cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 5

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

Part 1: Introduction
Sequences and Sums of Sequences

Sequences

Definition

A sequence of elements of a set A is any function f from the set of natural numbers N into A

$$
f: N \longrightarrow A
$$

Any $f(n)=a_{n}$ is called n-th term of the sequence f. Notations:

$$
f=\left\{a_{n}\right\}_{n \in N}, \quad\left\{a_{n}\right\}_{n \in N}, \quad\left\{a_{n}\right\}
$$

Sequences Example

Example

We define a sequence f of real numbers R as follows

$$
f: N \longrightarrow R
$$

Given by a formula

$$
f(n)=n+\sqrt{n}
$$

We also use a shorthand notation for the sequence f and write

$$
a_{n}=n+\sqrt{n}
$$

Sequences Example

We often write $f=\left\{a_{n}\right\} \quad$ in an even shorter and more informal form as

$$
\begin{gathered}
a_{0}=0, \quad a_{1}=1+1=2, \quad a_{2}=2+\sqrt{2} \\
0, \quad 2, \quad 2+\sqrt{2}, \quad 3+\sqrt{3}, \quad \ldots \ldots \ldots \ldots . n+\sqrt{n} \ldots
\end{gathered}
$$

Observations

Observation 1: A Sequence is always INFINITE (countably infinite) as by definition, the domain of the sequence (function f) is a set of N of natural numbers
Observation 2: card $N=$ card $N-K$, for K is any finite subset of N, so we can enumerate elements of a sequence by any infinite subset of N
Definition: A set T is called countably infinite iff card T= card N, i.e. there is a one to one (1-1) function f that maps N onto T, i.e.

$$
f: \quad N \longrightarrow{ }^{1-1, \text { onto } T}
$$

Observations

Observation 3: We can choose as a SET of INDEXES of a sequence any COUNTABLY infinite set T , not only the set N of natural numbers

In our Book: $T=N-\{0\}=N^{+}$, i.e we consider sequences that "start" with $\mathrm{n}=1$

We usually write sequences as

$$
\begin{gathered}
a_{1}, \quad a_{2}, \quad a_{3}, \ldots \ldots a_{n}, \ldots . . \\
\left\{a_{n}\right\}_{n \in N^{+}}
\end{gathered}
$$

Finite Sequences

Definition

A finite sequence of elements of a set A is any function f from a finite set K into A

In case when K is a non-empty finite subset of natural numbers N we write, for simplicity $K=\{1,2, \ldots n\}$ and call n the length of the sequence
We write sequence function f as

$$
f:\{1,2, \ldots n\} \longrightarrow A \quad f(n)=a_{n}, \quad f=\left\{a_{k}\right\}_{k=1 \ldots . .}
$$

Case $n=0$: the function f is empty we call it an empty sequence and denote by e

Example

Example 1

Let

$$
a_{n}=\frac{n}{(n-2)(n-5)}
$$

Domain of the sequence $f(n)=a_{n}$ is $N-\{2,5\}$ and

$$
f: N-\{2,5\} \rightarrow R
$$

Example 2 Let $T=\{-1,-2,3,4\}$
$f(n)=a_{n}$ for $n \in T$ is now a finite sequence with the domain T

FINITE SUMS

In Chapter 2, we consider only finite sums of consecutive elements of sequences $\left\{a_{n}\right\}$ of rational numbers

Definition

Given a sequence f of rational numbers

$$
f: N^{+} \longrightarrow R \quad f(n)=a_{n}
$$

We write a finite sum as

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots . .+a_{n}
$$

Sums of elements of sequences

We also use notations:

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k}= & \sum_{1 \leq k \leq n} a_{k}=\sum_{k \in\{1, \ldots n\}} a_{k} \\
& \sum_{k=1}^{n} a_{k}=\sum_{K} a_{k}
\end{aligned}
$$

for $K=\{1, . . n\}$

Sums of elements of sequences

Given a sequence of numbers:
$f: N^{+} \rightarrow R, \quad f(n)=a_{n} \longleftarrow$ FULL DEFINITION
$a_{1} a_{2} \ldots a_{n}, \quad a_{k} \in R \longleftarrow$ SHORTHAND
We sometimes evaluate a sum of some sub-sequence of $\left\{a_{n}\right\}$

Sums of elements of sequences

For example we want to sum-up only each second term of $\left\{a_{n}\right\}$, i.e. $n \in E V E N$

We write in two ways:

1.

$$
\sum_{1 \leq k \leq 2 n, k \in E V E N} a_{k}=a_{2}+a_{4}+\ldots . .+a_{2 n}
$$

where $1 \leq k \leq 2 n, k \in E V E N \longleftarrow P(k)$ summation property
2. $\sum_{k=1}^{n} a_{2 k}=a_{2}+a_{4}+\ldots . .+a_{2 n}$
where $\overparen{a_{2 k}} \longleftarrow$ subsequence property

Sums Notations

We use following notations

$$
\sum_{P(k)} a_{k}=\sum_{k \in K} a_{k}=\sum_{K} a_{k}
$$

for $K=\{n \in N: P(n)\}$
and $P(n)$ is a certain formula defining our restriction on n We assume the following

1. The set K is defined; i.e. the statement $P(n)=$ True or False is decidable
2. The set K is finite - we consider only finite sums at this moment

Example 1

Example 1

Let $\mathrm{P}(\mathrm{n})$ be a property: $1 \leq n<100$ and $n \in O D D$
$\mathrm{P}(\mathrm{n})$ is a formula defining all ODD numbers between 1 and 99 (included) and hence
$K=\{n \in N: P(n)\}=\{n \in O D D: 1<n \leq 99\}=\{1,3,5, \ldots ., 99\}$
or

$$
K=\{1,3, \ldots . .(2 n+1)\} \text { for } 0 \leq n \leq 49
$$

Example 1

We have that $K=\{1,3, \ldots \ldots(2 n+1)\}$ for $0 \leq n \leq 49$ and by definition of the sum

$$
\sum_{P(n)} a_{n}=\sum_{K} a_{k} \longleftarrow \text { PROPERTY }
$$

$$
=\sum_{n=0}^{49} a_{(2 n+1)}=a_{1}+a_{3}+\ldots . .+a_{99} \longleftarrow \text { subsequence }
$$

Example 2

Example 2

Let $\mathrm{P}(\mathrm{n})$ be a property: $1 \leq n<100$
$P(n)$ is now a formula defining natural numbers between 1 and 99 (included), i.e.
$K=\{n \in N: P(n)\}=\{n \in N: 1<n \leq 99\}=\{1,2, \ldots \ldots, 99\}$
In this case

$$
\begin{aligned}
\sum_{P(n)} a_{n} & =\sum_{K} a_{k}=\sum_{k=1}^{99} a_{k} \\
& =a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{99}
\end{aligned}
$$

Example 3

Example 3

Let $\mathrm{P}(\mathrm{n})$ be a property: $1 \leq n<100$ and

$$
a_{n}=(2 n+1)^{2}
$$

Evaluate: $\sum_{P(n)} a_{n}$
$K=\{P(n): 1 \leq n<100\}=\{1,2, .99\}$ and
$\sum_{P(n)}(2 n+1)^{2}=\sum_{k=1}^{99}(2 n+1)^{2}$

$$
=3^{2}+5^{2}+\ldots .+(2 * 99+1)^{2}
$$

USEFUL NOTATION

Here is our BOOK NOTATION (from Kenneth Iverson's programming language APL)
Characteristic Function of the formula $P(x)$

$$
[P(x)]= \begin{cases}1 & P(x) \text { true } \\ 0 & P(x) \text { false }\end{cases}
$$

where $x \in X \neq \emptyset$

Example:

Let $P(n)$ be a property: p is prime number

$$
[p \text { prime }]= \begin{cases}1 & p \text { is prime } \\ 0 & p \text { is not prime }\end{cases}
$$

Useful Sum Notation

We write
$\sum_{P(k)} a_{k}=\sum_{k} a_{k}[P(k)]=\sum_{k \in K} a_{k}$
where

$$
K=\{k: P(k)\}
$$

Useful Sum Notation Example

Example

$\sum_{p}[p$ prime $][p \leq n] \frac{1}{p}$
Observe that now
$P(x)$ is $P_{1}(x) \cap P_{2}(x)$
for $P_{1}(x): x$ is prime

$$
P_{2}(x): \quad x \leq n \text { for } n \in N
$$

$P(x)$ says: x is prime and $x \leq n$

Example

$\sum_{p}[p$ prime $][p \leq n] \frac{1}{p}$
\sum means:
we sum $\frac{1}{p}$ over all p that are PRIME and $p \leq n$ for $n \in N$
Case when $n=0$ - as $0 \in N$
We have that $P(x)$ is false as PRIMES are numbers ≥ 2

Book Notations Corrections

Book uses notation $p \leq N$ instead of $p \leq n$, It is tricky!
N in standard notation denotes the set of natural numbers
We write $n \in N$ and we can't write $n \leq N$
When you read the book now and later, pay attention
Book also uses: $n \leq K$
This really means that $n \leq k$
In standard notation CAPITAL LETTERS DENOTE SETS

Book Notations Corrections

Authors never define a sequence $\left\{a_{n}\right\}$ for $\sum a_{k}$ They also often state:
" a_{k} " is defined/not defined for all set of INTEGERS
It means they admit sequences and FINITE sequences with indices being Integers- what is OK and the set of Integers is infinitely countable

Useful Sum Notation Reminder

$$
\sum_{P(k)} a_{k}=\sum_{k \in K} a_{k}=\sum_{k}[P(k)] a_{k}
$$

where

$$
K=\{k \in Z: P(k)\} \text { and } K \text { is finite }
$$

or
$K=\{k \in N: P(k)\}$ and K is finite \leftarrow This is usual case
where N is set of Natural numbers, Z - set of Integers

Part 2: Sums and Recurrences

Some Observations

Observation 1: for any $n \in N$
$\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1}, \quad$ and $\quad \sum_{k=1}^{1} a_{k}=a_{1}$
Consider case $n=0$: the sum is undefined and we put

$$
\sum_{k=1}^{0} a_{k}=0
$$

In general we put

$$
\sum_{k=a}^{b} a_{k}=0 \text { when } b<a \leftarrow \text { DEFINITION }
$$

Some Observations

Observation 2: for any $n \in N^{+}$

$$
\sum_{k=0}^{n} a_{k}=\sum_{k=0}^{n-1} a_{k-1}+a_{n}
$$

Now when $n=0$ we get $\sum_{k=0}^{0} a_{k}=a_{0}$
Reminder:

$$
\sum_{k=0}^{-1} a_{k}=0
$$

Sum Recurrence

We know that for any $n \in N^{+}$

$$
\sum_{k=0}^{n} a_{k}=\sum_{k=0}^{n-1} a_{k-1}+a_{n}
$$

We denote $\quad S_{n}=\sum_{k=0}^{n} a_{k}$
Observe that we have defined a function S
$S: N \longrightarrow R, \quad S(n)=S_{n}=\sum_{k=0}^{n} a_{k} \leftarrow$ SUM FUNCTION

Sum Recurrence

We re-rewrite $S(n)=S_{n}=\sum_{k=0}^{n} a_{k}$ and get a following recursive formula for S
$\begin{aligned} & S_{0}=a_{0}, \quad S_{n}=S_{n-1}+a_{n} \text { for } n>0 \\ & \text { Sum Recurrence Formula }\end{aligned}$
S

We will use techniques from Chapter 1 to evaluate (if possible) closed formulas for certain SUMS

Problem

Given a sequence
$f: N \longrightarrow R$, defined by a formula

$$
f(n)=a_{n} \quad \text { for } \quad a_{n}=a+b n
$$

where $a, b \in R$ are constants

Problem

Find a closed formula CF for the following sum

$$
S(n)=\sum_{k=0}^{n} a_{k}=\sum_{k=0}^{n}(a+b k)
$$

Sum Recurrence

The recurrence form of our sum S_{n} is
RF: $\quad S_{0}=a$

$$
S_{n}=S_{n-1}+\underbrace{(a+b n)}_{a_{n}}
$$

We want to find a Closed Formula CF for this recurrence formula

Generalization

Let's generalize our formula RF to RS as follows
$R S: \quad R_{0}=\alpha$

$$
R_{n}=R_{n-1}+\beta+\gamma n
$$

The previous RF is a case of RS for
$\alpha=a, \beta=a, \gamma=b$

From RS to CF

$R F: R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
Step 1: evaluate few terms
$R_{0}=\alpha$
$R_{1}=\alpha+\beta+\gamma$
$R_{2}=\alpha+\beta+\gamma+\beta+2 \gamma=\alpha+2 \beta+3 \gamma$
$R_{3}=\alpha+2 \beta+3 \gamma+\beta+3 \gamma=\alpha+3 \beta+6 \gamma$

From RS to CF

Step 2: Observation - general formula for CF
$R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma \leftarrow C F$
GOAL: Find $A(n), B(n), C(n)$ and prove that $R S=C F$ for

RS $\quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$

Method: Repertoire Method

Repertoire Function 1

RS $\quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$

CF $\quad R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma$

We set the first repertoire function as

$$
\mathbf{R}_{\mathbf{n}}=\mathbf{1} \text { for all } n \in N
$$

We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and
$R_{0}=\alpha$, and $\mathbf{R}_{\mathbf{0}}=\mathbf{1}$ so $\alpha=1$

Repertoire Function 1

$\mathrm{RS}: \quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
Repertoire function is $R_{n}=1$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and we evaluate
$1=1+\beta+\gamma n \quad$ for all $n \in N$
$0=\beta+\gamma n \quad$ for all $n \in N$
This is possible only when $\beta=\gamma=0$

Solution

$$
\alpha=1, \quad \beta=0, \quad \gamma=0
$$

Equation 1

CF: $\quad R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma$
We use now the first repertoire function
$\mathbf{R}_{\mathbf{n}}=\mathbf{1}$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and use just evaluated
$\alpha=1, \beta=0, \gamma=0$
and get our equation 1:
$1=A(n)$, for all $n \in N$
Fact $1 \mathrm{~A}(\mathrm{n})=1$, for all $n \in N$

Repertoire Function 2

$\mathrm{RS}: \quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
We set the second repertoire function as

$$
\mathbf{R}_{\mathbf{n}}=\mathbf{n} \text { for all } n \in N
$$

We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and evaluate
$R_{0}=\alpha$, and $R_{0}=0$ by definition, so $\alpha=0$

Repertoire Function 2

RS $\quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
The second repertoire function is $\mathbf{R}_{\mathbf{n}}=\mathbf{n}$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and we evaluate
$n=(n-1)+\beta+\gamma n$, for all $n \in N$
$0=\beta-1+\gamma n$, for all $n \in N$
$1=\beta+\gamma n, \quad$ for all $n \in N$
This is possible only when $\beta=1, \gamma=0$

Solution

$$
\alpha=0, \quad \beta=1, \quad \gamma=0
$$

Equation 2

CF $\quad R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma$
We use now the second repertoire function
$\mathbf{R}_{\mathbf{n}}=\mathbf{n}$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and use just evaluated
$\alpha=0, \beta=1, \gamma=0$
and get our equation 2:
$n=B(n)$, for all $n \in N$

Fact $2 \mathrm{~B}(\mathrm{n})=\mathrm{n}$, for all $\mathrm{n} \in \mathrm{N}$

Repertoire Function 3

RS $\quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
We set the third repertoire function as

$$
\mathbf{R}_{\mathbf{n}}=\mathbf{n}^{2} \quad \text { for all } n \in N
$$

We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and evaluate $R_{0}=\alpha$, and $R_{0}=0$, so $\alpha=0$

Repertoire Function 3

RS $\quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$
Third repertoire function is
$\mathbf{R}_{\mathbf{n}}=\mathbf{n}^{\mathbf{2}} \quad$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and evaluate
$n^{2}=(n-1)^{2}+\beta+\gamma n, \quad$ for all $n \in N$
$n^{2}=n^{2}-2 n+1+\beta+\gamma n, \quad$ for all $n \in N$
$0=-2 n+1+\beta+\gamma n, \quad$ for all $n \in N$
$0=(1+\beta)+n(\gamma-2), \quad$ for all $n \in N$
This is possible only when $\beta=-1, \gamma=2$
Solution $\quad \alpha=0, \quad \beta=-1, \quad \gamma=2$

Equation 3

CF $\quad R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma$
We use now the third repertoire function
$\mathbf{R}_{\mathbf{n}}=\mathbf{n}^{\mathbf{2}}$ for all $n \in N$
We set $R_{n}=\mathbf{R}_{\mathbf{n}}$, for all $n \in N$ and use just evaluated
$\alpha=0, \beta=1, \gamma=0$
and get our equation 3:
$2 C(n)-B(n)=n^{2}, \quad$ for all $\quad n \in N$

Fact $32 C(n)-B(n)=n^{2}, \quad$ for all $\quad n \in N$

Repertoire Method System of Equations

We obtained the following system of 3 equations on $A(n)$, $B(n), C(n)$

1. $A(n)=1$
2. $B(n)=n$
3. $2 C(n)-B(n)=n^{2}$

We substitute 1. and 2. in 3 . we get
$n^{2}=-n+2 C(n)$ and $C(n)=\frac{\left(n^{2}+n\right)}{2}$
Solution

$$
A(n)=1, \quad B(n)=n, \quad C(n)=\frac{\left(n^{2}+n\right)}{2}
$$

CF Solution

We now put the solution into the general formula CF: $\quad \boldsymbol{R}_{n}=\mathbf{A}(n) \alpha+B(n) \beta+C(n) \gamma$
and get that the closed formula CF equivalent to
$\mathrm{RS}: \quad R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n$ is

$$
R_{n}=\alpha+n \beta+\left(\frac{n^{2}+n}{2}\right) \gamma
$$

CF Solution

Let's now go back to original sum

$$
S_{n}=\sum_{k=0}^{n}(a+b k)
$$

We have that

$$
\begin{aligned}
& S_{n}=R_{n}, \quad \text { for } \alpha=a, \beta=a, \quad \gamma=b \text { so } \\
& S_{n}=a+n a+\left(\frac{n^{2}+n}{2}\right) b=(n+1) a+\left(\frac{n^{2}+n}{2}\right) b
\end{aligned}
$$

We hence evaluated

$$
S_{n}=\sum_{k=0}^{n}(a+b k)=(n+1) a+\frac{n(n+1)}{2} b
$$

Simple Solution

Of course we can do it by a MUCH simpler method $\sum_{k=0}^{n}(a+b k)=\sum_{k=0}^{n} a+\sum_{k=0}^{n} b k$

$$
\begin{aligned}
& =(n+1) a+b \sum_{k=0}^{n} k \\
& =(n+1) a+\frac{n(n+1)}{2} b
\end{aligned}
$$

Observe that for a sequence $a_{n}=a$, for all n we get
$\sum_{k=0}^{n} a_{n}=\sum_{k=0}^{n} a=a+\ldots . .+a=(n+1) a$

Summations Laws

Distributive Law
$\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}$
Associative Law
$\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}$
Commutative Law
$\sum_{k \in K} a_{k}=\sum_{\Pi(k) \in K} a_{\Pi(k)}$
where $\Pi(k)$ is any permutation of elements of K
Observe that the Associative Law holds for sums over the same domain K

Combining Domains

Formula for COMBINED DOMAINS

$$
\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}=\sum_{Q(k) \cap R(k)} a_{k}+\sum_{Q(k) \cup R(k)} a_{k}
$$

OR

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cap K^{\prime}} a_{k}+\sum_{k \in K \cup K^{\prime}} a_{k}
$$

The second formula is listed without the proof on page 31 in our BOOK

Combined Limits

For any set A , we denote by $|A|$ the cardinality of the set A in a case when A is finite it denotes a number of elements of the set A . We obviously have the following

Fact

For any finite sets A, B

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

From the Fact we have that

$$
\left|K \cup K^{\prime}\right|=|K|+\left|K^{\prime}\right|-\left|K \cap K^{\prime}\right| \quad \text { and hence }
$$

$$
|K|+\left|K^{\prime}\right|=\left|K \cup K^{\prime}\right|+\left|K \cap K^{\prime}\right|
$$

It justifies but yet not formally proves that

$$
\begin{aligned}
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}= & \sum_{\substack{k \in K \cap K^{\prime} \\
\uparrow}} a_{k}+\sum_{k \in K \cup K^{\prime}} a_{k} \\
& \text { COMBINE LIMITS }
\end{aligned}
$$

Combining Domains

Let's put

$$
K=\{k: Q(k)\} \quad K^{\prime}=\{k: R(k)\}
$$

The previous formula becomes:
$\sum_{\substack{Q(k) \\ \uparrow}} a_{k}+\sum_{R(k)} a_{k}=\sum_{Q(k) \cap R(k)} a_{k}+\sum_{Q(k) \cup R(k)} a_{k}$

COMBINE DOMAINS

Proof is based on the Property given on the next slide as an easy exercise to prove

Combined Domains Property

Exercise

Prove using the Truth Tables and definition of the characteristic function of a formula that the following holds

Combined Domains Property

For any predicates $P(k), Q(k)$

$$
[Q(k)]+[R(k)]=[Q(k) \cup R(k)]+[Q(k) \cap R(k)]
$$

Hence we have that for any a_{k}
$a_{k}[Q(k)]+a_{k}[R(k)]=a_{k}[Q(k) \cup R(k)]+a_{k}[Q(k) \cap R(k)]$

Combined Domains Proof

Proof

We evaluate from above

$$
\begin{aligned}
& \sum_{k} a_{k}[Q(k)]+\sum_{k} a_{k}[R(k)] \\
& =\sum_{k} a_{k}[Q(k) \cup R(k)]+\sum_{k} a_{k}[Q(k) \cap R(k)]
\end{aligned}
$$

and by we get by definition that

$$
\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}=\sum_{Q(k) \cap R(k)} a_{k}+\sum_{Q(k) \cup R(k)} a_{k}
$$

Geometric Sum

Geometric Sequence

Definition

A sequence $f: N \rightarrow R, f(n)=a_{n}$ is geometric iff

$$
\frac{a_{n+1}}{a_{n}}=q, \text { for all } n \in N
$$

We prove a following property of a geometric sequence $\left\{a_{n}\right\}$
$a_{n}=a_{0} q^{n}$ for all $n \in N$
Geometric Sum Formula

$$
S_{n}=\sum_{k=0}^{n} a_{0} q^{k}=\frac{a_{0}\left(1-q^{n+1}\right)}{1-q}
$$

Proof of Geometric Sum Formula

$$
\begin{aligned}
& S_{n}=\sum_{k=0}^{n} a_{0} q^{k} \\
& S_{n}=a_{0}+a_{0} q+\ldots \ldots+a_{0} q^{n} \\
& q S_{n}=a_{0} q+a_{0} q^{2}+\ldots . .+a_{0} q^{n}+a_{0} q^{n+1} \\
& S_{n}(1-q)=a_{0}-a_{0} q^{n+1} \\
& S_{n}=\sum_{k=0}^{n} a_{0} q^{n}=\frac{a_{0}\left(q^{n+1}-1\right)}{q-1} \leftarrow \text { Geometric Sum }
\end{aligned}
$$

Examples

Example 1

$$
S_{n}=\sum_{k=0}^{n} 2^{-k}=\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}
$$

We have $a_{0}=1, \quad q=\frac{1}{2}$, and

$$
S_{n}=\frac{\left(\frac{1}{2}\right)^{n+1}-1}{\frac{-1}{2}}=2-\left(\frac{1}{2}\right)^{n}
$$

Examples

Example 2

$$
S_{n}=\sum_{k=1}^{n} 2^{-k}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}
$$

We have now $\quad a_{1}=\frac{1}{2}, \quad q=\frac{1}{2}$ and hence $n:=n-1 \quad$ and

$$
S_{n-1}=\frac{\frac{1}{2}\left(\left(\frac{1}{2}^{n}\right)-1\right)}{\frac{-1}{2}}=1-\left(\frac{1}{2}\right)^{n}
$$

From RF to Sum S_{n} to CF

Tower of Hanoi

RF: $\quad T_{0}=0, \quad T_{n}=2 T_{n-1}+1$
Divide RF by 2^{n}
$\frac{T_{0}}{2^{0}}=0, \quad \frac{T_{n}}{2^{n}}=\frac{2 T_{n-1}}{2^{n}}+\frac{1}{2^{n}}$
and we get
$\frac{T_{0}}{2^{0}}=0, \quad \frac{T_{n}}{2^{n}}=\frac{T_{n-1}}{2^{n-1}}+\frac{1}{2^{n}}$
Denote $S_{n}=\frac{T_{n}}{2^{n}}$, we get a recursive sum formula $S R$
RS: $S_{0}=0, \quad S_{n}=S_{n-1}+\frac{1}{2^{n}}$

From RF to Sum S_{n} to CF

SR: $S_{0}=0, \quad S_{n}=S_{n-1}+\frac{1}{2^{n}}$
It means that $S: N \rightarrow R$ and
$S_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}} \quad$ (as S_{n} is geometric)
But we have $S_{n}=\frac{T_{n}}{2^{n}}$ so we get

$$
T_{n}=2^{n} S_{n}
$$

and we evaluate

$$
T_{n}=2^{n}-1 \leftarrow C F \text { for RF }
$$

Tower of Hanoi Revisited

RF: $\quad T_{0}=0, \quad T_{n}=2 T_{n-1}+1$
We have proved in Chapter 1 that

$$
T_{n}=2^{n}-1 \leftarrow \text { Closed Formula }
$$

We now reverse the the previous problem:
we will get a sum S_{n} and its closed formula from the closed formula CF for T_{n}
Divide T_{n} formula by 2^{n}
$\frac{T_{0}}{2^{0}}=0, \quad \frac{T_{n}}{2^{n}}=\frac{2 T_{n-1}}{2^{n}}+\frac{1}{2^{n}}$
Put $S_{n}=\frac{T_{n}}{2^{n}} \quad$ and we get

$$
\text { SR: } \quad S_{0}=0, \quad S_{n}=S_{n-1}+\frac{1}{2^{n}}
$$

Now, $S_{n}=\frac{T_{n}}{2^{n}}$ and using CF for T_{n} we get $S_{n}=\frac{2^{n}-1}{2^{n}}$
Thus, $\quad S_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}} \leftarrow$ SUM

