cse547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 7

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 3: Multiple Sums (1) - Lecture 7

Double Sum

Example 1

Double Sum - Two factors:
$\begin{aligned} \sum_{1 \leq i, j \leq 3} a_{i} b_{j}= & a_{1} b_{1}+a_{1} b_{2}+a_{1} b_{3} \\ & +a_{2} b_{1}+a_{2} b_{2}+a_{2} b_{3} \\ & +a_{3} b_{1}+a_{3} b_{2}+a_{3} b_{3}\end{aligned}$

Question

How can we express $\sum_{1 \leq i, j \leq 3} a_{i} b_{j}$ in terms of single sums
$\sum_{i} a_{i}$ and $\sum_{j} b_{j} ?$

Double Sum Definition

We define for $1 \leq i, j \leq 3$

$$
\sum_{1 \leq i, j \leq 3} a_{i} b_{j}=\sum_{1 \leq j \leq 3}\left(\sum_{1 \leq i \leq 3} a_{i} b_{j}\right)=\sum_{1 \leq j \leq 3}\left(\sum_{1 \leq i \leq 3} a_{i} b_{j}\right)
$$

General Definition for $i \in I, j \in J$

$$
\sum_{i, j} a_{i} b_{j}=\sum_{i} \sum_{j} a_{i} b_{j}=\sum_{j} \sum_{i} a_{i} b_{j}
$$

where we write
$\sum_{i, j} a_{i} b_{j}$ for $\sum_{i \in l, j \in J} a_{i} b_{j}$ and $\sum_{i} \sum_{j} a_{i} b_{j}$ for $\sum_{i \in I}\left(\sum_{j \in J} a_{i} b_{j}\right)$

Example 1

We evaluate the following for $i, j \in\{1,2,3\}$

$$
\begin{aligned}
\sum_{1 \leq i, j \leq 3} a_{i} b_{j}= & a_{1} b_{1}+a_{1} b_{2}+a_{1} b_{3} \\
& +a_{2} b_{1}+a_{2} b_{2}+a_{2} b_{3} \\
& +a_{3} b_{1}+a_{3} b_{2}+a_{3} b_{3} \\
& =a_{1}\left(b_{1}+b_{2}+b_{3}\right) \quad \text { we pull out } \\
& +a_{2}\left(b_{1}+b_{2}+b_{3}\right) \text { the common factor } \\
& +a_{3}\left(b_{1}+b_{2}+b_{3}\right) \\
& =\left(b_{1}+b_{2}+b_{3}\right)\left(a_{1}+a_{2}+a_{3}\right) \\
& =\left(a_{1}+a_{2}+a_{3}\right)\left(b_{1}+b_{2}+b_{3}\right)
\end{aligned}
$$

Distributive Property

We have proved the following property

$$
\sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{i} b_{j}=\left(\sum_{1 \leq i \leq 3} a_{i}\right)\left(\sum_{1 \leq j \leq 3} b_{j}\right)=\left(\sum_{1 \leq j \leq 3} b_{j}\right)\left(\sum_{1 \leq i \leq 3} a_{i}\right)
$$

Distributive Property for $1 \leq i, j \leq 3$

$$
\sum_{i, j} a_{i} b_{j}=\left(\sum_{i} a_{i}\right)\left(\sum_{j} b_{j}\right)
$$

Can we generalize it?

General Distributive Law

Now our goal is to prove the following

General Distributive Law

$$
\sum_{i \in l, j \in J} a_{i} b_{j}=\left(\sum_{i \in l} a_{i}\right)\left(\sum_{j \in J} b_{j}\right)
$$

In order to do so w need to bring in our notation and general definitions
We write

$$
\sum_{i \in I} a_{i}=\sum_{P(i)} a_{i}=\sum_{i \in I} a_{i}[P(i)]
$$

where
$I=\{i: P(i)\} \quad \rightarrow \quad P(i)$ is a predicate defining set I and $[P(x)]$ is a characteristic function of $P(i)$

$$
[P(x)]= \begin{cases}1 & P(x) \text { true } \\ 0 & P(x) \text { false }\end{cases}
$$

General Distributive Law

In write in a similar way

$$
\sum_{j \in J} b_{j}=\sum_{Q(j)} b_{j}=\sum_{j} b_{j}[Q(j)]
$$

where $J=\{j: Q(j)\} \quad$ and $Q(j)$ is a predicate defining set J of indices

We re-write the General Distributive Law as follows

$$
\sum_{i \in l, j \in J} a_{i} b_{j}=\left(\sum_{i} a_{i}[P(i)]\right)\left(\sum_{j} b_{j}[Q(j)]\right)
$$

Question : HOW TO RELATE LEFT SIDE TO RIGHT SIDE ?

Back top Example 1

Let's go back to our Example 1
We proved Distributivity Property for $1 \leq i, j \leq 3$

$$
\sum_{1 \leq i, j \leq 3} a_{i} b_{j}=\left(\sum_{1 \leq i \leq 3} a_{i}\right)\left(\sum_{1 \leq j \leq 3} b_{j}\right)
$$

Observe that we have here the following predicated defining the sets of indexes
$P(\mathrm{i}, \mathrm{j})=(1 \leq i, j \leq 3)=(1 \leq i \leq 3) \cap(1 \leq j \leq 3)$
$P_{1}(i)=(1 \leq i \leq 3)$ and $P_{2}(j)=(1 \leq j \leq 3)$
Hence

$$
P(i, j)=P_{1}(i) \cap P_{2}(j)
$$

General Distributive Law

By definition

$$
\sum_{P(i, j)} a_{i} b_{j}=\sum_{P_{1}(i)} \sum_{P_{2}(j)} a_{i} b_{j}
$$

when $\quad P(i, j)=P_{1}(i) \cap P_{2}(j)$

We want to prove the the following form of the General Distributive Law

$$
\sum_{P(i, j)} a_{i} b_{j}=\left(\sum_{P_{1}(i)} a_{i}\right)\left(\sum_{P_{2}(j)} b_{j}\right)
$$

Distributive Law

Let $P(i, j)=P_{1}(i) \cap P_{2}(j)$

Observe that

$$
\left[P_{1}(i) \cap P_{2}(j)\right]=\left[P_{1}(i)\right]\left[P_{2}(j)\right]
$$

Prove it as an exercise;
This is true for any characteristic functions
We use this fact and definitions in our calculations on the next slide

Proof of the Distributive Law

$$
\begin{aligned}
\sum_{P(i, j)} a_{i} b_{j} & =\sum_{i, j} a_{i} b_{j}[P(i, j)] \\
& =\sum_{i, j} a_{i} b_{j}\left[P_{1}(i)\right]\left[P_{2}(j)\right] \\
& =\sum_{i}\left(\sum_{j} a_{i} b_{j}\left[P_{1}(i)\right]\left[P_{2}(j)\right]\right)
\end{aligned}
$$

pull out $a_{i}\left[P_{1}(i)\right]$ independent on j

$$
=\sum_{i}\left(a_{i}\left[P_{1}(i)\right] \sum_{j} b_{j}\left[P_{2}(j)\right]\right)
$$

Proof of the Distributive Law

We have that
$\sum_{P(i, j)} a_{i} b_{j}=\sum_{i}\left(a_{i}\left[P_{1}(i)\right] \sum_{j} b_{j}\left[P_{2}(j)\right]\right)$
pull out $\sum_{j} b_{j}\left[P_{2}(j)\right]$ independent on i
$=\left(\sum_{j} b_{j}\left[P_{2}(j)\right]\right)\left(\sum_{i} a_{i}\left[P_{1}(i)\right]\right)$
$=\left(\sum_{P_{1}(i)} a_{i}\right)\left(\sum_{P_{2}(j)} b_{j}\right)$
end of the proof

Distributive Law

We have proved our General Distributive Law

$$
\sum_{P(i, j)} a_{i} b_{j}=\sum_{P_{1}(i) \cap P_{2}(j)} a_{i} b_{j}=\left(\sum_{P_{1}(i)} a_{i}\right)\left(\sum_{P_{2}(j)} b_{j}\right)
$$

also written as

$$
\sum_{i \in I, j \in J} a_{i} b_{j}=\left(\sum_{i \in I} a_{i}\right)\left(\sum_{j \in J} b_{j}\right)
$$

Distributive Law Example

Example of application of the DistributivE Law

$$
\sum_{i \in l, j \in J} a_{i} b_{j}=\left(\sum_{i \in l} a_{i}\right)\left(\sum_{j \in J} b_{j}\right)
$$

Consider the following array ($n x n$)

$$
A=\left[\begin{array}{ccc}
a_{1} a_{1} & a_{1} a_{2} \ldots & a_{1} a_{n} \\
a_{2} a_{1} & a_{2} a_{2} \ldots & a_{2} a_{n} \\
\vdots & & \\
a_{n} a_{1} & a_{n} a_{2} \ldots & a_{n} a_{n}
\end{array}\right]
$$

we have here $a_{i}=a_{i} \quad b_{j}=a_{j}$, where a_{i}, b_{j} denote sequences in the DistributivE Law
Goal : Find

$$
\sum_{i, j} a_{i} a_{j}
$$

Distributive Law Example

Sub-Goal : Find a simple formula for sum of all elements above or on main diagonal

$$
S_{\nabla}=\sum_{1 \leq i \leq j \leq n} a_{i} a_{j}
$$

OBSERVATION 1

$$
a_{i} a_{j}=a_{j} a_{i} \quad \text { for any } \quad i, j
$$

We denote

$$
S_{\triangle}=\sum_{1 \leq j \leq i \leq n} a_{i} a_{j}
$$

sum of all elements below or on main diagonal

Distributive Law Example

We will now prove that

$$
S_{\nabla}=S_{\triangle}
$$

We now evaluate

$$
S_{\nabla}=\sum_{1 \leq i \leq n, 1 \leq j \leq n, i \leq j} a_{i} a_{j}=\sum_{P(i, j), i \leq j} a_{i} a_{j}
$$

for

$$
P(i, j)=(1 \leq i \leq n) \cap(1 \leq j \leq n)=Q(i) \cap Q(j)=P(j, i)
$$

Distributive Law Example

S_{\triangle} becomes now

We evaluate on the next slide

Distributive Law Example

$$
\begin{gathered}
\text { USE: } P(i, j)=P(j, i) \\
S_{\nabla}=\sum_{P(i, j), i \leq j} a_{i} a_{j}=\sum_{\sum_{P(j, i), j \leq i} a_{i}}^{\downarrow} a_{i} a_{i} \\
\downarrow \\
\sum_{P(i, j), j \leq i} a_{i} a_{j}=S_{\triangle} \\
\downarrow \\
\text { Re-name } j \rightarrow i, i \rightarrow j
\end{gathered}
$$

We proved

$$
S_{\nabla}=S_{\triangle}
$$

Distributive Law Example

EVALUATE (remember: our GOAL is to FIND S_{\triangle})
$2 S_{\nabla}=S_{\nabla}+S_{\triangle}$

$$
\begin{gathered}
=\sum_{P(i, j), i \leq j} a_{i} a_{j}+\sum_{P(i, j), j \leq i} a_{i} a_{j} \\
\downarrow \quad \downarrow \\
Q(i, j) \quad R(i, j) \\
=\sum_{Q(i, j)} a_{i} a_{j}+\sum_{R(i, j)} a_{i} a_{j}
\end{gathered}
$$

WE WANT NOW TO COMBINE DOMAINS $\mathrm{Q}(\mathrm{i}, \mathrm{j})$ and $\mathrm{R}(\mathrm{i}, \mathrm{j})$

Combining Domains

Formula for COMBINED DOMAINS

$$
\sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}=\sum_{Q(k) \cap R(k)} a_{k}+\sum_{Q(k) \cup R(k)} a_{k}
$$

OR

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cap K^{\prime}} a_{k}+\sum_{k \in K \cup K^{\prime}} a_{k}
$$

The second formula is listed without the proof on page 31 in our BOOK

Combined Limits

For any set A , we denote by $|A|$ the cardinality of the set A in a case when A is finite it denotes a number of elements of the set A . We obviously have the following

Fact

For any finite sets A, B

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

From the Fact we have that

$$
\left|K \cup K^{\prime}\right|=|K|+\left|K^{\prime}\right|-\left|K \cap K^{\prime}\right| \quad \text { and hence }
$$

$$
|K|+\left|K^{\prime}\right|=\left|K \cap K^{\prime}\right|+\left|K \cup K^{\prime}\right|
$$

It justifies but yet not formally proves that

$$
\begin{aligned}
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}= & \sum_{\substack{k \in K \cap K^{\prime} \\
\uparrow}} a_{k}+\sum_{k \in K \cup K^{\prime}} a_{k} \\
& \text { COMBINE LIMITS }
\end{aligned}
$$

Combining Domains

Let's put

$$
K=\{k: Q(k)\} \quad K^{\prime}=\{k: R(k)\}
$$

The previous formula becomes:
$\sum_{\substack{Q(k) \\ \uparrow}} a_{k}+\sum_{R(k)} a_{k}=\sum_{Q(k) \cap R(k)} a_{k}+\sum_{Q(k) \cup R(k)} a_{k}$

COMBINE DOMAINS

Proof is based on the Property given on the next slide as an easy exercise to prove

Combined Domains Property

Exercise

Prove using the Truth Tables and definition of the characteristic function that the following holds

Combined Domains Property

For any predicates $P(k), Q(k)$

$$
[P(k) \cup Q(k)]=[P(k)]+[Q(k)]-[P(k) \cap Q(k)]
$$

Combined Domains Proof

Proof

We evaluate

$$
\begin{aligned}
& \sum_{Q(k) \cup R(k)} a_{k}=\sum_{k} a_{k}[Q(k) \cup R(k)] \\
= & \sum_{k} a_{k}([Q(k)]+[R(k)]-[Q(k) \cap R(k)]) \\
= & \left.\sum_{k} a_{k}[Q(k)]+\sum_{k} a_{k}[R(k)]-\sum_{k} a_{k}[Q(k) \cap R(k)]\right) \\
= & \sum_{Q(k)} a_{k}+\sum_{R(k)} a_{k}-\sum_{Q(k) \cap R(k)} a_{k}
\end{aligned}
$$

Back to Combined Domains Example

REMINDER

$$
S_{\nabla}=\sum_{1 \leq i \leq n, 1 \leq j \leq n, i \leq j} a_{i} a_{j}=\sum_{P(i, j), i \leq j} a_{i} a_{j}
$$

for

$$
P(i, j)=(1 \leq i \leq n) \cap(1 \leq j \leq n)=Q(i) \cap Q(j)
$$

$$
S_{\triangle}=\sum_{1 \leq i \leq n, 1 \leq j \leq n, j \leq i} a_{i} a_{j}=\sum_{P(i, j), j \leq i} a_{i} a_{j}
$$

Distributivity Law Example

Our goal is to find S_{\triangle}

$$
\begin{aligned}
2 S_{\nabla} & =S_{\nabla}+S_{\triangle} \\
& =\sum_{P(i, j), i \leq j} a_{i} a_{j}+\sum_{P(i, j), j \leq i} a_{i} a_{j} \\
& \downarrow \quad \downarrow \\
& Q=Q(i, j) \quad R=R(i, j) \\
& =\sum_{Q} a_{i} a_{j}+\sum_{R} a_{i} a_{j}
\end{aligned}
$$

Now we know how to COMBINE DOMAINS $Q(i, j)$ and $R(i, j)$

Distributivity Law Example

$$
\begin{aligned}
& 2 S_{\nabla}=S_{\nabla}+S_{\triangle} \\
& =\sum_{Q} a_{i} a_{j}+\sum_{R} a_{i} a_{j} \\
& =\sum_{Q \cap R} a_{i} a_{j}+\sum_{Q \cup R} a_{i} a_{j}
\end{aligned}
$$

We have to evaluate $Q \cap R$ and $Q \cup R$

Distributivity Law Example

We know that $Q=P(i, j) \cap(i \leq j)$ and $R=P(i, j) \cap(j \leq i)$
We now evaluate $Q \cap R$ and $Q \cup R$ as follows

$$
\begin{aligned}
& Q \cap R \\
& \begin{aligned}
Q & =(P(i, j) \cap(i \leq j)) \cap(P(i, j) \cap(j \leq i)) \\
& =P(i, j) \cap P(i, j) \cap(i \leq j) \cap(j \leq i)=P(i, j) \cap(i=j) \\
Q \cup R & =(P(i, j) \cap(i \leq j)) \cup(P(i, j) \cap(j \leq i)) \\
& =P(i, j) \cap((i \leq j) \cup(j \leq i))=P(i, j) \cap \text { True }=P(i, j)
\end{aligned}
\end{aligned}
$$

Distributivity Law Example

Reminder: $P(i, j)=1 \leq i \leq n \cap 1 \leq j \leq n$ and we put it all together as follows

$$
\begin{aligned}
2 S_{\nabla} & =\sum_{Q \cap R} a_{i} a_{j}+\sum_{Q \cup R} a_{i} a_{j} \\
& =\sum_{1 \leq i \leq n, 1 \leq j \leq n} a_{i} a_{j}+\sum_{1 \leq i \leq n, 1 \leq j \leq n, i=j} a_{i} a_{j} \\
& ={ }^{\text {DLaw }}\left(\sum_{1 \leq i \leq n} a_{i}\right)\left(\sum_{1 \leq j \leq n} a_{j}\right)+\left(\sum_{1 \leq i \leq n} a_{i}^{2}\right)
\end{aligned}
$$

Distributivity Law Example

$$
\begin{gathered}
2 S_{\nabla}={ }^{\text {LLaw }}\left(\sum_{1 \leq i \leq n} a_{i}\right)\left(\sum_{1 \leq j \leq n} a_{j}\right)+\left(\sum_{1 \leq i \leq n} a_{i}^{2}\right) \\
\text { we rename } j \rightarrow i
\end{gathered}
$$

$$
=\left(\sum_{1 \leq i \leq n} a_{i}\right)^{2}+\left(\sum_{1 \leq i \leq n} a_{i}^{2}\right)
$$

Finally, we get:

$$
S_{\nabla}=\frac{1}{2}\left(\left(\sum_{1 \leq i \leq n} a_{i}\right)^{2}+\left(\sum_{1 \leq i \leq n} a_{i}^{2}\right)\right)
$$

S_{∇} Short Solution

Find $\quad S_{\nabla}=\sum_{1 \leq i, j \leq n} a_{i} a_{j}$

Step1: EVALUATE

$S=\sum_{1 \leq i \leq n, 1 \leq j \leq n} a_{i} a_{j}=^{D L a w}\left(\sum_{1 \leq i \leq n} a_{i}\right)\left(\sum_{1 \leq j \leq n} a_{j}\right)$
Step 2 PROVE : $S_{\nabla}=S_{\triangle}$

S_{∇} Short Solution

Step 3 OBSERVE:
$S=S_{\nabla}+S_{\triangle}-\sum_{1 \leq j \leq n}\left(a_{j}\right)^{2}=2 S_{\nabla}-\sum_{1 \leq i \leq n}\left(a_{i}\right)^{2}$
Solve on S_{∇}

$$
S_{\nabla}=\frac{1}{2}\left(\left(\sum_{1 \leq i \leq n} a_{i}\right)^{2}+\left(\sum_{1 \leq i \leq n} a_{i}\right)^{2}\right)
$$

New Problem

Given sequences $\left\{a_{n}\right\}_{n \in N},\left\{b_{n}\right\}_{n \in N}$
EVALUATE the SUM

$$
S=\sum_{1 \leq j<k \leq n}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

Observe that

$$
1 \leq j<k \leq n=(1 \leq j \leq n) \cap(1 \leq k \leq n) \cap(j<k)
$$

denote $P(j, k)=(1 \leq j \leq n) \cap(1 \leq k \leq n) \quad$ observe that $P(j, k)=P(k, j)$
and we re-write the limits of our S as follows

$$
1 \leq j<k \leq n=P(j, k) \cap(j<k)=P(k, j) \cap(j<k)
$$

New Problem

We write now out SUM as
Equation 1

$$
S=\sum_{P(j, k), j<k}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

Now we EXCHANGE j and k (re-name) in S and use $P(j, k)=P(k, j)$ and we get

$$
S=\sum_{P(j, k), k<j}\left(a_{j}-a_{k}\right)\left(b_{j}-b_{k}\right)
$$

New Problem

We evaluate

$$
\left(a_{j}-a_{k}\right)\left(b_{j}-b_{k}\right)=-\left(a_{k}-a_{j}\right)\left(-\left(b_{k}-b_{j}\right)\right)=\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

and S becomes now
Equation 2

$$
S=\sum_{P(j, k), k<j}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

We ADD now Equation 1 and Equation 2 and get Equation 3

$$
2 S=\sum_{P(j, k), j \leq k}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)+\sum_{P(j, k), k \leq j}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

Observations

Observation 1 We could change the original limits of summation in both sums from $j<k, k<j$ to $j \leq k, k \leq j$, respectively because the condition $k=j$ gives in both sum the term equal 0 , i.e we have $\left(a_{k}-a_{k}\right)=\left(b_{k}-b_{k}\right)=0$
Observation 2 To evaluate 2 S we need to use the formula for combining domains

$$
\sum_{Q} a_{k}+\sum_{R} a_{k}=\sum_{Q \cap R} a_{k}+\sum_{Q \cup R} a_{k}
$$

$$
\text { for } Q=P(j, k) \cap(j \leq k) \quad \text { and } \quad R=P(j, k) \cap(k \leq j)
$$

Observations

EVALUATE $Q \cap R$

$Q \cap R=P(j, k) \cap(j \leq k) \cap P(j, k) \cap(k \leq j)=P(j, k) \cap(k=j)$
EVALUATE $Q \cup R$
$Q \cup R=(P(j, k) \cap(j \leq k)) \cup(P(j, k) \cap(k \leq j)$ $=P(j, k) \cap(j \leq k \cup k \leq j)=P(j, k) \cap$ True $=P(j, k)$

We re-write our 2 S from Equation 3 as follows

Back to the Problem

$$
\begin{aligned}
2 S= & \sum_{P(j, k), j \leq k}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)+\sum_{P(j, k), k \leq j}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right) \\
& \uparrow \\
& \left.\uparrow \begin{array}{l}
\text { Q }
\end{array}\right) \\
= & \sum_{Q \cap R}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)+\sum_{Q \cup R}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
\end{aligned}
$$

We have that $Q \cap R=P(j, k) \cap(k=j), Q \cup R=P(j, k)$, and
$\sum_{P(j, k) \cap(k=j)}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)=0$, so

$$
2 S=\sum_{P(j, k)}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)
$$

Back to the Problem

Let's expend now
$\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)=a_{k} b_{k}-a_{j} b_{k}-a_{k} b_{j}+a_{j} b_{j}$
Back to our sum
$2 S=\sum_{P(j, k)} a_{k} b_{k}+\sum_{P(j, k)} a_{j} b_{j}-2 \sum_{P(j, k)} a_{k} b_{j}$
re-name $j \rightarrow k$, in second sum and get
$2 S=2 \sum_{P(j, k)} a_{k} b_{k}-2 \sum_{P(j, k)} a_{k} b_{j}$ and so
$S=\sum_{P(j, k)} a_{k} b_{k}-\sum_{P(j, k)} a_{k} b_{j}$

Back to the Problem

Use distributivity for for the second sum

$$
\begin{aligned}
\sum_{P(j, k)} a_{k} b_{j} & =\sum_{1 \leq j \leq n, 1 \leq k \leq n} a_{k} b_{j} \\
& =\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq j \leq n} b_{j}\right) \quad \text { re-name } j \rightarrow k \\
& =\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right)
\end{aligned}
$$

Back to the Problem

We evaluate the first sum

$\sum_{P(j, k)} a_{k} b_{k}$ separately

$$
\sum_{P(j, k)} a_{k} b_{k}={ }^{d e f} \sum_{1 \leq j \leq n, 1 \leq k \leq n} a_{k} b_{k}
$$

$$
=\operatorname{def} \sum_{1 \leq k \leq n}\left(\sum_{1 \leq j \leq n} a_{k} b_{k}\right)
$$

$$
\uparrow
$$

$a_{k} b_{k}$ constant with respect to j
$=\sum_{1 \leq k \leq n}\left(a_{k} b_{k} \sum_{1 \leq j \leq n} 1\right)$
$=\sum_{1 \leq k \leq n} a_{k} b_{k} n \leftarrow \mathrm{n}$ is constant with respect to k
$=n \sum_{1 \leq k \leq n} a_{k} b_{k}$

Solution

We put evaluated components into

$$
S=\sum_{P(j, k)} a_{k} b_{k}-\sum_{P(j, k)} a_{k} b_{j}
$$

and get

$$
S=n \sum_{1 \leq k \leq n} a_{k} b_{k}-\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right)
$$

FORMULA Multiple Sum \rightarrow SingleSums is

$$
\sum_{1 \leq j<k \leq n}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)=n \sum_{1 \leq k \leq n} a_{k} b_{k}-\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right)
$$

Formula Application

We use the FORMULA to evaluate relationships between

and

Obtained relationships are called CHEBYSHEV'S INEQUALITIES

Chebyshev's Inequalities
We re-write the FORMULA as follows

$$
\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right)=n \sum_{1 \leq k \leq n} a_{k} b_{k}-\left(\sum_{P(k, j), j<k}\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)\right)
$$

ASSUME

C1:

$$
\begin{aligned}
& a_{1} \leq a_{2} \leq a_{3} \leq \ldots \quad \leq a_{n} \\
& b_{1} \leq b_{2} \leq b_{3} \leq \ldots \quad \leq b_{n}
\end{aligned}
$$

Chebyshev's Inequalities

Observe that under the condition C 1
$\left(a_{k}-a_{j}\right), \quad\left(b_{k}-b_{j}\right)$ and hence the sum
$\sum\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)$ are all POSITIVE for $j<k$
Hence we get that
Chebyshev Inequality 1

$$
\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right) \leq n \sum_{1 \leq k \leq n} a_{k} b_{k}
$$

holds for

$$
\begin{aligned}
& a_{1} \leq a_{2} \leq a_{3} \leq \ldots \quad \leq a_{n} \\
& b_{1} \leq b_{2} \leq b_{3} \leq \ldots \quad \leq b_{n}
\end{aligned}
$$

Chebyshev's Inequalities

Assume now conditions C2:
$a_{1} \leq a_{2} \leq a_{3} \leq \ldots \quad \leq a_{n}$
$b_{1} \geq b_{2} \geq b_{3} \geq \ldots . . \geq b_{n}$
Observe that under the conditions C 2
$\sum\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)$ is NEGATIVE as it has all negative terms and hence
$-\sum\left(a_{k}-a_{j}\right)\left(b_{k}-b_{j}\right)$ is POSITIVE and we get
Chebyshev Inequality 2

$$
\left(\sum_{1 \leq k \leq n} a_{k}\right)\left(\sum_{1 \leq k \leq n} b_{k}\right) \geq n \sum_{1 \leq k \leq n} a_{k} b_{k}
$$

