cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 8

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 3: Multiple Sums (2) - Lecture 8

More SUMS

Problem from Book, page 39

Let's EVALUATE the following sum

$$
S_{n}=\sum_{1 \leq j<k \leq n} \frac{1}{k-j}
$$

We denote $P(j, k): 1 \leq j<k \leq n$ and re-write the sum as

$$
S_{n}=\sum_{P(j, k)} a_{k, j}
$$

for

$$
a_{k, j}=\frac{1}{k-j}
$$

Special SUM

Consider case $n=1$
Remember that $a_{k, j}=\frac{1}{k-j}$
We get that $S_{1}=\sum_{1 \leq j<k<1} a_{k, j}$ is undefined.
Book defines $\quad S_{1}=0$
Consider $\quad S_{2}=\sum_{1 \leq j<k \leq 2} a_{k, j}=\sum_{1 \leq j<k \leq 2} \frac{1}{k-j}$
Evaluate $\quad S_{2}=a_{2,1}=\frac{1}{2-1}=1, \quad S_{2}=1$

Special SUM

Evaluate S_{3}

$$
\begin{gathered}
S_{3}=\sum_{1 \leq j<k \leq 3} a_{k, j}=a_{3,2}+a_{3,1}+a_{2,1}=\frac{1}{3-2}+\frac{1}{3-1}+\frac{1}{2-1} \\
=\frac{1}{1}+\frac{1}{2}+1=\frac{5}{2}
\end{gathered}
$$

$$
S_{3}=\frac{5}{2}
$$

$$
S_{3}=\sum_{1 \leq j<k \leq 3} \frac{1}{k-j}=\frac{5}{2}
$$

Special SUM

Now we want to express $P(j, k)=1 \leq j<k \leq n \quad$ as

$$
P(j, k) \equiv P_{1}(k) \cap P_{2}(j)
$$

in order to use definition of the multiple sum below for out sum

$$
\sum_{P(j, k)} a_{k, j}={ }^{d e f} \sum_{P_{1}(k)} \sum_{P_{2}(j)} a_{k, j}=\sum_{P_{2}(j)} \sum_{P_{1}(k)} a_{k, j}
$$

Special SUM

Step 1 APPROACH 1

We consider $P(j, k)=1 \leq j<k \leq n$

$$
\text { (*) } 1 \leq j<k \leq n \equiv 1<k \leq n \cap 1 \leq j<k
$$

We get from (\star) that

$$
S_{n}=\sum_{1<k \leq n} \sum_{1 \leq j<k} \frac{1}{k-j}
$$

Special SUM

We substitute $j:=k-j$ and evaluate S_{n} and new boundaries for S_{n}
Boundaries: we substitute $j:=k-j$ in $1 \leq j<k$
$1 \leq k-j<k \quad$ iff $\quad 1-k \leq-j<0 \quad$ iff $\quad k-1 \geq j>0$

Remark that

$$
0<j \leq k-1 \quad \text { iff } \quad 1 \leq j \leq k-1
$$

so the new boundaries for S_{n} are

$$
1<k \leq n \quad \text { and } \quad 1 \leq j \leq k-1
$$

Special SUM

We substitute $j:=k-j$ and evaluate S_{n} with new boundaries $1<k \leq n$ and $1 \leq j \leq k-1$

$$
\begin{aligned}
S_{n} & =\sum_{1<k \leq n} \sum_{1 \leq j<k} \frac{1}{k-j}=\sum_{1<k \leq n} \sum_{1 \leq j \leq k-1} \frac{1}{j} \\
& =\sum_{1<k \leq n} \sum_{j=1}^{k-1} \frac{1}{j}=\sum_{1<k \leq n} H_{k-1}
\end{aligned}
$$

Now we evaluate new boundaries for the last sum
We put $k:=k+1$ in $1<k \leq n$ and get
$1<k+1 \leq n$ iff $0<k \leq n-1$ iff $1 \leq k \leq n-1$ and

$$
\sum_{1<k \leq n} H_{k-1}=\sum_{k=1}^{n-1} H_{k}
$$

Special SUM Formula

We developed a new formula for S_{n}

$$
\sum_{1 \leq j<k \leq n} \frac{1}{k-j}=\sum_{k=1}^{n-1} H_{k}
$$

We now check our result for few n
$S_{1}=\sum_{k=1}^{0} H_{1}$ undefined, $\quad S_{1}=\sum_{1 \leq j<k \leq 1} \frac{1}{k-j}$ is also
undefined
Book puts (page 39) $S_{1}=0$
Remark that the BOOK formula for S_{n}
$S_{n}=\sum_{k=0}^{n} H_{k}$ is not correct unless we define $H_{0}=0$

Special SUM Approach 2

Observe that we got just another formula for our sum, not a "sum closed" formula; we have expressed one double sum by another that uses H_{n}

Step 2 APPROACH 2

Let's now re-evaluate the S_{n} by expressing its boundaries differently
We have as before $P(j, k) \equiv 1 \leq j<k \leq n \quad$ and want to write is now as

$$
P(j, k) \equiv R_{1}(k) \cap R_{2}(j)
$$

for some $R_{1}(k), R_{2}(j)$ and evaluate the sum

$$
S_{n}=\sum_{1 \leq j<k \leq n} \frac{1}{k-j}=\sum_{R_{2}(j)} \sum_{R_{1}(k)} \frac{1}{k-j}
$$

Special SUM Approach 2

We write now

$$
1 \leq j<k \leq n \equiv(1 \leq j<n) \cap(j<k \leq n) \equiv R_{1}(k) \cap R_{2}(j)
$$

and evaluate
$S_{n}=\sum_{1 \leq j<k \leq n} \frac{1}{k-j}=\sum_{1 \leq j<n} \sum_{j<k \leq n} \frac{1}{k-j}$
We substitute now $k:=k+j$ and re-work boundaries
$j<k \leq n$ iff $j<k+j \leq n \quad$ iff $\quad 0<k \leq n-j$
iff $1 \leq k \leq n-j$ and the S_{n} becomes now

$$
S_{n}=\sum_{1 \leq j<n 1 \leq k \leq n-j} \sum_{1} \frac{1}{k}=\sum_{1 \leq j<n} H_{n-j}
$$

Special SUM Approach 2

We have now

$$
S_{n}=\sum_{1 \leq j<n} H_{n-j}
$$

We substitute now $j:=n-j$ and re-work boundaries

$$
1 \leq j<n \quad \text { iff } \quad 1 \leq n-j<n \quad \text { iff } \quad 1-n \leq-j<0
$$

$$
\text { iff } \quad n-1 \geq j>0 \quad \text { iff } \quad 0<j \leq n-1 \quad \text { iff } \quad 1 \leq j \leq n-1
$$

and the S_{n} becomes now

$$
S_{n}=\sum_{j=1}^{n-1} H_{j}
$$

All the work - and nothing new!!

Special SUM Approach 3

Step 3 APPROACH 3

We want to find a closed formula CF for

$$
S_{n}=\sum_{1 \leq j<k \leq n} \frac{1}{k-j}
$$

We substitute $k:=k+j$ and now

$$
S_{n}=\sum_{1 \leq j<k+j \leq n} \frac{1}{k}
$$

Special SUM Approach 3

PLAN of ACTION
(1) We prove: $P(k, j) \equiv Q_{1}(k) \cap Q_{2}(j)$ expressed as folows

$$
1 \leq j<k+j \leq n \equiv(1 \leq k \leq n-1) \cap 1 \leq j \leq n-k
$$

(2) We evaluate:

$$
S_{n}=\sum_{1 \leq j<k+j \leq n} \frac{1}{k}=\sum_{(1 \leq k \leq n-1) \cap(1 \leq j \leq n-k)} \frac{1}{k}
$$

Special SUM Approach 3

Proof of

We evaluate:

$$
\begin{aligned}
& (1 \leq j<k+j \leq n) \equiv \\
& \equiv(1 \leq j) \cap(1 \leq n) \cap(j \leq n-k) \cap(j<k+j \leq n) \\
& \equiv(1 \leq j \leq n-k) \cap(0<k \leq n-j)
\end{aligned}
$$

Now look at $(0<k \leq n-j) \equiv(1 \leq k \leq n-j) \quad$ for $j=1,2, \ldots, n-k$
and get that $\quad 1 \leq k \leq n-1$
Hence

$$
(1 \leq j<k+j \leq n)=(1 \leq j \leq n-k) \cap(1 \leq k \leq n-1)
$$

end of the proof

Special SUM Approach 3

We evaluate now

$$
\begin{align*}
& S_{n}=\sum_{1 \leq k \leq n-1 \cap 1 \leq j \leq n-k} \frac{1}{k} \tag{2}\\
& =\sum_{k=1}^{n-1} \sum_{j=1}^{n-k} \frac{1}{k} \quad k \text { is a constant on } j \\
& =\sum_{k=1}^{n-1} \frac{1}{k} \sum_{j=1}^{n-k} 1=\sum_{k=1}^{n-1} \frac{1}{k}(n-k) \\
& =\sum_{k=1}^{n-1} \frac{n}{k}-\sum_{k=1}^{n-1} 1=n \sum_{k=1}^{n-1} \frac{1}{k}-(n-1)
\end{align*}
$$

Sum CF formula

We have now
$S_{n}=n \sqrt{\sum_{k=1}^{n-1} \frac{1}{k}}-(n-1)$
We note: $\sum_{k=1}^{n-1} \frac{1}{k}=H_{n-1}$ and $H_{n-1}=H_{n}-\frac{1}{n}$
$S_{n}=n H_{n-1}-n+1=n\left(H_{n}-\frac{1}{n}\right)-n+1=n H_{n}-1-n+1$
Our H_{n} CF formula for S_{n} is

$$
S_{n}=\sum_{1 \leq j<k \leq n} \frac{1}{k-j}=n H_{n}-n
$$

Book Computation

Evaluation in Book

$$
\begin{aligned}
& S_{n} \triangleq \sum_{k=1}^{n} \sum_{1 \leq j \leq n-k} \frac{1}{k}=\sum_{k=1}^{n} \sum_{j=1}^{n-k} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{n-k} 1 \\
& =\sum_{k=1}^{n} \frac{1}{k}(n-k)=\sum_{k=1}^{n}\left(\frac{n}{k}-1\right)=n \sum_{k=1}^{n} \frac{1}{k}-\sum_{k=1}^{n} 1=n H_{n}-n
\end{aligned}
$$

$$
S_{n}=n H_{n}-n \quad \text { Book Sum CF Formula }
$$

Justify all the steps

Extra Bonuses

We proved in Steps 1,2 that

$$
S_{n}=n H_{n}-n \text { and } S_{n}=\sum_{k=1}^{n} H_{k}
$$

We get an an Extra Bonus

$$
\sum_{k=1}^{n} H_{k}=n H_{n}-n
$$

And also because Book sum = Our sum we get

$$
\sum_{1 \leq k \leq n, 1 \leq j \leq n-k} \frac{1}{k}=\sum_{1 \leq k \leq n-1,1 \leq j \leq n-k} \frac{1}{k}
$$

and we have also proved as a bonus Book Remark on page 41

