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CHAPTER 2
SUMS

Part 3: Multiple Sums (3) General Methods - Lecture 8a



SUMS
GENERAL METHODS



Method 0

PROBLEM : Find a Closed Formula for

�n =
n

∑
k=0

k2

Method 0 : Look it up p.72 of
CRS Standard Mathematical Tables and give answer:

�n = n(n+1)(2n+1)
6

Other references:
Handbook of Math functions: Abramowitz, Stequr
Handbook of Integer Sequences, Sloane



Method 1

Method 1
Guess the answer and prove by Mathematical Induction

�n =
n(n+ 1

2)(n+1)
3

=
n

∑
k=0

k2

Re-write as

�0 = 0, �n = �n−1 +n2

Use inductive assumption for n := n−1
3�n = (n−1)(n−1+ 1

2)n+3n2 = (n−1)(n− 1
2)n+3n2

= n3− 3
2n2 + 1

2n+3n2 = n3 + 3
2n2 + 1

2n

= n(n2 + 3
2n+ 1

2) = n(n+ 1
2)(n+1)



Method 2: Perturbation Method

Perturbation Method is a method that often allows us to
evaluate a CF form for a certain sums
The idea is to start with an unknown sum and call it Sn:

Sn = ∑
n
k=0ak

Then we re-write Sn+1 in two ways, by splitting off both
its last term an+1 and its first term a0:

Sn +an+1 = a0 +∑
n+1
k=1ak put k:= k+1

= a0 + ∑
1≤k+1≤n+1

ak+1 = a0 + ∑
0≤k≤n

ak+1

= a0 +∑
n
k=0ak+1



Method 2: Perturbation Method

We get a formula:

Sn +an+1 = a0 +∑
n
k=0ak+1

Goal of the Perturbation Method is to work on the last
sum

∑
n
k=0ak+1 and try to express it on terms of Sn

If it works and if we get a multiple of Sn we solve the
equation on Sn and obtain the closed formula CF for the
original sum

If it does not work - we look for another method



Method 2: Perturb the Sum

Method 2: Perturb the Sum �n =
n

∑
k=0

k2

We use the perturbation formula: for a0 = 0 in this case

Sn +an+1 = a0 +∑
n
k=0ak+1

�n +(n+1)2 =
n

∑
k=0

(k +1)2 =
n

∑
k=0

(k2 +2k +1)

=
n

∑
k=0

k2 +2
n

∑
k=0

k +
n

∑
k=0

1

= �n +2
n

∑
k=0

k +(n+1)

Nice calculation but NO RESULT for �n !
Method failed



Method 2: Perturb the Sum

Nevertheless we get something:

(n+1)2 = 2
n

∑
k=0

k +(n+1)

2
n

∑
k=0

k = (n+1)2− (n+1)

2
n

∑
k=0

k = (n+1)(n+1−1)

BONUS :
n

∑
k=0

k =
n(n+1)

2



Method 2: Perturb the Sum

Back to our problem: �n =
n

∑
k=0

k2

IDEA: use perturbation for

�n =
n

∑
k=0

k3 to get �n as we did for
n

∑
k=0

k

We use as before the perturbation formula: for a0 = 0 in
this case

Sn +an+1 = a0 +∑
n
k=0ak+1

We evaluate

�n +(n+1)3 =
n

∑
k=0

(k +1)3 =
n

∑
k=0

(k3 +3k2 +3k +1)

Reminder: (a+b)3 = a3 +3a2b+3ab2 +b3



Method 2: Perturb the Sum

We evaluate now
�n +(n+1)3 = ∑

n
k=0(k

3 +3k2 +3k +1)

=
n

∑
k=0

k3 +3
n

∑
k=0

k2 +3
n

∑
k=0

k +
n

∑
k=0

1

= �n + 3�n +3n(n+1)
2 +(n+1) Got it!

We have now
(n+1)3 = 3�n +3n(n+1)

2 +(n+1)

3�n = (n+1)3−3n(n+1)
2 − (n+1)

= (n+1)((n+1)2− 3
2n−1) = (n+1)(n2 + 1

2n)

�n =
(n+1)(n+ 1

2)n
3



Method 3: Repertoire

Method 3: Build a repertoire

Back to our problem: evaluate �n =
n

∑
k=0

k2

To solve it we now generalize the recursive formula

(1) RF: R0 = α, Rn = Rn−1 +β + γn

we have used to evaluate the sum
n

∑
k=0

(a+bk) to a

formula

(2) RF: R0 = α, Rn = Rn−1 +β + γn+ δn2

which we now use to evaluate the sum
n

∑
k=0

(a+nk2)



Method 3: Repertoire

Now the general form of the closed form CF formula is

CF : Rn = A(n)α +B(n)β +C(n)γ +D(n)δ

Observe that when δ = 0 , we get the case (1) and as
we have already evaluated before

A(n) = 1, B(n) = n, C(n) = n2+n
2

General closed formula CF becomes

(3) Rn = α +nβ + (n2+n)
2 γ +D(n)δ



Method 3: Repertoire

We need to evaluate D(n)

We use a repertoire function Rn = n3, for all n ∈ N

to evaluate α, β , γ, δ (if exists)
Our recurrence

(2) RF: R0 = α, Rn = Rn−1 +β + γn+ δn2

We evaluate R0 = R0 = 0 iff α = 0
We set Rn = Rn = n3, for all n ∈ N and evaluate
n3 = (n−1)3 +β + γn+δn2 for all n ∈ N
0 = n2(δ −3)+n(γ +3)+(β −1) for all n ∈ N
This is possible only when

δ = 3 , γ =−3 , β = 1



Method 3: Repertoire

Our closed CF formula is

CF : Rn = α +nβ + n2+n
2 γ +D(n)δ

For Rn = n3 and α = 0, β = 1, γ =−3, δ = 3
it becomes
n3 = 0+n− 3

2(n
2 +n)+ 3D(n)

3D(n) = n3−n+ 3
2(n

2 +n)

= n(n2 + 3
2n+ 1

2) = n(n+ 1
2)(n+1) and

D(n) = n(n+ 1
2 )(n+1)
3

CF : Rn = α +nβ + n2+n
2 γ +

n(n+ 1
2 )(n+1)
3 δ



Method 3: Repertoire

Observe that our sum

�n =
n

∑
k=0

k2 written as �0 = 0, �n = �n−1 +n2

is a special case of
R0 = α, Rn = Rn−1 +β + γn+δn2

for α = 0, β = 0, γ = 0, δ = 1
and closed formula

CF : Rn = α +nβ + n2+n
2 γ +

n(n+ 1
2 )(n+1)
3 δ

becomes

Rn = �n =
n(n+ 1

2 )(n+1)
3

and
n

∑
k=0

k2 =
n(n+ 1

2)(n+1)
3



Method 4: Replace Sums by Integrals

x

f(x)
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area of kth rectangle = k2

⇤n =

nX

k=0

k2 (here n = 10)

f(x) = x2



Method 4: Replace Sums by Integrals

Area under the curve up to n is
∫ n

0
x2 dx =

[
x3

3

]n

0
=

n3

3

Hence

2n ≈
n3

3
.

More precisely, letting En denote the error, we have

2n =
n3

3
+En



Method 4: Replace Sums by Integrals

Error = En =2n−
1
3

n3

We want a recursive formula for En

En−1 =2n−1−
1
3
(n−1)3

=2n−1−
1
3
(n3−3n2 +3n−1)

=2n−1−
1
3

n3 +n2− 3
3

n+
1
3

=2n−1 +n2− 1
3

n3 +
1
3
−n



Method 4: Replace Sums by Integrals

We have that En =2n− 1
3n3 and obtained

En−1 =2n−1 +n2− 1
3

n3 +
1
3
−n

Since 2n =2n−1 +n2, we have

En =2n−
1
3

n3

=2n−1 +n2− 1
3

n3

=2n−1 +n2− 1
3

n3 +

(
1
3
−n
)

︸                                    ︷︷                                    ︸
En−1

−
(

1
3
−n
)

= En−1 +n− 1
3



Method 4: Replace Sums by Integrals

Hence

En = En−1 +n− 1
3
, E0 = 0 (RF Formula)

and

En =
n

∑
k=1

(
k − 1

3

)
(SUM Formula)



Method 4: Replace Sums by Integrals

We evaluate:

En =
n

∑
k=1

(
k − 1

3

)

=
n

∑
k=1

k − 1
3

n

∑
k=1

1

=
n(n+1)

2
− 1

3
n

En =
n(n+1)

2
− 1

3
n



Method 4: Replace Sums by Integrals

Evaluate:

2n = En +
n3

3

=
n(n+1)

2
− 1

3
n+

n3

3

=
3n2 +3n−2n+2n3

6

=
2n3 +3n2 +n

6
.



Method 4: Replace Sums by Integrals

Check:

2n =
n
(
n+ 1

2

)
(n+1)

3

=
n3 + 1

2n2 +n2 + 1
2n

3
=

2n3 +n2 +2n2 +n
6

=
2n3 +3n2 +n

6
.



Method 5: Expand and Contract

Method:
Replace the original single sum by a seemingly more
complicated DOUBLE sum (expend ) that can be in turn
simplified (contract)
Example of replacement

n

∑
k=1

k2 = ∑
1≤j≤k≤n

k

Proof on the next slide



Method 5: Expand and Contract

n

∑
k=1

k2 =
n

∑
k=1

k ·k

=
n

∑
k=1

k

(
k

∑
j=1

1

)

︸      ︷︷      ︸
k=∑

k
j=1 1

=
n

∑
k=1

k

∑
j=1

k

=
k

∑
j=1

n

∑
k=1

k

= ∑
1≤j≤k≤n

k ,



Method 5: Expand and Contract

We have used in the proof a following property (yet to be
proved!)

(1≤ j ≤ k)∩ (1≤ k ≤ n)≡1≤ j ≤ k ≤ n

Observe that we have two possibilities for j and k :
j > k , or j ≤ k .

Note that when j > k , the sum ∑
k
j=1 1 does not exist (DNE) so

this case is impossible



Method 5: Expand and Contract

The case j ≤ k is obvious, i.e. we have that

(1≤ j ≤ k)∩ (1≤ k ≤ n)≡ (1≤ j ≤ k ≤ n) when j ≤ k

We have hence proved the following general property of
changing the limits of summation for future use

k

∑
j=1

n

∑
k=1

aij = ∑
1≤j≤k≤n

aij (PROPERTY)



Method 5: Expand and Contract

2n =
n

∑
k=1

k2 = ∑
1≤j≤k≤n

k

=
n

∑
j=1

(
n

∑
k=j

k

)

︸           ︷︷           ︸
1≤j≤k≤n
≡(1≤j≤n)
∩(j≤k≤n)

=
n

∑
j=1

(j +n)(n− j +1)
2



Method 5: Expand and Contract

2n =
n

∑
k=1

k2 = ∑
1≤j≤k≤n

k

=
1
2

n

∑
j=1

(
n(n+1)+ j− j2

)

=
1
2

n2(n+1)+
1
2

n

∑
j=1

j− 1
2

n

∑
j=1

j2

=
1
2

n2(n+1)+
1
4

n(n+1)− 1
2

n

∑
k=1

k2

=
1
2

n
(

n+
1
2

)
(n+1)− 1

2
2n.



Method 5: Expand and Contract

Hence
3
2
2n =

1
2

n
(

n+
1
2

)
(n+1),

i.e.

2n =
n
(
n+ 1

2

)
(n+1)

3

Note that in the above we used

n

∑
j=1

n(n+1) = n(n+1)
n

∑
j=1

1 = n2(n+1).



Method 5: Expand and Contract

Prove by Method 5 the following property

n

∑
k=1

k3 +
n

∑
k=1

k2 = 2 · ∑
1≤j≤k≤n

j ·k

We use this property in Chapter 2, problem 15

First we evaluate ∑
n
k=1 k3 +(n+1)3 in terms of ∑

n
k=1 k2

and ∑1≤j≤k≤n j ·k

n

∑
k=1

k3 +(n+1)3 =
n−1

∑
k=0

(k +1)3 +(n+1)3

=
n

∑
k=0

(k +1)3

= 1+
n

∑
k=1

(k +1)3



Method 5: Expand and Contract

n

∑
k=1

k3 +(n+1)3 = 1+
n

∑
k=1

k2(k +1)+
n

∑
k=1

(2k +1)(k +1)

︸                                             ︷︷                                             ︸
(k+1)3=(k2+2k+1)(k+1)=k2(k+1)+(2k+1)(k+1)

= 1+
n

∑
k=1

k ·k(k +1)︸      ︷︷      ︸
=2∑

k
j=1 j

+
n

∑
k=1

(2k +1)(k +1)

= 1+
n

∑
k=1

k

(
2

k

∑
j=1

j

)
+

n

∑
k=1

(2k2 +3k +1)

= 1+2
n

∑
k=1

k

∑
j=1

k · j + 2
n

∑
k=1

k2 +3
n

∑
k=1

k +
n

∑
k=1

1

= 1+2 ∑
1≤j≤k≤n

k · j + 3
2

n(n+1)+n+2
n

∑
k=1

k2



Method 5: Expand and Contract

Adding the factor ∑
n
k=1 k2− (n+1)3 to both sides, we get

n

∑
k=1

k3 +
n

∑
k=1

k2 = 2 ∑
1≤j≤k≤n

k · j + 3
n

∑
k=1

k2

︸     ︷︷     ︸
=n(n+1/2)(n+1)

+3 · n(n+1)
2

+(n+1)− (n+1)3

= 2 ∑
1≤j≤k≤n

k · j

+ n
(

n+
1
2

)
(n+1)+

3
2

n(n+1)+(n+1)− (n+1)3



Method 5 : Expand and Contract

We evaluate now the last factor

n
(

n+
1
2

)
(n+1)+

3
2

n(n+1)+(n+1)− (n+1)3 = (n+1)
[
n
(

n+
1
2

)
+

3
2

n

+1− (n+1)2
]

= (n+1)
(

n2 +
1
2

n+
3
2

n

+1−n2−2n−1
)

= (n+1)(2n−2n)
= 0



Method 5: Expand and Contract

Hence we have proved that

n

∑
k=1

k3 +
n

∑
k=1

k2 = 2 ∑
1≤j≤k≤n

k · j

Note that we used in the proof already proved property

n

∑
k=1

k

∑
j=1

k · j =
k

∑
j=1

n

∑
k=1

k · j = ∑
1≤j≤k≤n

k · j



Short Proof

n

∑
k=0

k2 +
n

∑
k=0

k3 = 2 ∑
1≤j≤k≤n

k · j

Here is a short proof:

n

∑
k=0

k2 +
n

∑
k=0

k3 = 02 +03 +
n

∑
k=1

(k2 +k3)

=
n

∑
k=1

k2(k +1)︸        ︷︷        ︸
use

k(k+1)
2 =∑

k
j=1 j



Short Proof

n

∑
k=0

k2 +
n

∑
k=0

k3 =
n

∑
k=1

2k · k(k +1)
2

= 2
n

∑
k=1

k︸︷︷︸
const.
on j

·
k

∑
j=1

j

= 2
n

∑
k=1

k

∑
j=1

k · j

︸         ︷︷         ︸
use ∑

n
k=1 ∑

k
j=1 ajk

=∑1≤j≤k≤n ajk

= 2 ∑
1≤j≤k≤n

k · j


