m-1}},...\beta_{b_0})_4$$

It means that we get

Fact 0 For any $n = (1, b_{m-1}, ...b_1, b_0)_2$,

$$h(n) = (\alpha, \beta_{b_{m-1}}, ...\beta_{b_0})_4$$

Observe that our general form of CF in this case becomes

$$h(n) = \alpha A(n) + \beta_0 D(n) + \beta_1 E(n)$$

We must have h(n) = h(n), for all n, so from this and **Fact 0** we get the following equation 1 (stated as Fact 1)

Fact 1 For any
$$n = (1, b_{m-1}, ...b_1, b_0)_2$$
,
$$\alpha A(n) + \beta_0 D(n) + \beta_1 E(n) = (\alpha, \beta_{b_{m-1}}, ...\beta_{b_0})_4$$

This provides us with the **Equation 1** for finding our general form of **CF**

Next Observation

Observe that A(n) in the Original Josephus was proved to be given by a formula

$$A(n) = 2^k$$
, for all $n = 2^k + \ell$, $0 \le \ell < 2^k$

So we wonder if we could have a **similar solution** for our A(n)

Special Case of h

We evaluate now few initial values for h in case $\gamma_0 = \gamma_1 = 0$

$$h(1) = \alpha;$$

$$h(2) = h(2(1) + 0) = 4h(1) + \beta_0$$

$$= 4\alpha + \beta_0;$$

$$h(3) = h(2(1) + 1) = 4h(1) + \beta_1$$

$$= 4\alpha + \beta_1;$$

$$h(4) = h(2(2) + 0) = 4h(2) + \beta_0$$

 $= 16\alpha + 5\beta_0$;

It is pretty obvious that we do have a similar formula for A(n) as on the Original Josephus OJ

We write it as the next

Fact 2

For all
$$n = 2^k + \ell$$
, $0 \le \ell < 2^k$, $n \in N - \{0\}$
 $A(n) = 4^k$

This provides us with the **Equation 2** for finding our general form of **CF**

Repertoire Method

The proof of **Fact 2** is almost identical to the one in the case of OJ, and for the Problem in Lecture 4, so leave it as an exercise

We have already developed 2 Equations (as stated in Facts 1, 2) so we need now to consider only 3 repertoire functions to obtain all Equations need to solve the problem

Repertoire Function 1

We return now to out **original functions**:

RF:
$$h(1) = \alpha$$
, $h(2n) = 4h(n) + \gamma_0 n + \beta_0$, $h(2n+1) = 4h(n) + \gamma_1 n + \beta_1$, CF: $h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$ Consider a **first repertoire function**: $h(n) = 1$, for all $n \in N - \{0\}$ We put $h(n) = h(n) = 1$, for all $n \in N - \{0\}$ We have $h(1) = 1$, and $h(1) = \alpha$, so we get $\alpha = 1$ We now use $h(n) = h(n) = 1$, for all $n \in N - \{0\}$ and evaluate

$$h(2n) = 4h(n) + \gamma_0 n + \beta_0$$

$$1 = 4 + \gamma_0 n + \beta_0$$

$$0 = (3 + \beta_0) + \gamma_0 n$$

$$h(2n + 1) = 4h(n) + \gamma_1 n + \beta_1;$$

$$1 = 4 + \gamma_1 n + \beta_1$$

$$0 = (3 + \beta_1) + \gamma_1 n$$

We get
$$\gamma_0=\gamma_1=0$$
, $\beta_0=\beta_1=-3$
Solution 1: $\alpha=1$, $\gamma_0=\gamma_1=0$, $\beta_0=\beta_1=-3$

The general form of CF is:

$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We put $h(n) = h(n) = 1$, for all $n \in N - \{0\}$, i.e. $\alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n) = h(n) = 1$, for all $n \in N - \{0\}$, where $\alpha, \gamma_1, \beta_0, \gamma_2, \beta_1$ already are evaluated in the **Solution 1** as $\alpha = 1, \gamma_0 = \gamma_1 = 0, \beta_0 = \beta_1 = -3$

CF = RF if and only if the following holds

Fact 3 For all $n \in \mathbb{N} - \{0\}$,

$$A(n) - 3D(n) - 3E(n) = 1$$

This is our Equation 3

We get

Repertoire Function 2

Consider a **repertoire function 2**:
$$h(n) = n$$
, for all $n \in N - \{0\}$
We put $h(n) = h(n) = n$, for all $n \in N - \{0\}$
 $h(1) = \alpha$, $h(1) = 1$ and $h(n) = h(n)$, hence $\alpha = 1$
We now use $h(n) = h(n) = n$, for all $n \in N - \{0\}$ and evaluate
$$h(2n) = 4h(n) + \gamma_0 n + \beta_0$$

$$2n = 4n + \gamma_0 n + \beta_0$$

$$0 = (\gamma_0 + 2)n + \beta_0$$

$$0 = (\gamma_1 + 2)n + (\beta_1 - 1)$$

We get
$$\gamma_0 = \gamma_1 = -2$$
, $\beta_0 = 0$, $\beta_1 = 1$ and **Solution 2:** $\alpha = 1$, $\gamma_0 = \gamma_1 = -2$, $\beta_0 = 0$, $\beta_1 = 1$

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We evaluate CF for $h(n) = h(n) = n$, for all $n \in N - \{0\}$ and for the **Solution 2:** $\alpha = 1, \gamma_0 = \gamma_1 = -2, \beta_0 = 0, \beta_1 = 1$ and get

CF = RF if and only if the following holds

Fact 4 For all $n \in N - \{0\}$

$$A(n) - 2B(n) - 2C(n) + E(n) = n$$

This is our Equation 4

Repertoire Function 3

Consider a **repertoire function 3**:
$$h(n) = n^2$$
, for all $n \in N$
We put $h(n) = h(n) = n^2$, for all $n \in N - \{0\}$
 $h(1) = \alpha$, $h(1) = 1$, hence $\alpha = 1$

$$h(2n+0) = 4h(n) + \gamma_0 n + \beta_0$$

$$(2n)^2 = 4n^2 + \gamma_0 n + \beta_0$$

$$An^2 = An^2 + \gamma_0 n + \beta_0$$

$$0 = \gamma_0 n + \beta_0$$

$$h(2n+1) = 4h(n) + \gamma_1 n + \beta_1;$$

$$(2n+1)^2 = 4n^2 + \gamma_1 n + \beta_1;$$

$$4n^2 + 4n + 1 = 4n^2 + \gamma_1 n + \beta_1;$$

$$0 = (\gamma_1 - 4)n + (\beta_1 - 1)$$

We get
$$\gamma_0=0, \ \gamma_1=4, \ \beta_0=0, \ \beta_1=1$$
 and
Solution 3: $\alpha=1, \ \gamma_0=0, \ \gamma_1=4, \ \beta_0=0, \ \beta_1=1$

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We evaluate CF for $h(n) = h(n) = n^2$, for all $n \in N - \{0\}$
and for the **Solution 3**:
 $\alpha = 1$, $\gamma_0 = 0$, $\gamma_1 = 4$, $\beta_0 = 0$, $\beta_1 = 1$
We get CF = RF if and only if the following holds
Fact 5 For all $n \in N - \{0\}$

$$A(n) + 4C(n) + E(n) = n^2$$

This is our **Equation 5**

Repertoire Method: System of Equations

We obtained the following system of **5 equations** on A(n), B(n), C(n), D(n), E(n)

1.
$$\alpha A(n) + \beta_0 D(n) + \beta_1 E(n) = (\alpha, \beta_{b_{m-1}}, ..., \beta_{b_0})_4$$

2.
$$A(n) = 4^k$$

3.
$$A(n) - 3D(n) - 3E(n) = 1$$

4.
$$A(n) - 2B(n) - 2C(n) + E(n) = n$$

5.
$$A(n) + 4C(n) + E(n) = n^2$$

We solve it and put the solution into

$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

System of Equations Solution

First solution formulas

$$A(n) = 4^k$$

$$B(n) = \frac{A(n) - 3C(n) - 1}{3}$$
 (from **3.**)

$$D(n) = \frac{3A(n)+3C(n)-n^2-2n}{4}$$

$$E(n) = \frac{n^2 - A(n) - C(n)}{4} \quad (\text{from 5.})$$

$$C(n) = ((\alpha \beta_{b_{m-1}}...\beta_{b_1}\beta_{b_0})_4 - \alpha \cdot 4^k - \beta_0(1-4^k)/3)/(\beta_0+\beta_1)$$

Problem 20 Solution

After substitution we obtain:

$$A(n) = 4^k$$

$$B(n) = \frac{4^k - 3C(n) - 1}{3}$$

$$D(n) = \frac{3 \cdot 4^{k} + 3C(n) - n^{2} - 2n}{4}$$

$$E(n) = \frac{n^2 - 4^k - C(n)}{4}$$

$$C(n) = ((\alpha \beta_{b_{m-1}}...\beta_{b_1}\beta_{b_0})_4 - \alpha \cdot 4^k - \beta_0(1-4^k)/3)/(\beta_0+\beta_1)$$

General Remark

Observe that the use of the Relaxed k -Radix Representation partial solution, i.e. the equation 1 as well as proving the formula for A(n), i.e. the equation 2 were essential for the solution of the problem

Like in Ch1 **Problem 16** - the other typical repertoire functions like $h(n) = n^3$ etc. **FAIL**, i.e. lead to contradictions - easy and left for you to evaluate!

Read carefully published Solutions to Ch1**Problem 16**, which is, in fact an easier case of **Problem 20** just presented in a FULL DETAIL

Observe also that we have proved all Relaxed k -Radix Representation formulas needed and you have to KNOW these proofs for your tests

