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Finite and Infinite Calculus

Infinite Calculus review
We define a derivative OPERATOR D as

Df (x) = lim
h→0

f (x + h)− f (x)

h

Derivative operator D is defined for some functions on real
numbers R, called differentiable functions.
We denote Df(x) = f’(x) and call the result a derivative f’
of a differentiable function f



Derivative Operator

D is called an operator because it is a function that
transforms some functions into different functions
D is a PARTIAL function on the set RR of all functions
over R, i.e.

D : RR −→ RR

where RR = {f : R −→ R}
D is a partial function because the domain of D consists
of the differentiable functions only, i.e. functions f for

which lim
h→0

f (x + h)− f (x)

h
exists



FINITE CALCULUS

Difference operator ∆

Let f be any function on real numbers R (may be partial)
f : R −→ R
We define

∆f (x) = f (x + 1)− f (x)

∆ transforms ANY function f into another function
g(x) = f (x + 1)− f (x), so we have that

∆ : RR −→ RR



Difference Operator Example

Let f : R −→ R be given by a formula f (x) = xm

We evaluate:
Df (x) = mxm−1

Reminder: D(xm) = mxm−1

What about ∆???
Evaluate
∆(x3) = (x + 1)3−x3 = 3x2 + 3x + 1, Dx3 = 3x2

∆ , D



Difference Operator Question

Q: Is there a function f for which ∆f = Df

Yes there is a ”new power” of x, which transforms as nicely
under ∆, as xm does under D



Falling Factorial Power

Definition of Falling Factorial Power

Let f : R −→ R be given by a formula

f (x) = xm

for xm = x(x−1)(x−2) · · ·(x−m + 1) and m > 0

Wa also define in a similar way a notion of a rising factorial
power



Rising Factorial Power

Definition of Rising Factorial Power

Let f : R −→ R be given by a formula

f (x) = xm

for xm = x(x + 1) · · ·(x + m−1) and m > 0

Let now see what happens when the domain of f is
restricted to the set of natural numbers N



Factorial Powers

Let now f : N −→ N, f (x) = xm

We evaluate

nn = n(n−1)(n−2) · · ·(n−n + 1) = n!

We evaluate

1n = 1 ·2 · · ·(1 + n−1) = n!

We got
nn = n! and 1n = n!



Factorial Powers

We define case m = 0

x0 = x0 = 1 PRODUCT OF NO FACTORS 0! = 1 x ∈ R

10 = 0! = 1 00 = 0! = 1

We have already proved:

n! = nn = 1n for any n ≥ 0



Factorial Powers

Let’s now evaluate

∆(xm) = (x + 1)m−xm

in order to PROVE the formula:

∆(xm) = mxm−1

It means that ∆ on xm ”behaves” like D on xm:

D(xm) = mxm−1



Factorial Powers

Evaluate

(x + 1)m = (x + 1)x(x−1) · · ·(x + 1−m + 1)

= (x + 1)x(x−1) · · ·(x−m + 2)

Evaluate

xm = x(x−1) · · ·(x−m + 2)(x−m + 1)



Factorial Powers

Evaluate

∆(xm) = (x + 1)m−xm

= (x + 1)x(x−1) · · ·(x−m + 2)−x(x−1) · · ·(x−m + 2)(x−m + 1)

= x(x−1) · · ·(x−m + 2)((x + 1)− (x−m + 1))

= x(x−1) · · ·(x−m + 2) ·m
= mxm−1

We proved:
∆(xm) = mxm−1

Hwk Problem 7 is about xm



Infinite Calculus: Integration

Reminder: differentiation operator D is
D : RR → RR Df (x) = g(x) = f ′(x)

D is partial function
Domain D = all differentiable functions
D is not 1-1; D(c) = 0 all c ∈ R
So inverse function to D does not exist

BUT we define a reverse process to DIFFERENTIATION that
is called INTEGRATION

(1) We define a notion of a primitive function

(2) We use it to give a general definition of indefinite integral



Infinite Calculus: Integration

Definition

A function F (x) = F such that DF = DF (x) = F ′(x) = f (x) is
called a primitive function of f (x), or simply a primitive of f
Shortly,

F is a primitive of f iff DF = f

F is a primitive of f iff f is obtained from F by
differentiation

The process of finding primitive of f is called integration



Fundamental Theorem

Problem: given function f, find all primitive function of f (if
exist)

Fundamental Theorem of differential and integral calculus

The difference of two primitives F1(x), F2(x) of the same
function f (x) is a constant C , i.e.

F1(x)−F2(x) = C

for any F1,F2 such that

DF1(x) = f (x), DF2(x) = f (x)



Fundamental Theorem

The Fundamental Theorem says that

(1) From any primitive function F (x) we obtain all the other in
the form F (x) + C (suitable C)

(2) For every value of the constant C, the function
F1(x) = F (x) + C represents a PRIMITIVE of f



Indefinite Integral

Definition of Indefinite Integral as a general form of a
primitive function of f

∫
f (x)dx = F (x) + C C ∈ R

where F (x) is any primitive of f

i.e. DF (x) = f (x) F ′ = f ( for short)



Proof of Fundamental Theorem

Proof of the FUNDAMENTAL THEOREM of differential and
Integral calculus has two parts

(2) We prove: if F (x) is primitive to f (x), so is F (x) + C; i.e.
D(F (x) + C) = f (x), where DF (x) = f (x)

(1) We prove: F1(x)−F2(x) = C i.e. from any primitive F (x)
we obtain all others in the form F (x) + C
We first prove (2)



Proof of Fundamental Theorem

Proof of Fundamental Theorem part (2)

(2) Let G(x) = F (x) + C

D(F (x) + C) = lim
h→0

(F (x + h) + C)− (F (x) + C)

h

= lim
h→0

F (x + h)−F (x)

h
= F ′(x) = f (x)

as F (x) is a primitive of f (x)



Proof of Fundamental Theorem

(1) Consider F1(x) − F2(x) = G(x)

such that F ′1 = f , F ′2 = f

We want to show that G(x) = C for all x ∈ R

We use the definition of the derivative to evaluate
G′(x) = DG(x)



Proof of Fundamental Theorem

D(G(x)) = lim
h→0

(F1(x + h)−F2(x + h))− (F1(x)−F2(x))

h

= lim
h→0

(
F1(x + h)−F1(x)

h
− F2(x + h)−F2(x)

h︸                                                   ︷︷                                                   ︸
Both limits exist, as F1,F2,primitive of f .

)

= lim
h→0

F1(x + h)−F1(x)

h
− lim

h→0

F2(x + h)−F2(x)

h
= f (x)− f (x) = 0 for all x ∈ R



Proof of Fundamental Theorem

We proved that
F1(x)−F2(x) = G(x) and

G′(x) = 0 for all x ∈ R

But the function whose derivative is everywhere zero must
have a graph whose tangent is everywhere parallel to
x-asis;
i.e. must be constant;
and therefore we have G(x) = C for all x ∈ R

This is an intuitive, nor a formal proof.
The formal proof uses the Mean Value Theoremm



Proof of Fundamental Theorem

Formal proof
Apply the MEAN VALUE THEOREM to G(x), i.e.

G(x2)−G(x1) = (x2−x1)G′(ξ ) x1 < ξ < x2

but G′(x) = 0 for all x , hence G′(ξ ) = 0
and G(x2)−G(x1) = 0 , for any x1,x2

i.e. G(x2) = G(x1) for all x1,x2 i.e. G(x) = C

This ((1)+(2)) justifies the following

Definition: INDIFINITE INTEGRAL∫
f (x) = F (x) + C, where DF (x) = F ′(x) = f (x)



FINITE CALCULUS



Finite Calculus

Reminder: Difference Operator ∆

∆ : RR → RR

For any f ∈ RR we define:

∆f (x) = f (x + 1)− f (x)

∆ is a total function on RR

Remark : INVERSE to ∆ does not exist! because

∆ is not 1-1 function



Finite Calculus

Example ; ∆ is not 1-1 function

Take f1(x) = c1, f2(x) = c2 for c1 , c2

We have that f1(x) , f2(x) for all x, i.e. f1 , f2
We evaluate

∆f1(x) = f1(x + 1)− f1(x) = c1−c1 = 0

∆f2(x) = f2(x + 1)− f2(x) = c2−c2 = 0

∆f1 = ∆f2 for f1 , f2

We proved that ∆ is not 1-1 function



Finite Integration

Question:
Do we have a REVERSE operation to ∆ similar to the one
we had for D?

Answer YES!

We proceed as the case of Infinite Calculus

Definition

A function F = F (x) is a finite primitive of f = f (x)
iff ∆F (x) = f (x) for all x ∈ R

We write ∆F = f

The process of finding a finite primitive (FP) of a function
f = f (x) is called a finite integration



Fundamental Theorem

Problem:
Given a function f = f(x), find all finite primitives of f= f(x)

Fundamental Theorem of Finite Calculus

The difference of two finite primitives F1(x), F2(x) of the
same function f (x) is a function C(x) , such that
C(x + 1) = C(x) for all x ∈ R, i.e.

F1(x)−F2(x) = C(x)

and

C(x + 1) = C(x) for all x ∈ R



Fundamental Theorem

The Fundamental Theorem says that

(1) Given a finite primitive function F (x) of f (x)
we obtain all others in the form F (x) + C(x), where
the function C : R −→ R fulfills a condition

C(x + 1) = C(x) for all x ∈ R

(2) For every function C(x), such that

C(x + 1) = C(x) for all x ∈ R

the function F1(x) = F (x) + C(x) is a finite primitive of f (x)



Proof of Fundamental Theorem

Proof
(1) Consider F1(x)−F2(x) = C(x) such that ∆F1 = f ,∆F2 = f
We want to show that C(x + 1) = C(x), i.e.

∆C(x) = C(x + 1)−C(x) = 0

Evaluate

∆C(x) = ∆(F1(x)−F2(x))

= (F1(x + 1)−F2(x + 1))− (F1(x)−F2(x))

= (F1(x + 1)−F1(x)︸                    ︷︷                    ︸
∆F1

)− (F2(x + 1)−F2(x)︸                    ︷︷                    ︸
∆F2

)

= f (x)− f (x) = 0



Proof of Fundamental Theorem

(2) Let F1(x) = F (x) + C(x) and

∆F (x) = f (x), C(x + 1) = C(x)

We prove that F1(x) is a finite primitive of f

∆F1(x) = (F (x + 1) + C(x + 1))− (F (x) + C(x)) (∆F1 = f )

= F (x + 1)−F (x) + 0 = ∆F (x) = f (x) yes!



Indefinite Sum Definition

Definition of INDEFINITE SUM
as a general form of a finite primitive of f = f (x)

∑g(x)δ (x) = f (x) + C(x)

if and only if

g(x) = ∆f (x) and C(x + 1) = C(x)

for g : R −→ R; f : R −→ R, C : R −→ R

Remark : in paticular case: we can put
C(x) = C for all x ∈ R

as in the case of Indefinite Integral because
C(x + 1) = C = C(x)



Example

EXAMPLE of a ”CONSTANT” function C = P(x) under ∆

P(x) = sin2πx (PERIODIC function)

Evaluate

P(x + 1) = sin(2π(x + 1)) = sin(2πx + 2π) = P(x)

We proved
P(x) = P(x + 1) for all x ∈ R



Definite Integral and Definite Sum

Infinite Calculus: DEFINITE INTEGRAL

∫ b

a
g(x)dx = f (x)

∣∣∣b
a

= f (b)− f (a) where f ′(x) = g(x)

DEFINITION Finite Calculus: DEFINITE SUM

b

∑
a

g(x)δx = f (x)
∣∣∣b
a

= f (b)− f (a)

where ∆f (x) = g(x)



Definite Sum

We defined

∑
b
a g(x)δx = f (x)

∣∣b
a= f (b)− f (a)

for f (x) such that

g(x) = ∆f (x) g = ∆f

What is the MEANING of our new ”INTEGRAL”

b

∑
a

g(x)δx ?



Definite Sum

Reminder: ∑
b
a g(x)δx = f (x)

∣∣b
a= f (b)− f (a) for

g(x) = ∆f (x) = f (x + 1)− f (x)

Let’s consider a case: b = a

∑
a
a g(x)δx = f (a)− f (a) = 0

TAKE now b = a + 1

∑
a+1
a g(x)δx = f (a + 1)− f (a) = ∆f (a) = g(a)



Definite Sum

We proved that

∑
a
a g(x)δx = 0

∑
a+1
a g(x)δx = g(a)

Evaluate
∑

a+2
a g(x)δx

def
= f (a + 2)− f (a)

where
g(x) = f (x + 1)− f (x) = ∆f (x)



Definite Sum

Consider

∑
a+2
a g(x)δx −∑

a+1
a g(x)δx

= f (a + 2)− f (a)− (f (a + 1)− f (a)) (by definition)

= f (a + 2)− f (a)− f (a + 1) + f (a)

= f (a + 2)− f (a + 1) = g(a + 1)

∑
a+2
a g(x)δx = ∑

a+1
a g(x)δx + g(a + 1)

= g(a) + g(a + 1)



Definite Sum

We proved

∑
a+1
a g(x)δx = g(a)

∑
a+2
a g(x)δx = g(a) + g(a + 1)

Evaluate
∑

a+3
a g(x)δx

def
= f (a + 3)− f (a)



Definite Sum

Compute

∑
a+3
a g(x)δx −∑

a+2
a g(x)δx

= f (a + 3)− f (a)− (f (a + 2)− f (a)) (by definition)

= f (a + 3)− f (a + 2) = g(a + 2)

∑
a+3
a g(x)δx = ∑

a+2
a g(x)δx + g(a + 2)

= g(a) + g(a + 1) + g(a + 2)



Definite Sum

GUESS (proof by math. induction over k )
b ≥ a

a+k

∑
a

g(x)δx = g(a) + g(a + 1) + · · ·+ g(a + k −1)

where a+k=b, and a+k-1=b-1



Definite Sum

For b ≥ a
b

∑
a

g(x)δx︸        ︷︷        ︸
DEFINITE SUM

= ∑
a≤k<b

g(k)︸          ︷︷          ︸
NORMAL SUM

=
b−1

∑
k=a

g(k)︸      ︷︷      ︸
NORMAL SUM

∑
b
a g(x)δx = f (b)− f (a), where ∆f (x) = g(x)



Definite Sum and Normal Sums

Relationship between DEFINITE and NORMAL sums
We defined g(x) = ∆f (x)

∑
b
a g(x)δx

def
= f (x)

∣∣b
a

= f (b)− f (a)

WE PROVED:

∑
b
a g(x)δx = ∑

b−1
k=a g(k)

For b ≥ a



Definite and Normal SumsTheorem

THEOREM
For b ≥ a

∑
b−1
k=a g(k) = ∑

b
a g(x)δx

= f (x)
∣∣b
a = f (b)− f (a)

We write it as
b−1

∑
k=a

g(k)︸      ︷︷      ︸
SUM

Thm
= ∑

b
a g(x)δx

Reminder: g(x) = ∆f (x) = f (x + 1)− f (x)



Definite and Normal SumsTheorem

When asked of evaluating a SUM, we can evaluate a ”SUM
INTEGRAL”

b

∑
a

g(x)δx︸        ︷︷        ︸
INTEGRAL

= f (x)
∣∣b
a = f (b)− f (a)

where ∆f (x) = g(x)

Very easy if you know how to integrate
b

∑
a

g(x)δx



Example

∫
xmdx = xm+1

m+1 INFINITE

∑xmdx = xm+1

m+1 FINITE

because

∆
(xm+1

m+1

)
= 1

m+1∆(xm+1)

= 1
m+1(m + 1)xm = xm

where
xm = x(x−1)(x−2) · · ·(x−m + 1)



Example

Evaluate

∑0≤k<n km = 0m + 1m + 2m + · · ·+ (n−1)m BAD

n−1

∑
k=0

km

︸    ︷︷    ︸
SUM

Thm
=

n

∑
0

km
δk︸      ︷︷      ︸

INTEGRAL

We know that ∑
n−1
k=0 kmδk = km+1

m+1

∣∣n
0



Example

We evaluate

∑
n
k=0 km Thm

=
(n+1)

∑
0

km
δk︸         ︷︷         ︸

Integral

= ∑
n+1
0 kmδk = km+1

m+1

∣∣n+1
0

= (n + 1)m+1− 0m+1

1

= (n + 1)m+1

Answer
n

∑
k=0

km = (n + 1)m+1


