# cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

# **LECTURE 5**

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

# CHAPTER 2 SUMS

- Part 1: Introduction Lecture 5
- Part 2: Sums and Recurrences (1) Lecture 5
- Part 2: Sums and Recurrences (2) Lecture 6
- Part 3: Multiple Sums (1) Lecture 7
- Part 3: Multiple Sums (2) Lecture 8
- Part 3: Multiple Sums (3) General Methods Lecture 8a
- Part 4: Finite and Infinite Calculus (1) Lecture 9a
- Part 4: Finite and Infinite Calculus (2) Lecture 9b
- Part 5: Infinite Sums- Infinite Series Lecture 10

Part 1: Introduction Sequences and Sums of Sequences

### Sequences

# Definition

A **sequence** of elements of a set A is any function f from the set of natural numbers N into A

 $f: N \longrightarrow A$ 

Any  $f(n) = a_n$  is called n-th term of the sequence f. Notations:

$$f = \{a_n\}_{n \in \mathbb{N}}, \{a_n\}_{n \in \mathbb{N}}, \{a_n\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Sequences Example

# Example

We define a sequence f of real numbers R as follows

 $f: N \longrightarrow R$ 

Given by a formula

$$f(n)=n+\sqrt{n}$$

We also use a shorthand notation for the sequence f and write

$$a_n = n + \sqrt{n}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### Sequences Example

We often write  $f = \{a_n\}$  in an even shorter and more informal form as

$$a_0 = 0, \quad a_1 = 1 + 1 = 2, \quad a_2 = 2 + \sqrt{2}$$
  
 $0, \quad 2, \quad 2 + \sqrt{2}, \quad 3 + \sqrt{3}, \quad \dots + \sqrt{n} \dots$ 

(ロト (個) (E) (E) (E) (9)

# Observations

**Observation 1:** A Sequence is **always INFINITE** (countably infinite) as by **definition**, the **domain** of the **sequence** (function f) is a set of N of natural numbers

**Observation 2**: card N =card N-K, for K is any **finite** subset of N, so we can enumerate elements of a sequence by any infinite subset of N

**Definition**: A set T is called **countably infinite** iff card T =card N, i.e. there is a one to one (1-1) function f that maps N onto T, i.e.

 $f: N \longrightarrow^{1-1,onto} T$ 

# Observations

**Observation 3**: We can choose as a SET of INDEXES of a sequence any COUNTABLY infinite set T, not only the set N of natural numbers

In our Book:  $T = N - \{0\} = N^+$ , i.e we consider sequences that "start" with n = 1

We usually write sequences as

 $a_1, a_2, a_3, \dots, a_n, \dots$ 

 $\{a_n\}_{n\in N^+}$ 

### **Finite Sequences**

#### Definition

A **finite sequence** of elements of a set A is any function f from a finite set K into A

In case when K is a non-empty **finite subset** of natural numbers N we write, for simplicity  $K = \{1, 2, ...n\}$  and call n the **length** of the sequence

We write sequence function f as

 $f: \{1, 2, \dots n\} \longrightarrow A$   $f(n) = a_n, f = \{a_k\}_{k=1\dots n}$ 

Case n=0: the function f is empty we call it an empty sequence and denote by e

# Example 1

Let

$$a_n=\frac{n}{(n-2)(n-5)}$$

Domain of the sequence  $f(n) = a_n$  is  $N - \{2, 5\}$  and

 $f: N - \{2, 5\} \rightarrow R$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

**Example 2** Let  $T = \{-1, -2, 3, 4\}$  $f(n) = a_n$  for  $n \in T$  is now a **finite sequence** with the domain T

# FINITE SUMS

In **Chapter 2**, we consider only **finite sums** of consecutive elements of sequences  $\{a_n\}$  of rational numbers **Definition** 

Given a sequence f of rational numbers

$$f: N^+ \longrightarrow R \quad f(n) = a_n$$

We write a finite sum as

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$$

・ロト・個ト・モート ヨー・シタウ

### Sums of elements of sequences

We also use notations:

$$\sum_{k=1}^{n} a_k = \sum_{1 \le k \le n} a_k = \sum_{k \in \{1, \dots, n\}} a_k$$
$$\sum_{k=1}^{n} a_k = \sum_{K} a_k$$

(ロト (個) (E) (E) (E) (9)

for  $K = \{1, ...n\}$ 

# Sums of elements of sequences

Given a sequence of numbers:

 $f: N^+ \to R, \quad f(n) = a_n \longleftarrow$  FULL DEFINITION  $a_1 a_2 \dots a_n, \quad a_k \in R \longleftarrow$  SHORTHAND

We sometimes evaluate a **sum** of some sub-sequence of  $\{a_n\}$ 

- コン・1日・1日・1日・1日・1日・

Sums of elements of sequences

For example we want to sum-up only each second term of  $\{a_n\}$ , i.e.  $n \in EVEN$ 

We write in two ways:

1. 
$$\sum_{1 \le k \le 2n, \ k \in EVEN} a_k = a_2 + a_4 + \dots + a_{2n}$$
  
where  $\boxed{1 \le k \le 2n, \ k \in EVEN} \longleftarrow P(k)$  summation property  
2. 
$$\sum_{k=1}^n a_{2k} = a_2 + a_4 + \dots + a_{2n}$$
  
where  $\boxed{a_{2k}} \longleftarrow$  subsequence property

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# **Sums Notations**

We use following notations

$$\sum_{P(k)} a_k = \sum_{k \in K} a_k = \sum_K a_k$$

for  $K = \{n \in N : P(n)\}$ 

and P(n) is a certain formula defining our **restriction** on n

We assume the following

**1.** The set K is **defined**; i.e. the statement P(n) = True or *False* is **decidable** 

2. The set K is finite - we consider only finite sums at this moment

### Example 1

Let P(n) be a property:  $1 \le n < 100$  and  $n \in ODD$ 

P(n) is a formula defining all ODD numbers between 1 and 99 (included) and hence

 $K = \{n \in N : P(n)\} = \{n \in ODD : 1 < n \le 99\} = \{1, 3, 5, ...., 99\}$ 

or

 $K = \{1, 3, ...., (2n + 1)\}$  for  $0 \le n \le 49$ 

We have that  $K = \{1, 3, \dots, (2n + 1)\}$  for  $0 \le n \le 49$  and by definition of the sum

$$\sum_{P(n)} a_n = \sum_{K} a_k \quad \longleftarrow \text{ PROPERTY}$$

$$= \sum_{n=0}^{49} a_{(2n+1)} = a_1 + a_3 + \dots + a_{99} \longleftarrow \text{subsequence}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Example 2

Let P(n) be a property:  $1 \le n < 100$ 

P(n) is now a formula defining natural numbers between 1 and 99 (included), i.e.

 $K = \{n \in N : P(n)\} = \{n \in N : 1 < n \le 99\} = \{1, 2, ...., 99\}$ 

00

In this case

$$\sum_{P(n)} a_n = \sum_K a_k = \sum_{k=1}^{33} a_k$$

 $= a_1 + a_2 + a_3 + \dots + a_{99}$ 

# Example 3

Let P(n) be a property:  $1 \le n < 100$  and

$$a_n = (2n+1)^2$$

**Evaluate:**  $\sum_{P(n)} a_n$ 

$$K = \{P(n) : 1 \le n < 100\} = \{1, 2, .99\}$$
 and  
 $\sum_{P(n)} (2n+1)^2 = \sum_{k=1}^{99} (2n+1)^2$ 

$$= 3^2 + 5^2 + \dots + (2 * 99 + 1)^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# **USEFUL NOTATION**

Here is our **BOOK NOTATION** (from Kenneth Iverson's programming language APL)

Characteristic Function of the formula P(x)

$$[P(x)] = \begin{cases} 1 & P(x) \text{ true} \\ 0 & P(x) \text{ false} \end{cases}$$

where  $x \in X \neq \emptyset$ 

Example:

Let P(n) be a property: p is prime number

$$[p \ prime] = \begin{cases} 1 & p \ is \ prime \\ 0 & p \ is \ not \ prime \end{cases}$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

# **Useful Sum Notation**

We write

$$\boxed{\sum_{P(k)} a_k = \sum_k a_k [P(k)]} = \sum_{k \in K} a_k$$

where

$$K = \{k : P(k)\}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

# Useful Sum Notation Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Example

$$\sum_{p} [p \ prime] [p \le n] \frac{1}{p}$$

Observe that now

P(x) is  $P_1(x) \cap P_2(x)$ 

for  $P_1(x)$ : x is prime

 $P_2(x)$ :  $x \le n$  for  $n \in N$ 

P(x) says : x is prime and  $x \le n$ 

$$\sum_{p} [p \ prime] [p \le n] \frac{1}{p}$$

∑ means : we sum  $\frac{1}{p}$  over all p that are PRIME and  $p \le n$  for  $n \in N$ **Case** when n = 0 - as  $0 \in N$ We have that P(x) is **false** as PRIMES are numbers ≥ 2

# **Book Notations Corrections**

**Book** uses notation  $p \leq N$  instead of  $p \leq n$ ,

# It is tricky!

N in standard notation denotes the set of natural numbers

We write  $n \in N$  and we can't write  $n \leq N$ 

When you read the book now and later, pay attention

**Book** also uses:  $n \leq K$ 

This really means that  $n \leq k$ 

In standard notation CAPITAL LETTERS DENOTE SETS

# **Book Notations Corrections**

Authors never define a sequence  $\{a_n\}$  for  $\sum a_k$ They also often state:

" $a_k$ " is defined/not defined for all set of INTEGERS It means they **admit** sequences and FINITE sequences with indices being Integers- what is OK and the set of Integers is **infinitely countable** 

### Useful Sum Notation Reminder

$$\sum_{P(k)} a_k = \sum_{k \in K} a_k = \sum_k [P(k)]a_k$$

#### where

$$K = \{k \in \mathbb{Z} : \mathbb{P}(k)\}$$
 and K is finite

or

 $K = \{k \in N : P(k)\}$  and K is finite  $\leftarrow$  This is usual case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where N is set of Natural numbers, Z - set of Integers

# Part 2: Sums and Recurrences

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

# Some Observations

**Observation 1**: for any  $n \in N$ 

$$\sum_{k=1}^{n+1} a_k = \sum_{k=1}^n a_k + a_{n+1}, \text{ and } \sum_{k=1}^1 a_k = a_1$$

**Consider case** n = 0: the sum is undefined and we put

$$\sum_{k=1}^{0} a_k = 0$$

In general we put

$$\sum_{k=a}^{b} a_{k} = 0 \quad \text{when} \quad b < a \quad \leftarrow \text{ DEFINITION}$$

### Some Observations

**Observation 2**: for any  $n \in N^+$ 

$$\sum_{k=0}^{n} a_{k} = \sum_{k=0}^{n-1} a_{k-1} + a_{n}$$
Now when  $n = 0$  we get  $\sum_{k=0}^{0} a_{k} = a_{0}$ 

**Reminder:** 

$$\sum_{k=0}^{-1} a_k = 0$$

うしつ 前に ふぼう ふぼう ふむう

### Sum Recurrence

We know that for any  $n \in N^+$ 

$$\sum_{k=0}^{n} a_{k} = \sum_{k=0}^{n-1} a_{k-1} + a_{n}$$

We denote Sn

$$a_n = \sum_{k=0}^n a_k$$

Observe that we have defined a function S

$$S: N \longrightarrow R, \quad S(n) = S_n = \sum_{k=0}^n a_k \leftarrow \text{SUM FUNCTION}$$

# Sum Recurrence

We re-rewrite  $S(n) = S_n = \sum_{k=0}^n a_k$  and get a following **recursive formula** for **S** 

$$S_0 = a_0, \quad S_n = S_{n-1} + a_n \quad \text{for } n > 0$$

Sum Recurrence Formula

We will use techniques from **Chapter 1** to evaluate (if possible) **closed** formulas for certain **SUMS** 

ション キョン キョン キョン しょう

# Problem

Given a sequence

 $f: N \longrightarrow R$ , defined by a formula

 $f(n) = a_n$  for  $a_n = a + bn$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where  $a, b \in R$  are constants

#### Problem

Find a closed formula CF for the following sum

$$S(n) = \sum_{k=0}^{n} a_k = \sum_{k=0}^{n} (a + bk)$$

## Sum Recurrence

The recurrence form of our sum  $S_n$  is

RF: 
$$S_0 = a$$
  
 $S_n = S_{n-1} + \underbrace{(a+bn)}_{a_n}$ 

We want to find a Closed Formula CF for this recurrence formula

### Generalization

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let's generalize our formula RF to RS as follows

 $RS: \quad R_0 = \alpha$  $R_n = R_{n-1} + \beta + \gamma n$ 

The previous RF is a case of RS for  $\alpha = a, \beta = a, \gamma = b$ 

### From RS to CF

 $RF: R_0 = \alpha, R_n = R_{n-1} + \beta + \gamma n$ Step 1: evaluate few terms  $R_0 = \alpha$  $R_1 = \alpha + \beta + \gamma$  $R_2 = \alpha + \beta + \gamma + \beta + 2\gamma = \alpha + 2\beta + 3\gamma$  $R_3 = \alpha + 2\beta + 3\gamma + \beta + 3\gamma = \alpha + 3\beta + 6\gamma$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

## From RS to CF

#### Step 2: Observation - general formula for CF

 $|R_n = A(n)\alpha + B(n)\beta + C(n)\gamma| \leftarrow \mathsf{CF}$ 

**GOAL:** Find A(n), B(n), C(n) and **prove** that RS = CF for

RS  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$ 

### Method: Repertoire Method

RS 
$$R_0 = \alpha$$
,  $R_n = R_{n-1} + \beta + \gamma n$ 

$$\mathsf{CF} \quad \mathsf{R}_n = \mathsf{A}(n)\alpha + \mathsf{B}(n)\beta + \mathsf{C}(n)\gamma$$

We set the first repertoire function as

$$\mathbf{R_n} = \mathbf{1}$$
 for all  $n \in N$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We set  $R_n = \mathbf{R_n}$ , for all  $n \in N$  and  $R_0 = \alpha$ , and  $\mathbf{R_0} = \mathbf{1}$  so  $\alpha = \mathbf{1}$ 

RS:  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$  **Repertoire function** is  $R_n = 1$  for all  $n \in N$ We set  $R_n = \mathbf{R_n}$ , for all  $n \in N$  and we evaluate  $1 = 1 + \beta + \gamma n$  for all  $n \in N$   $0 = \beta + \gamma n$  for all  $n \in N$ This is possible only when  $\beta = \gamma = 0$ 

Solution

$$\alpha = 1, \beta = 0, \gamma = 0$$

## Equation 1

CF:  $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$ 

We use now the first repertoire function

 $\mathbf{R_n} = \mathbf{1}$  for all  $n \in N$ 

We set  $R_n = R_n$ , for all  $n \in N$  and use just evaluated

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

 $\alpha = 1, \ \beta = 0, \ \gamma = 0$ 

and get our equation 1:

1 = A(n), for all  $n \in N$ 

**Fact 1** A(n) = 1, for all  $n \in N$ 

RS:  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$ We set the second **repertoire function** as

 $\mathbf{R}_{\mathbf{n}} = \mathbf{n} \text{ for all } n \in N$ We set  $R_n = \mathbf{R}_{\mathbf{n}}$ , for all  $n \in N$  and evaluate  $R_0 = \alpha$ , and  $R_0 = 0$  by definition, so  $\alpha = 0$ 

RS  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$ The second **repertoire function** is  $\mathbf{R_n} = \mathbf{n}$  for all  $n \in N$ We set  $R_n = \mathbf{R_n}$ , for all  $n \in N$  and we evaluate  $n = (n-1) + \beta + \gamma n$ , for all  $n \in N$  $0 = \beta - 1 + \gamma n$ , for all  $n \in N$  $1 = \beta + \gamma n$ , for all  $n \in N$ This is possible only when  $\beta = 1$ ,  $\gamma = 0$ 

Solution

$$\alpha = 0, \quad \beta = 1, \quad \gamma = 0$$

## Equation 2

 $\mathsf{CF} \quad \mathsf{R}_n = \mathsf{A}(n)\alpha + \mathsf{B}(n)\beta + \mathsf{C}(n)\gamma$ 

We use now the second repertoire function

$$\mathbf{R}_{\mathbf{n}} = \mathbf{n}$$
 for all  $n \in N$ 

We set  $R_n = R_n$ , for all  $n \in N$  and use just evaluated

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\alpha = 0, \ \beta = 1, \ \gamma = 0$ 

and get our equation 2:

n = B(n), for all  $n \in N$ 

**Fact 2** B(n) = n, for all  $n \in N$ 

RS  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$ We set the third **repertoire function** as

$$\mathbf{R_n} = \mathbf{n^2}$$
 for all  $n \in N$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We set  $R_n = \mathbf{R_n}$ , for all  $n \in N$  and evaluate  $R_0 = \alpha$ , and  $R_0 = 0$ , so  $\alpha = 0$ 

RS  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$ Third **repertoire function** is  $\mathbf{R}_{\mathbf{n}} = \mathbf{n}^2$  for all  $n \in N$ We set  $\mathbf{R}_n = \mathbf{R}_n$ , for all  $n \in N$  and evaluate  $n^2 = (n-1)^2 + \beta + \gamma n$ , for all  $n \in N$  $n^2 = n^2 - 2n + 1 + \beta + \gamma n$ , for all  $n \in N$  $0 = -2n + 1 + \beta + \gamma n$ , for all  $n \in N$  $0 = (1 + \beta) + n(\gamma - 2),$  for all  $n \in N$ This is possible only when  $\beta = -1$ ,  $\gamma = 2$ Solution  $\alpha = 0$ ,  $\beta = -1$ ,  $\gamma = 2$ 

## Equation 3

CF  $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$ We use now the third **repertoire function**  $\mathbf{R_n} = \mathbf{n^2}$  for all  $n \in N$ We set  $R_n = \mathbf{R_n}$ , for all  $n \in N$  and use just evaluated  $\alpha = 0, \ \beta = 1, \ \gamma = 0$ and get our **equation 3**:  $2C(n) - B(n) = n^2$ , for all  $n \in N$ 

**Fact 3**  $2C(n) - B(n) = n^2$ , for all  $n \in N$ 

Repertoire Method System of Equations

We obtained the following system of **3 equations** on A(n), B(n), C(n)

- **1.** A(n) = 1
- **2.** B(n) = n
- **3.**  $2C(n) B(n) = n^2$

We substitute 1. and 2. in 3. we get

 $n^2 = -n + 2C(n)$  and  $C(n) = \frac{(n^2 + n)}{2}$ 

Solution

$$A(n) = 1, \ B(n) = n, \ C(n) = \frac{(n^2 + n)}{2}$$

ション キョン キョン キョン しょう

## **CF** Solution

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We now put the **solution** into the general formula CF:  $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$ and get that the closed formula CF equivalent to RS:  $R_0 = \alpha$ ,  $R_n = R_{n-1} + \beta + \gamma n$  is

$$R_n = \alpha + n\beta + (\frac{n^2+n}{2})\gamma$$

### **CF** Solution

Let's now go back to original sum

$$S_n = \sum_{k=0}^n (a + bk)$$

We have that

 $S_n = R_n$ , for  $\alpha = a$ ,  $\beta = a$ ,  $\gamma = b$  so  $S_n = a + na + (\frac{n^2 + n}{2})b = (n + 1)a + (\frac{n^2 + n}{2})b$ We hence evaluated

$$S_n = \sum_{k=0}^n (a+bk) = (n+1)a + \frac{n(n+1)}{2}b$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

#### Simple Solution

Of course we can do it by a MUCH simpler method  $\sum_{k=0}^{n} (a + bk) = \sum_{k=0}^{n} a + \sum_{k=0}^{n} bk$   $= (n+1)a + b \sum_{k=0}^{n} k$ 

 $=(n+1)a+\frac{n(n+1)}{2}b$ 

Observe that for a sequence  $a_n = a$ , for all n we get  $\sum_{k=0}^{n} a_n = \sum_{k=0}^{n} a = a + \dots + a = (n+1)a$ 

▲□▶▲圖▶▲≣▶▲≣▶ = のへの

### Summations Laws

### **Distributive Law**

$$\sum_{k\in K} ca_k = c \sum_{k\in K} a_k$$

Associative Law

$$\sum_{k\in K}(a_k+b_k)=\sum_{k\in K}a_k+\sum_{k\in K}b_k$$

**Commutative Law** 

$$\sum_{k\in K}a_k=\sum_{\prod(k)\in K}a_{\prod(k)}$$

where  $\prod(k)$  is any permutation of elements of *K* Observe that the Associative Law holds for sums over the same domain *K*  **Combining Domains** 

### Formula for COMBINED DOMAINS



The second formula is listed **without the proof** on page 31 in our BOOK

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

# **Combined Limits**

For any set A, we denote by |A| the cardinality of the set A in a case when A is finite it denotes a number of elements of the set A. We obviously have the following

## Fact

For any finite sets A, B

 $|A \cup B| = |A| + |B| - |A \cap B|$ 

From the **Fact** we have that

 $|K \cup K'| = |K| + |K'| - |K \cap K'|$  and hence

 $|\mathbf{K}| + |\mathbf{K}'| = |\mathbf{K} \cup \mathbf{K}'| + |\mathbf{K} \cap \mathbf{K}'|$ 

It justifies but yet not formally proves that

$$\sum_{k \in K} a_k + \sum_{k \in K'} a_k = \sum_{k \in K \cap K'} a_k + \sum_{k \in K \cup K'} a_k$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
COMBINE LIMITS

# **Combining Domains**

Let's put

$$K = \{k : Q(k)\}$$
  $K' = \{k : R(k)\}$ 

The previous formula becomes:

$$\sum_{Q(k)} a_k + \sum_{R(k)} a_k = \sum_{Q(k) \cap R(k)} a_k + \sum_{Q(k) \cup R(k)} a_k$$

$$\uparrow \qquad \uparrow$$
COMBINE DOMAINS

**Proof** is based on the **Property** given on the next slide as an easy exercise to prove

## **Combined Domains Property**

## Exercise

Prove using the Truth Tables and definition of the characteristic function of a formula that the following holds

# **Combined Domains Property**

For any predicates P(k), Q(k)

 $[Q(k)] + [R(k)] = [Q(k) \cup R(k)] + [Q(k) \cap R(k)]$ 

Hence we have that for any  $a_k$ 

 $a_k[Q(k)] + a_k[R(k)] = a_k[Q(k) \cup R(k)] + a_k[Q(k) \cap R(k)]$ 

## **Combined Domains Proof**

## Proof

We evaluate from above

$$\sum_{k} a_{k}[Q(k)] + \sum_{k} a_{k}[R(k)]$$
$$= \sum_{k} a_{k}[Q(k) \cup R(k)] + \sum_{k} a_{k}[Q(k) \cap R(k)]$$

and by we get by definition that

$$\sum_{Q(k)} a_k + \sum_{R(k)} a_k = \sum_{Q(k) \cap R(k)} a_k + \sum_{Q(k) \cup R(k)} a_k$$

## Geometric Sum

## **Geometric Sequence**

# Definition

A sequence  $f: N \to R$ ,  $f(n) = a_n$  is geometric iff

 $\frac{a_{n+1}}{a_n} = q$ , for all  $n \in N$ 

We prove a following property of a geometric sequence  $\{a_n\}$ 

 $a_n = a_0 q^n$  for all  $n \in N$ 

## **Geometric Sum Formula**

$$S_n = \sum_{k=0}^n a_0 q^k = \frac{a_0(1-q^{n+1})}{1-q}$$

### Proof of Geometric Sum Formula

$$S_n = \sum_{k=0}^n a_0 q^k$$

$$S_n = a_0 + a_0 q + \dots + a_0 q^n$$

$$qS_n = a_0 q + a_0 q^2 + \dots + a_0 q^n + a_0 q^{n+1}$$

$$S_n(1-q) = a_0 - a_0 q^{n+1}$$

$$S_n = \sum_{k=0}^n a_0 q^n = \frac{a_0(q^{n+1}-1)}{q-1} \leftarrow \text{Geometric Sum}$$

## Examples

# Example 1

$$S_n = \sum_{k=0}^n 2^{-k} = \sum_{k=0}^n \left(\frac{1}{2}\right)^k$$

We have  $a_0 = 1$ ,  $q = \frac{1}{2}$ , and

$$S_n = rac{\left(rac{1}{2}
ight)^{n+1} - 1}{rac{-1}{2}} = 2 - \left(rac{1}{2}
ight)^n$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

## Examples

Example 2

$$S_n = \sum_{k=1}^n 2^{-k} = \sum_{k=1}^n \left(\frac{1}{2}\right)^k$$

We have now  $a_1 = \frac{1}{2}$ ,  $q = \frac{1}{2}$  and hence n := n - 1 and

$$S_{n-1} = \frac{\frac{1}{2}((\frac{1}{2}^{n}) - 1)}{\frac{-1}{2}} = 1 - (\frac{1}{2})^{n}$$

### From RF to Sum $S_n$ to CF

#### **Tower of Hanoi**

RF:  $T_0 = 0$ ,  $T_n = 2T_{n-1} + 1$ Divide RF by  $2^n$   $\frac{T_0}{2^0} = 0$ ,  $\frac{T_n}{2^n} = \frac{2T_{n-1}}{2^n} + \frac{1}{2^n}$ and we get  $\frac{T_0}{2^0} = 0$ ,  $\frac{T_n}{2^n} = \frac{T_{n-1}}{2^{n-1}} + \frac{1}{2^n}$ Denote  $S_n = \frac{T_n}{2^n}$ , we get a recursive sum formula SR RS:  $S_0 = 0$ ,  $S_n = S_{n-1} + \frac{1}{2^n}$ 

・ロト・(個)ト・(目)ト・(目)・(ロ)ト

#### From RF to Sum $S_n$ to CF

SR:  $S_0 = 0$ ,  $S_n = S_{n-1} + \frac{1}{2^n}$ It means that  $S: N \to R$  and



ション キョン キョン キョン しょう

$$T_n = 2^n - 1 \leftarrow CF$$
 for RF

### Tower of Hanoi Revisited

RF:  $T_0 = 0$ ,  $T_n = 2T_{n-1} + 1$ 

We have proved in Chapter 1 that

 $T_n = 2^n - 1 \leftarrow \text{Closed Formula}$ 

We now **reverse** the the previous problem:

we will get a sum  $S_n$  and its **closed formula** from the closed formula CF for  $T_n$ 

Divide  $T_n$  formula by  $2^n$   $\frac{T_0}{2^0} = 0$ ,  $\frac{T_n}{2^n} = \frac{2T_{n-1}}{2^n} + \frac{1}{2^n}$ Put  $S_n = \frac{T_n}{2^n}$  and we get SR:  $S_0 = 0$ ,  $S_n = S_{n-1} + \frac{1}{2^n}$ Now,  $S_n = \frac{T_n}{2^n}$  and using CF for  $T_n$  we get  $S_n = \frac{2^n - 1}{2^n}$ 

 $S_n = \sum_{k=1}^n \frac{1}{2^k} = 1 - \frac{1}{2^n} \leftarrow \text{SUM}$