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LECTURE 6



CHAPTER 2
SUMS

Part 2: Sums and Recurrences



Certain Type of Recurrence

We present now a general technique for finding a CF formula
for any Recurrence of a Type:

RF: anTn = bnTn−1 + cn for n ≥ 1

with some Initial Condition for n = 0.

where an, bn, cn are any sequences, n ≥ 1

We do it by by reducing our RF to a certain sum

Idea: multiply RF by a Summation Factor sn, n ≥ 1

We don’t know yet what this factor is, but we will find it out



General Technique

Given the general function

anTn = bnTn−1 + cn for n ≥ 1 ← RF

We multiply both sides by sn , called a Summation Factor
and get

snanTn = snbnTn−1 + sncn ?

We want sn to have a property

snbn = sn−1an−1 P



General Technique

Replacing snbn of ? with corresponding factor defined
by P i.e. by sn−1an−1 we get

snanTn = sn−1an−1Tn−1 + sncn ??

We put now
Sn = snanTn S

We use S to re-write ?? and get

Sn = Sn−1 + sncn for n ≥ 1



General Technique

We just developed formula

Sn = Sn−1 + sncn for n ≥ 1

Let’s evaluate its few terms

S1 = S0 + s1c1

S2 = S1 + s2c2 = s0 + s1c1 + s2c2

S3 = S2 + s3c3 = S0 + s1c1 + s2c2 + s3c3

S3 = S0 +
3∑

k=1

sk ck



General Technique

We generalize S3 (proof by mathematical induction)

Sn = S0 +
n∑

k=1

sk ck (sk is summation factor)

We now use S : Sn = snanTn

When n = 0 we get S0 = s0a0T0 and

Sn = s0a0T0 +
n∑

k=1

sk ck

Using P : sn−1an−1 = snbn we get

Sn = s1b1T0 +
n∑

k=1

sk ck



General Technique

We just proved that

Sn = s1b1T0 +
n∑

k=1

sk ck

By S : Sn = snanTn we get

Tn = Sn
ansn

i. e. Tn = 1
ansn

Sn

Finally we get the following ”SUM” closed formula for Tn

Tn = 1
ansn

(s1b1T0 +
n∑

k=1

sk ck )



Summation Factor

Next Step: Find the summation factor sn in terms of
an, bn, cn

Question: How to do it??

Answer: Use P : sn−1an−1 = snbn

Remember that the sequences (an, bn are given for or n ≥ 1

We evaluate

s2 = s1a1
b2

= s1
a1
b2

s3 = s2a2
b3

= s1
a1a2
b2b3

s4 = s3a3
b4

= s1
a1a2a3
b2b3b4



Summation Factor

We guess and prove by Mathematical Induction that

Summation Factor is:

sn = s1
a1a2.....an−1
b2b3b4....bn

← where s1 is a constant

Now we put all together and get CF formula for

any Recurrence of the Type:

anTn = bnTn−1 + cn ← RF for n ≥ 1

and where T0 is given by initial condition



CF for RF

Let RF be any Recurrence of the Type:

anTn = bnTn−1 + cn ← RF for n ≥ 1

It always have a ”sum” CF Formula

Tn = 1
ansn

(s1b1T0 +
n∑

k=1

sk ck ) ← CF

where the summation factor sk is given by

sn = s1
a1a2.....an−1
b2b3b4....bn

← where s1 is a constant



Example of Tower of Hanoi Revisited Again

Let’s look at

T0 = 0, Tn = 2Tn−1 + 1 for n ≥ 1

as particular case of our general formula

anTn = bnTn−1 + cn for n ≥ 1

We have in this case an = 1, bn = 2, cn = 1 and s1 = 1
2

We evaluate the summation factor

sn =
1

2...2︸︷︷︸ 1
2︸︷︷︸ = 1

2n

n − 1 s1 s1 = 1
2

Therefore, sn = 2−n, s1 = 1
2



Example of Tower of Hanoi Revisited Again

Check Tn = 1
ansn

(s1b1T0 +
n∑

k=1

sk ck ) for

sn = 2−n, an = 1, bn = 2, cn = 1
So now

Tn = 1
2−n (0 +

n∑
k=1

1
2n )

Observe that
∑n

k=1
1
2n is a geometric sum

Sn =
a0(qn+1−1)

q−1 , for q = 1
2 < 1, so we get

n∑
k=1

1
2k

= 1− 1
2n and Tn = 2n(1− 1

2n )

Tn = 2n − 1 ← CF Formula



Quicksort

Quicksort, Hoare 1962

The number of comparison steps made by the Quicksort
when applied to n items in random order is given by a
function

RF C0 = 0, Cn = (n + 1) + 2
n

n−1∑
k=0

Ck

We calculate: C1 = 2, C2 = 5, C3 = 26
3 etc ...

Goal: find CF for RF



Quicksort

Step 1: Get rid of the
∑

in the recurrence
Step 2: Find a CF Formula, or a ”sum” CF at least
Hint: use the General Technique

Given RF: Cn = (n + 1) + 2
n

n−1∑
k=0

Ck

We re-write it as follows

nCn = n2 + n + 2
n−1∑
k=0

Ck where n > 1 ?

nCn = n2 + n + 2(
n−2∑
k=0

Ck + Cn−1)

nCn = n2 + n + 2
n−2∑
k=0

Ck + 2Cn−1 1



Quicksort

nCn = n2 + n + 2
n−2∑
k=0

Ck + 2Cn−1 1

We re-write

? nCn = n2 + n + 2
n−1∑
k=0

Ck for n = n − 1

(n − 1)Cn−1 = (n − 1)2 + n − 1 + 2
n−2∑
k=0

Ck

(n − 1)Cn−1 = n2 − n + 2
n−2∑
k=0

Ck 2

We subtract 2 from 1 and we get

nCn − (n − 1)Cn−1 = 2n + 2Cn−1 3



Quicksort

nCn = (n − 1)Cn−1 + 2n + 2Cn−1 3

= nCn−1 − Cn−1 + 2n + 2Cn−1

= 2n + nCn−1 + Cn−1

We get the formula

RF : nCn = (n + 1)Cn−1 + 2n and C0 = 0

This is of the form of the general type

anTn = bnTn−1 + cn

for an = n, bn = n + 1, cn = 2n



Quicksort

We know that the Summation Factor multiplied by a constant
s1 is

sn = s1
a1a2.....an−1

b2b3....bn

and now an = n, bn = n + 1, cn = 2n

We get

sn =
1 · 2 · . . . (n − 1)

3 · . . . (n − 1)n(n + 1)
=

2
n(n + 1)

as b2 = 3 and s1 = 2
1·2 = 1



Quicksort

Last step: we use formula

Tn = 1
ansn

(s1b1T0 +
n∑

k=1

sk ck )

for an = n, bn = n + 1, cn = 2n and get

Cn = 1
nsn

(0 +
n∑

k=1

2ksk ) (T0 = C0 = 0)

This gives the following solution for sn = 2
n(n+1)

Cn =
n(n+1)

2n

n∑
k=1

4k
k(k + 1)

we pull out 4 out of sum and get

”SUM”CF : Cn = 2(n + 1)
n∑

k=1

1
k + 1



Harmonic Number

Harmonic Number Hn

Hn = 1 + 1
2 + ....+ 1

n =
n∑

k=1

1
k

, i.e.

Hn =
n∑

k=1

1
k

Name origin: k-th harmonic produced by a violin string is the
fundamental tone produced by a string that is 1

k times long.

We now use Hn to get a Hn CF formula for our Quicksort
recurrence ” SUM” CF formula

”SUM”CF : Cn = 2(n + 1)
n∑

k=1

1
k + 1



Hn and Quicksort

Observe that

n∑
k=1

1
k + 1

=
∑

1≤k≤n

1
k + 1

We want now to evaluate the sum∑
1≤k≤n

1
k + 1

in terms of Hn



Hn and Quicksort

We put k = k − 1 and get∑
1≤k≤n

1
k + 1

=
∑

1≤k−1≤n

1
k

=
∑

2≤k≤n+1

1
k

= (
n∑

k=1

1
k
)− 1

1 + 1
n+1



Hn and Quicksort

We obtained

n∑
k=1

1
k + 1

= Hn −
n

n + 1

and so our ” SUM” CF formula

Cn = 2(n + 1)
n∑

k=1

1
k + 1

becomes

Cn = 2(n + 1)(Hn − n
n+1) = 2(n + 1)Hn − 2n(n+1)

n+1

= 2(n + 1)Hn − 2n



Hn and Quicksort

We have proved the sum-closed formula

”SUM”CF : Cn = 2(n + 1)
n∑

k=1

1
k + 1

has its Hn - closed formula

HnCF : Cn = 2(n + 1)Hn − 2n, C0 = 0

We evaluate (to check the result!)

C0 = 0, C1 = 1, C2 = 2 · 3 · 3
2 − 4 = 5, etc. .



Perturbation Method

Perturbation Method is a method that often allows us to
evaluate a CF form for a certain sums

The idea is to start with an unknown sum and call it Sn:

Sn =
∑n

k=0
ak

Then we re-write Sn+1 in two ways, by splitting off both its
last term an+1 and its first term a0:

Sn + an+1 =
∑n+1

k=0
ak = a0 +

∑n+1

k=1
ak put k:= k+1

= a0 +
∑

1≤k+1≤n+1

ak+1 = a0 +
∑

0≤k≤n

ak+1

= a0 +
∑n

k=0
ak+1



Perturbation Method

We get a formula:

Sn + an+1 = a0 +
∑n

k=0
ak+1

Goal of the Perturbation Method is to work on the last sum∑n
k=0ak+1 and try to express it on terms of Sn

If it works and if we get a multiple of Sn we solve the
equation on Sn and obtain the closed formula CF for the
original sum

If it does not work - we look for another method



Example 1

Geometric Sum Revisited

1. Sn =
n∑

k=0

axk

2. Observe:

n∑
k=0

axk+1 = x
n∑

k=0

axk

We evaluate by Perturbation Technique

Sn + axn+1 = ax0 +
n∑

k=0

axk+1

= a + x
n∑

k=0

axk = a + xSn



Example 1

We got the following equation on Sn:

Sn + axn+1 = a + xSn

Solve on Sn

Sn =
a(1− xn+1)

1− x
and

n∑
k=0

axk =
a(1− xn+1)

1− x



Example 2

Evaluate using the Perturbation Method

Sn =
n∑

k=0

k2k

We use the Perturbation Formula
Now we have

Sn + an+1 = a0 +
∑n

k=0
ak+1

for a0 = 0 and an+1 = (n + 1)2n+1

Sn + (n + 1)2n+1 =
n∑

k=0

(k + 1)2k+1 =
n∑

k=0

k2k+1 +
n∑

k=0

2k+1

= 2
n∑

k=0

k2k + (2n+2 − 2) (geometric sum)



Example 2

We get an equation on Sn

Sn + (n + 1)2n+1 = 2Sn + 2n+2 − 2

Solution

Sn(1− 2) = −(n + 1)2n+1 + 2n+2 − 2

Sn = 2n+1(n + 1− 2) + 2

Sn = (n − 1)2n+1 + 2

Hence

n∑
k=0

k2k = (n − 1)2n+1 + 2


