cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 8a

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 3: Multiple Sums (3) General Methods - Lecture 8a

SUMS
GENERAL METHODS

Method 0

PROBLEM : Find a Closed Formula for

$$
\square_{n}=\sum_{k=0}^{n} k^{2}
$$

Method 0 : Look it up p. 72 of
CRS Standard Mathematical Tables and give answer:

$$
\square_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

Other references: Handbook of Math functions: Abramowitz, Stequr Handbook of Integer Sequences, Sloane

Method 1

Method 1

Guess the answer and prove by Mathematical Induction

$$
\square_{n}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}=\sum_{k=0}^{n} k^{2}
$$

Re-write as

$$
\square_{0}=0, \quad \square_{n}=\square_{n-1}+n^{2}
$$

Use inductive assumption for $n:=n-1$

$$
\begin{aligned}
& 3 \square_{n}=(n-1)\left(n-1+\frac{1}{2}\right) n+3 n^{2}=(n-1)\left(n-\frac{1}{2}\right) n+3 n^{2} \\
& =n^{3}-\frac{3}{2} n^{2}+\frac{1}{2} n+3 n^{2}=n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n \\
& =n\left(n^{2}+\frac{3}{2} n+\frac{1}{2}\right)=n\left(n+\frac{1}{2}\right)(n+1)
\end{aligned}
$$

Method 2: Perturbation Method

Perturbation Method is a method that often allows us to evaluate a CF form for a certain sums
The idea is to start with an unknown sum and call it S_{n} :

$$
S_{n}=\sum_{k=0}^{n} a_{k}
$$

Then we re-write S_{n+1} in two ways, by splitting off both its last term a_{n+1} and its first term a_{0} :

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{k=1}^{n+1} a_{k} \text { put } \mathrm{k}:=\mathrm{k}+1 \\
& =a_{0}+\sum_{1 \leq k+1 \leq n+1} a_{k+1}=a_{0}+\sum_{0 \leq k \leq n} a_{k+1} \\
& =a_{0}+\sum_{k=0}^{n} a_{k+1}
\end{aligned}
$$

Method 2: Perturbation Method

We get a formula:

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

Goal of the Perturbation Method is to work on the last sum
$\sum_{k=0}^{n} a_{k+1}$ and try to express it on terms of S_{n}

If it works and if we get a multiple of S_{n} we solve the equation on S_{n} and obtain the closed formula CF for the original sum

If it does not work - we look for another method

Method 2: Perturb the Sum

Method 2: Perturb the Sum $\quad \square_{n}=\sum_{k=0}^{n} k^{2}$
We use the perturbation formula: for $a_{0}=0$ in this case

$$
\begin{aligned}
& \quad S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1} \\
& a_{n}+(n+1)^{2}=\sum_{k=0}^{n}(k+1)^{2}=\sum_{k=0}^{n}\left(k^{2}+2 k+1\right) \\
& =\sum_{k=0}^{n} k^{2}+2 \sum_{k=0}^{n} k+\sum_{k=0}^{n} 1 \\
& =\square_{n}+2 \sum_{k=0}^{n} k+(n+1)
\end{aligned}
$$

Nice calculation but NO RESULT for \square_{n} !
Method failed

Method 2: Perturb the Sum

Nevertheless we get something:

$$
\begin{aligned}
& (n+1)^{2}=2 \sum_{k=0}^{n} k+(n+1) \\
& 2 \sum_{k=0}^{n} k=(n+1)^{2}-(n+1) \\
& 2 \sum_{k=0}^{n} k=(n+1)(n+1-1) \\
& \quad \text { BONUS : } \quad \sum_{k=0}^{n} k=\frac{n(n+1)}{2}
\end{aligned}
$$

Method 2: Perturb the Sum

Back to our problem: $\quad \square_{n}=\sum_{k=0}^{n} k^{2}$
IDEA: use perturbation for
$⿴_{n}=\sum_{k=0}^{n} k^{3}$ to get \square_{n} as we did for $\sum_{k=0}^{n} k$

We use as before the perturbation formula: for $a_{0}=0$ in this case

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

We evaluate
四 $_{n}+(n+1)^{3}=\sum_{k=0}^{n}(k+1)^{3}=\sum_{k=0}^{n}\left(k^{3}+3 k^{2}+3 k+1\right)$
Reminder: $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

Method 2：Perturb the Sum

We evaluate now

$$
\begin{aligned}
& ⿴ 囗 口 ⿱_{n}+(n+1)^{3}=\sum_{k=0}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =\sum_{k=0}^{n} k^{3}+3 \sum_{k=0}^{n} k^{2}+3 \sum_{k=0}^{n} k+\sum_{k=0}^{n} 1 \\
& \quad=⿴ 囗 ⿰ 丿 ㇄_{n}+3 \square_{n}+3 \frac{n(n+1)}{2}+(n+1) \quad \text { Got it! }
\end{aligned}
$$

We have now

$$
\begin{gathered}
(n+1)^{3}=3 \square_{n}+3 \frac{n(n+1)}{2}+(n+1) \\
3 \square_{n}=(n+1)^{3}-3 \frac{n(n+1)}{2}-(n+1) \\
=(n+1)\left((n+1)^{2}-\frac{3}{2} n-1\right)=(n+1)\left(n^{2}+\frac{1}{2} n\right) \\
\square_{n}=\frac{(n+1)\left(n+\frac{1}{2}\right) n}{3}
\end{gathered}
$$

Method 3: Repertoire

Method 3: Build a repertoire

Back to our problem: evaluate

$$
\square_{n}=\sum_{k=0}^{n} k^{2}
$$

To solve it we now generalize the recursive formula
(1) RF: $R_{0}=\alpha, R_{n}=R_{n-1}+\beta+\gamma n$
we have used to evaluate the sum $\sum_{k=0}^{n}(a+b k)$ to a formula
(2) $\mathrm{RF}: \quad R_{0}=\alpha, R_{n}=R_{n-1}+\beta+\gamma n+\delta n^{2}$
which we now use to evaluate the sum $\sum_{k=0}^{n}\left(a+n k^{2}\right)$

Method 3: Repertoire

Now the general form of the closed form CF formula is

$$
C F: \quad R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma+D(n) \delta
$$

Observe that when $\delta=0$, we get the case (1) and as we have already evaluated before

$$
A(n)=1, \quad B(n)=n, \quad C(n)=\frac{n^{2}+n}{2}
$$

General closed formula CF becomes

$$
\text { (3) } R_{n}=\alpha+n \beta+\frac{\left(n^{2}+n\right)}{2} \gamma+D(n) \delta
$$

Method 3: Repertoire

We need to evaluate $D(n)$
We use a repertoire function

$$
R_{n}=n^{3}, \text { for all } n \in N
$$

to evaluate $\alpha, \beta, \gamma, \delta$ (if exists)
Our recurrence
(2) RF: $R_{0}=\alpha, R_{n}=R_{n-1}+\beta+\gamma n+\delta n^{2}$

We evaluate $R_{0}=R_{0}=0$ iff $\alpha=0$
We set $R_{n}=R_{n}=n^{3}$, for all $n \in N$ and evaluate
$n^{3}=(n-1)^{3}+\beta+\gamma n+\delta n^{2}$ for all $n \in N$
$0=n^{2}(\delta-3)+n(\gamma+3)+(\beta-1)$ for all $n \in N$
This is possible only when

$$
\delta=3, \quad \gamma=-3, \quad \beta=1
$$

Method 3: Repertoire

Our closed CF formula is

$$
C F: \quad R_{n}=\alpha+n \beta+\frac{n^{2}+n}{2} \gamma+D(n) \delta
$$

For $R_{n}=n^{3}$ and $\alpha=0, \beta=1, \gamma=-3, \delta=3$
it becomes

$$
\begin{aligned}
& n^{3}=0+n-\frac{3}{2}\left(n^{2}+n\right)+3 D(n) \\
& 3 D(n)=n^{3}-n+\frac{3}{2}\left(n^{2}+n\right)
\end{aligned}
$$

$$
=n\left(n^{2}+\frac{3}{2} n+\frac{1}{2}\right)=n\left(n+\frac{1}{2}\right)(n+1) \quad \text { and }
$$

$$
D(n)=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}
$$

$$
\text { CF: } \quad R_{n}=\alpha+n \beta+\frac{n^{2}+n}{2} \gamma+\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3} \delta
$$

Method 3: Repertoire

Observe that our sum

$$
\square_{n}=\sum_{k=0}^{n} k^{2} \text { written as } \quad \square_{0}=0, \square_{n}=\square_{n-1}+n^{2}
$$

is a special case of

$$
R_{0}=\alpha, \quad R_{n}=R_{n-1}+\beta+\gamma n+\delta n^{2}
$$

for $\alpha=0, \beta=0, \gamma=0, \delta=1$
and closed formula

$$
C F: \quad R_{n}=\alpha+n \beta+\frac{n^{2}+n}{2} \gamma+\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3} \delta
$$

becomes

$$
R_{n}=\square_{n}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}
$$

and

$$
\sum_{k=0}^{n} k^{2}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}
$$

Method 4: Replace Sums by Integrals

Method 4: Replace Sums by Integrals

Area under the curve up to n is $\int_{0}^{n} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{n}=\frac{n^{3}}{3}$
Hence

$$
\square_{n} \approx \frac{n^{3}}{3} .
$$

More precisely, letting E_{n} denote the error, we have

$$
\square_{n}=\frac{n^{3}}{3}+E_{n}
$$

Method 4: Replace Sums by Integrals

$$
\text { Error }=E_{n}=\square_{n}-\frac{1}{3} n^{3}
$$

We want a recursive formula for E_{n}

$$
\begin{aligned}
E_{n-1} & =\square_{n-1}-\frac{1}{3}(n-1)^{3} \\
& =\square_{n-1}-\frac{1}{3}\left(n^{3}-3 n^{2}+3 n-1\right) \\
& =\square_{n-1}-\frac{1}{3} n^{3}+n^{2}-\frac{3}{3} n+\frac{1}{3} \\
& =\square_{n-1}+n^{2}-\frac{1}{3} n^{3}+\frac{1}{3}-n
\end{aligned}
$$

Method 4: Replace Sums by Integrals

We have that $\quad E_{n}=\square_{n}-\frac{1}{3} n^{3} \quad$ and obtained

$$
E_{n-1}=\square_{n-1}+n^{2}-\frac{1}{3} n^{3}+\frac{1}{3}-n
$$

Since $\square_{n}=\square_{n-1}+n^{2}$, we have

$$
\begin{aligned}
E_{n} & =\square_{n}-\frac{1}{3} n^{3} \\
& =\square_{n-1}+n^{2}-\frac{1}{3} n^{3} \\
& =\underbrace{\square_{n-1}+n^{2}-\frac{1}{3} n^{3}+\left(\frac{1}{3}-n\right)}_{E_{n-1}}-\left(\frac{1}{3}-n\right) \\
& =E_{n-1}+n-\frac{1}{3}
\end{aligned}
$$

Method 4: Replace Sums by Integrals

Hence

$$
E_{n}=E_{n-1}+n-\frac{1}{3}, \quad E_{0}=0
$$

(RF Formula)
and

$$
E_{n}=\sum_{k=1}^{n}\left(k-\frac{1}{3}\right)
$$

(SUM Formula)

Method 4: Replace Sums by Integrals

We evaluate:

$$
\begin{aligned}
E_{n} & =\sum_{k=1}^{n}\left(k-\frac{1}{3}\right) \\
& =\sum_{k=1}^{n} k-\frac{1}{3} \sum_{k=1}^{n} 1 \\
& =\frac{n(n+1)}{2}-\frac{1}{3} n \\
E_{n} & =\frac{n(n+1)}{2}-\frac{1}{3} n
\end{aligned}
$$

Method 4: Replace Sums by Integrals

Evaluate:

$$
\begin{aligned}
\square_{n} & =E_{n}+\frac{n^{3}}{3} \\
& =\frac{n(n+1)}{2}-\frac{1}{3} n+\frac{n^{3}}{3} \\
& =\frac{3 n^{2}+3 n-2 n+2 n^{3}}{6} \\
& =\frac{2 n^{3}+3 n^{2}+n}{6} .
\end{aligned}
$$

Method 4: Replace Sums by Integrals

Check:

$$
\begin{gathered}
\square_{n}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3} \\
=\frac{n^{3}+\frac{1}{2} n^{2}+n^{2}+\frac{1}{2} n}{3}=\frac{2 n^{3}+n^{2}+2 n^{2}+n}{6} \\
=\frac{2 n^{3}+3 n^{2}+n}{6}
\end{gathered}
$$

Method 5: Expand and Contract

Method:

Replace the original single sum by a seemingly more complicated DOUBLE sum (expend) that can be in turn simplified (contract)
Example of replacement

$$
\sum_{k=1}^{n} k^{2}=\sum_{1 \leq j \leq k \leq n} k
$$

Proof on the next slide

Method 5: Expand and Contract

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} & =\sum_{k=1}^{n} k \cdot k \\
& =\sum_{k=1}^{n} k \underbrace{\left(\sum_{j=1}^{k} 1\right)}_{k=\sum_{j=1}^{k} 1} \\
& =\sum_{k=1}^{n} \sum_{j=1}^{k} k \\
& =\sum_{j=1}^{k} \sum_{k=1}^{n} k \\
& =\sum_{1 \leq j \leq k \leq n} k
\end{aligned}
$$

Method 5: Expand and Contract

We have used in the proof a following property (yet to be proved!)

$$
(1 \leq j \leq k) \cap(1 \leq k \leq n) \equiv 1 \leq j \leq k \leq n
$$

Observe that we have two possibilities for j and k : $j>k$, or $j \leq k$.

Note that when $j>k$, the sum $\sum_{j=1}^{k} 1$ does not exist (DNE) so this case is impossible

Method 5: Expand and Contract

The case $j \leq k$ is obvious, i.e. we have that

$$
(1 \leq j \leq k) \cap(1 \leq k \leq n) \equiv(1 \leq j \leq k \leq n) \quad \text { when } \quad j \leq k
$$

We have hence proved the following general property of changing the limits of summation for future use

$$
\sum_{j=1}^{k} \sum_{k=1}^{n} a_{i j}=\sum_{1 \leq j \leq k \leq n} a_{i j}
$$

Method 5: Expand and Contract

$$
\begin{aligned}
\square_{n}=\sum_{k=1}^{n} k^{2} & =\sum_{1 \leq j \leq k \leq n} k \\
& =\underbrace{\sum_{j=1}^{n}\left(\sum_{k=j}^{n} k\right)}_{\substack{1 \leq j \leq k \leq n \\
\equiv(1 \leq j \leq n) \\
n(j \leq k \leq n)}} \\
& =\sum_{j=1}^{n} \frac{(j+n)(n-j+1)}{2}
\end{aligned}
$$

Method 5: Expand and Contract

$$
\begin{aligned}
\square_{n}=\sum_{k=1}^{n} k^{2} & =\sum_{1 \leq j \leq k \leq n} k \\
& =\frac{1}{2} \sum_{j=1}^{n}\left(n(n+1)+j-j^{2}\right) \\
& =\frac{1}{2} n^{2}(n+1)+\frac{1}{2} \sum_{j=1}^{n} j-\frac{1}{2} \sum_{j=1}^{n} j^{2} \\
& =\frac{1}{2} n^{2}(n+1)+\frac{1}{4} n(n+1)-\frac{1}{2} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{2} n\left(n+\frac{1}{2}\right)(n+1)-\frac{1}{2} \square_{n} .
\end{aligned}
$$

Method 5: Expand and Contract

Hence

$$
\frac{3}{2} \square_{n}=\frac{1}{2} n\left(n+\frac{1}{2}\right)(n+1),
$$

i.e.

$$
\square_{n}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}
$$

Note that in the above we used

$$
\sum_{j=1}^{n} n(n+1)=n(n+1) \sum_{j=1}^{n} 1=n^{2}(n+1)
$$

Method 5: Expand and Contract

Prove by Method 5 the following property

$$
\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2}=2 \cdot \sum_{1 \leq j \leq k \leq n} j \cdot k
$$

We use this property in Chapter 2, problem 15
First we evaluate $\sum_{k=1}^{n} k^{3}+(n+1)^{3}$ in terms of $\sum_{k=1}^{n} k^{2}$ and $\sum_{1 \leq j \leq k \leq n} j \cdot k$

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3}+(n+1)^{3} & =\sum_{k=0}^{n-1}(k+1)^{3}+(n+1)^{3} \\
& =\sum_{k=0}^{n}(k+1)^{3} \\
& =1+\sum_{k=1}^{n}(k+1)^{3}
\end{aligned}
$$

Method 5: Expand and Contract

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3}+(n+1)^{3} & =1+\underbrace{\sum_{k=1}^{n} k^{2}(k+1)+\sum_{k=1}^{n}(2 k+1)(k+1)}_{(k+1)^{3}=\left(k^{2}+2 k+1\right)(k+1)=k^{2}(k+1)+(2 k+1)(k+1)} \\
& =1+\sum_{k=1}^{n} k \cdot \underbrace{k(k+1)}_{=2 \sum_{j=1}^{k} j}+\sum_{k=1}^{n}(2 k+1)(k+1) \\
& =1+\sum_{k=1}^{n} k\left(2 \sum_{j=1}^{k} j\right)+\sum_{k=1}^{n}\left(2 k^{2}+3 k+1\right) \\
& =1+2 \sum_{k=1}^{n} \sum_{j=1}^{k} k \cdot j+2 \sum_{k=1}^{n} k^{2}+3 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1 \\
& =1+2 \sum_{1 \leq j \leq k \leq n} k \cdot j+\frac{3}{2} n(n+1)+n+2 \sum_{k=1}^{n} k^{2}
\end{aligned}
$$

Method 5: Expand and Contract

Adding the factor $\sum_{k=1}^{n} k^{2}-(n+1)^{3}$ to both sides, we get

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2} & =2 \sum_{1 \leq j \leq k \leq n} k \cdot j+\underbrace{3 \sum_{k=1}^{n} k^{2}}_{=n(n+1 / 2)(n+1)} \\
& +3 \cdot \frac{n(n+1)}{2}+(n+1)-(n+1)^{3} \\
& =2 \sum_{1 \leq j \leq k \leq n} k \cdot j
\end{aligned}
$$

$$
+n\left(n+\frac{1}{2}\right)(n+1)+\frac{3}{2} n(n+1)+(n+1)-(n+1)^{3}
$$

Method 5 : Expand and Contract

We evaluate now the last factor

$$
\begin{aligned}
n\left(n+\frac{1}{2}\right)(n+1)+\frac{3}{2} n(n+1)+(n+1)-(n+1)^{3}= & (n+1)\left[n\left(n+\frac{1}{2}\right)+\frac{3}{2} n\right. \\
& \left.+1-(n+1)^{2}\right] \\
= & (n+1)\left(n^{2}+\frac{1}{2} n+\frac{3}{2} n\right. \\
& \left.+1-n^{2}-2 n-1\right) \\
= & (n+1)(2 n-2 n) \\
= & 0
\end{aligned}
$$

Method 5: Expand and Contract

Hence we have proved that

$$
\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2}=2 \sum_{1 \leq j \leq k \leq n} k \cdot j
$$

Note that we used in the proof already proved property

$$
\sum_{k=1}^{n} \sum_{j=1}^{k} k \cdot j=\sum_{j=1}^{k} \sum_{k=1}^{n} k \cdot j=\sum_{1 \leq j \leq k \leq n} k \cdot j
$$

Short Proof

$$
\sum_{k=0}^{n} k^{2}+\sum_{k=0}^{n} k^{3}=2 \sum_{1 \leq j \leq k \leq n} k \cdot j
$$

Here is a short proof:

$$
\begin{aligned}
& \sum_{k=0}^{n} k^{2}+\sum_{k=0}^{n} k^{3}=0^{2}+0^{3}+\sum_{k=1}^{n}\left(k^{2}+k^{3}\right) \\
&=\sum_{k=1}^{n} \underbrace{k^{2}(k+1)}_{\text {use }} \\
& \frac{k(k+1)}{2}=\sum_{j=1}^{k} j
\end{aligned}
$$

Short Proof

$$
\begin{aligned}
& \sum_{k=0}^{n} k^{2}+\sum_{k=0}^{n} k^{3}=\sum_{k=1}^{n} 2 k \cdot \frac{k(k+1)}{2} \\
& =2 \sum_{k=1}^{n} \underbrace{k}_{\substack{\text { cost. } \\
\text { on } j}} \cdot \sum_{j=1}^{k} j \\
& =2 \underbrace{\sum_{k=1}^{n} \sum_{j=1}^{k} k \cdot j} \\
& \text { use } \sum_{k=1}^{n} \sum_{j=1}^{k} a_{j k} \\
& =\sum_{1 \leq j \leq k \leq n} a_{j k} \\
& =2 \sum_{1 \leq j \leq k \leq n} k \cdot j
\end{aligned}
$$

