cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 6

CHAPTER 2 SUMS

Part 2: Sums and Recurrences

Certain Type of Recurrence

We present now a general technique for finding a CF formula for any Recurrence of a Type:

$$
\text { RF: } \quad a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \text { for } n \geq 1
$$

with some Initial Condition for $n=0$.
where a_{n}, b_{n}, c_{n} are any sequences, $n \geq 1$
We do it by by reducing our RF to a certain sum Idea: multiply RF by a Summation Factor $s_{n}, n \geq 1$
We don't know yet what this factor is, but we will find it out

General Technique

Given the general function

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \text { for } n \geq 1 \leftarrow \mathrm{RF}
$$

We multiply both sides by s_{n}, called a Summation Factor and get
$s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-1}+s_{n} c_{n}$ \square

We want s_{n} to have a property

$$
s_{n} b_{n}=s_{n-1} a_{n-1}
$$

\square

General Technique

Replacing $s_{n} b_{n}$ of \star with corresponding factor defined by P i.e. by $s_{n-1} a_{n-1}$ we get
$s_{n} a_{n} T_{n}=s_{n-1} a_{n-1} T_{n-1}+s_{n} c_{n}$ \square
We put now

$$
S_{n}=s_{n} a_{n} T_{n}
$$

We use S to re-write $\star \star$ and get

$$
S_{n}=S_{n-1}+s_{n} c_{n} \quad \text { for } \quad n \geq 1
$$

General Technique

We just developed formula

$$
S_{n}=S_{n-1}+S_{n} c_{n} \quad \text { for } \quad n \geq 1
$$

Let's evaluate its few terms

$$
\begin{aligned}
& S_{1}=S_{0}+S_{1} c_{1} \\
& S_{2}=S_{1}+s_{2} c_{2}=s_{0}+s_{1} c_{1}+s_{2} c_{2} \\
& S_{3}=S_{2}+s_{3} c_{3}=S_{0}+s_{1} c_{1}+s_{2} c_{2}+s_{3} c_{3} \\
& S_{3}=S_{0}+\sum_{k=1}^{3} s_{k} c_{k}
\end{aligned}
$$

General Technique

We generalize S_{3} (proof by mathematical induction)

$$
S_{n}=S_{0}+\sum_{k=1}^{n} s_{k} c_{k}
$$

(s_{k} is summation factor)

We now use S : $\quad S_{n}=s_{n} a_{n} T_{n}$
When $n=0$ we get $S_{0}=s_{0} a_{0} T_{0}$ and
$S_{n}=s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}$
Using P : $s_{n-1} a_{n-1}=s_{n} b_{n}$ we get

$$
s_{n}=s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}
$$

General Technique

We just proved that
$S_{n}=s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}$
By S: $\quad S_{n}=s_{n} a_{n} T_{n} \quad$ we get
$T_{n}=\frac{S_{n}}{a_{n} S_{n}}$ i. e. $\quad T_{n}=\frac{1}{a_{n} S_{n}} S_{n}$
Finally we get the following "SUM" closed formula for T_{n}

$$
T_{n}=\frac{1}{a_{n} s_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Summation Factor

Next Step: Find the summation factor s_{n} in terms of
a_{n}, b_{n}, c_{n}
Question: How to do it??
Answer: Use P : $s_{n-1} a_{n-1}=s_{n} b_{n}$
Remember that the sequences $\left(a_{n}, b_{n}\right.$ are given for or $n \geq 1$ We evaluate

$$
\begin{aligned}
& s_{2}=\frac{s_{1} a_{1}}{b_{2}}=s_{1} \frac{a_{1}}{b_{2}} \\
& s_{3}=\frac{s_{2} a_{2}}{b_{3}}=s_{1} \frac{a_{1} a_{2}}{b_{2} b_{3}} \\
& s_{4}=\frac{s_{3} a_{3}}{b_{4}}=s_{1} \frac{a_{1} a_{2} a_{3}}{b_{2} b_{3} b_{4}}
\end{aligned}
$$

Summation Factor

We guess and prove by Mathematical Induction that

Summation Factor is:

$s_{n}=s_{1} \frac{a_{1} a_{2} \ldots . a_{n-1}}{b_{2} b_{3} b_{4} \ldots b_{n}} \leftarrow$ where s_{1} is a constant
Now we put all together and get CF formula for any Recurrence of the Type:

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \leftarrow R F \text { for } n \geq 1
$$

and where T_{0} is given by initial condition

CF for RF

Let RF be any Recurrence of the Type:

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n} \leftarrow R F \text { for } n \geq 1
$$

It always have a "sum" CF Formula

$$
T_{n}=\frac{1}{a_{n} s_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \leftarrow \mathrm{CF}
$$

where the summation factor s_{k} is given by

$$
s_{n}=s_{1} \frac{a_{1} a_{2} \ldots . . a_{n-1}}{b_{2} b_{3} b_{4} \ldots b_{n}} \leftarrow \text { where } s_{1} \text { is a constant }
$$

Example of Tower of Hanoi Revisited Again

Let's look at
$T_{0}=0, \quad T_{n}=2 T_{n-1}+1 \quad$ for $n \geq 1$
as particular case of our general formula
$a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$ for $n \geq 1$
We have in this case $a_{n}=1, b_{n}=2, c_{n}=1 \quad$ and $s_{1}=\frac{1}{2}$
We evaluate the summation factor
$s_{n}=\underbrace{\frac{1}{2 \ldots 2}}_{n-1} \underbrace{\frac{1}{2}}_{s_{1}}=\frac{1}{2^{n}}$
Therefore, $s_{n}=2^{-n}, \quad s_{1}=\frac{1}{2}$

Example of Tower of Hanoi Revisited Again

Check $\quad T_{n}=\frac{1}{a_{n} s_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \quad$ for
$s_{n}=2^{-n}, \quad a_{n}=1, \quad b_{n}=2, \quad c_{n}=1$
So now
$T_{n}=\frac{1}{2^{-n}}\left(0+\sum_{k=1}^{n} \frac{1}{2^{n}}\right)$
Observe that $\sum_{k=1}^{n} \frac{1}{2^{n}}$ is a geometric sum $S_{n}=\frac{a_{0}\left(q^{n+1}-1\right)}{q-1}$, for $q=\frac{1}{2}<1$, so we get
$\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}} \quad$ and $\quad T_{n}=2^{n}\left(1-\frac{1}{2^{n}}\right)$
$T_{n}=2^{n}-1 \leftarrow$ CF Formula

Quicksort

Quicksort, Hoare 1962

The number of comparison steps made by the Quicksort when applied to n items in random order is given by a function

RF $\quad C_{0}=0, \quad C_{n}=(n+1)+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}$
We calculate: $\quad C_{1}=2, C_{2}=5, \quad C_{3}=\frac{26}{3} \quad$ etc \ldots

Goal: find CF for RF

Quicksort

Step 1: Get rid of the $\quad \Sigma$ in the recurrence
Step 2: Find a CF Formula, or a "sum" CF at least
Hint: use the General Technique
Given RF: $\quad C_{n}=(n+1)+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}$
We re-write it as follows

$$
\begin{aligned}
& n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-1} C_{k} \quad \text { where } n>1 \\
& n C_{n}=n^{2}+n+2\left(\sum_{k=0}^{n-2} C_{k}+C_{n-1}\right) \\
& n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1} \quad 1
\end{aligned}
$$

Quicksort

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1} \quad 1
$$

We re-write

$$
\begin{aligned}
& \star n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-1} C_{k} \text { for } n=n-1 \\
& (n-1) C_{n-1}=(n-1)^{2}+n-1+2 \sum_{k=0}^{n-2} C_{k} \\
& (n-1) C_{n-1}=n^{2}-n+2 \sum_{k=0}^{n-2} C_{k} \quad 2
\end{aligned}
$$

We subtract 2 from 1 and we get $n C_{n}-(n-1) C_{n-1}=2 n+2 C_{n-1}$

Quicksort

$$
\begin{aligned}
n C_{n} & =(n-1) C_{n-1}+2 n+2 C_{n-1} \\
& =n C_{n-1}-C_{n-1}+2 n+2 C_{n-1} \\
& =2 n+n C_{n-1}+C_{n-1}
\end{aligned}
$$

We get the formula

$$
R F: \quad n C_{n}=(n+1) C_{n-1}+2 n \quad \text { and } C_{0}=0
$$

This is of the form of the general type

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n}
$$

for $\quad a_{n}=n, \quad b_{n}=n+1, \quad c_{n}=2 n$

Quicksort

We know that the Summation Factor multiplied by a constant s_{1} is

$$
s_{n}=s_{1} \frac{a_{1} a_{2} \ldots . a_{n-1}}{b_{2} b_{3} \ldots b_{n}}
$$

and now $a_{n}=n, \quad b_{n}=n+1, c_{n}=2 n$
We get

$$
s_{n}=\frac{1 \cdot 2 \cdot \ldots(n-1)}{3 \cdot \ldots(n-1) n(n+1)}=\frac{2}{n(n+1)}
$$

as $b_{2}=3$ and $s_{1}=\frac{2}{1 \cdot 2}=1$

Quicksort

Last step: we use formula
$T_{n}=\frac{1}{a_{n} s_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)$
for $a_{n}=n, \quad b_{n}=n+1, c_{n}=2 n$ and get
$C_{n}=\frac{1}{n s_{n}}\left(0+\sum_{k=1}^{n} 2 k s_{k}\right) \quad\left(T_{0}=C_{0}=0\right)$
This gives the following solution for $s_{n}=\frac{2}{n(n+1)}$
$C_{n}=\frac{n(n+1)}{2 n} \sum_{k=1}^{n} \frac{4 k}{k(k+1)}$ we pull out 4 out of sum and get
"SUM" CF : $\quad C_{n}=2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}$

Harmonic Number

Harmonic Number H_{n}

$$
\begin{aligned}
H_{n}=1+\frac{1}{2}+\ldots .+\frac{1}{n}= & \sum_{k=1}^{n} \frac{1}{k}, \text { i.e. } \\
& H_{n}=\sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Name origin: k-th harmonic produced by a violin string is the fundamental tone produced by a string that is $\frac{1}{k}$ times long. We now use H_{n} to get a H_{n} CF formula for our Quicksort recurrence "SUM" CF formula
"SUM" CF: $\quad C_{n}=2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}$

H_{n} and Quicksort

Observe that

$$
\sum_{k=1}^{n} \frac{1}{k+1}=\sum_{1 \leq k \leq n} \frac{1}{k+1}
$$

We want now to evaluate the sum
$\sum_{1 \leq k \leq n} \frac{1}{k+1}$ in terms of H_{n}

H_{n} and Quicksort

We put $k=k-1$ and get
$\sum_{1 \leq k \leq n} \frac{1}{k+1}=\sum_{1 \leq k-1 \leq n} \frac{1}{k}$
$=\sum_{2 \leq k \leq n+1} \frac{1}{k}$

$$
=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\frac{1}{1}+\frac{1}{n+1}
$$

H_{n} and Quicksort

We obtained

$$
\sum_{k=1}^{n} \frac{1}{k+1}=H_{n}-\frac{n}{n+1}
$$

and so our "SUM" CF formula

$$
C_{n}=2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}
$$

becomes

$$
\begin{aligned}
& C_{n}=2(n+1)\left(H_{n}-\frac{n}{n+1}\right)=2(n+1) H_{n}-\frac{2 n(n+1)}{n+1} \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

H_{n} and Quicksort

We have proved the sum-closed formula

$$
\text { "SUM" CF : } \quad C_{n}=2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}
$$

has its H_{n}-closed formula

$$
H_{n} C F: \quad C_{n}=2(n+1) H_{n}-2 n, \quad C_{0}=0
$$

We evaluate (to check the result!)
$C_{0}=0, \quad C_{1}=1, \quad C_{2}=2 \cdot 3 \cdot \frac{3}{2}-4=5$, etc..

Perturbation Method

Perturbation Method is a method that often allows us to evaluate a CF form for a certain sums
The idea is to start with an unknown sum and call it S_{n} :

$$
S_{n}=\sum_{k=0}^{n} a_{k}
$$

Then we re-write S_{n+1} in two ways, by splitting off both its last term a_{n+1} and its first term a_{0} :

$$
\begin{aligned}
S_{n}+a_{n+1} & =\sum_{k=0}^{n+1} a_{k}=a_{0}+\sum_{k=1}^{n+1} a_{k} \quad \text { put } k:=k+1 \\
& =a_{0}+\sum_{1 \leq k+1 \leq n+1} a_{k+1}=a_{0}+\sum_{0 \leq k \leq n} a_{k+1} \\
& =a_{0}+\sum_{k=0}^{n} a_{k+1}
\end{aligned}
$$

Perturbation Method

We get a formula:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

Goal of the Perturbation Method is to work on the last sum $\sum_{k=0}^{n} a_{k+1}$ and try to express it on terms of S_{n}

If it works and if we get a multiple of S_{n} we solve the equation on S_{n} and obtain the closed formula CF for the original sum

If it does not work - we look for another method

Example 1

Geometric Sum Revisited

1. $S_{n}=\sum_{k=0}^{n} a x^{k}$
2. Observe:

$$
\sum_{k=0}^{n} a x^{k+1}=x \sum_{k=0}^{n} a x^{k}
$$

We evaluate by Perturbation Technique

$$
\begin{aligned}
S_{n}+a x^{n+1} & =a x^{0}+\sum_{k=0}^{n} a x^{k+1} \\
& =a+x \sum_{k=0}^{n} a x^{k}=a+x S_{n}
\end{aligned}
$$

Example 1

We got the following equation on S_{n} :
$S_{n}+a x^{n+1}=a+x S_{n}$
Solve on S_{n}

$$
S_{n}=\frac{a\left(1-x^{n+1}\right)}{1-x}
$$

and

$$
\sum_{k=0}^{n} a x^{k}=\frac{a\left(1-x^{n+1}\right)}{1-x}
$$

Example 2

Evaluate using the Perturbation Method

$$
S_{n}=\sum_{k=0}^{n} k 2^{k}
$$

We use the Perturbation Formula
Now we have

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

for $a_{0}=0 \quad$ and $\quad a_{n+1}=(n+1) 2^{n+1}$
$\begin{aligned} S_{n}+(n+1) 2^{n+1} & =\sum_{k=0}^{n}(k+1) 2^{k+1}=\sum_{k=0}^{n} k 2^{k+1}+\sum_{k=0}^{n} 2^{k+1} \\ & =2 \sum_{k=0}^{n} k 2^{k}+\left(2^{n+2}-2\right) \text { (geometric sum) }\end{aligned}$

Example 2

We get an equation on S_{n}

$$
S_{n}+(n+1) 2^{n+1}=2 S_{n}+2^{n+2}-2
$$

Solution
$S_{n}(1-2)=-(n+1) 2^{n+1}+2^{n+2}-2$
$S_{n}=2^{n+1}(n+1-2)+2$
$S_{n}=(n-1) 2^{n+1}+2$
Hence

$$
\sum_{k=0}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

