cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 9a

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 4: Finite and Infinite Calculus (1) - Lecture 9a

Finite and Infinite Calculus

Infinite Calculus review
We define a derivative OPERATOR D as

$$
D f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivative operator D is defined for some functions on real numbers R, called differentiable functions.
We denote $\operatorname{Df}(x)=f^{\prime}(x)$ and call the result a derivative f^{\prime} of a differentiable function f

Derivative Operator

D is called an operator because it is a function that transforms some functions into different functions
D is a PARTIAL function on the set R^{R} of all functions over R, i.e.

$$
D: R^{R} \longrightarrow R^{R}
$$

where $R^{R}=\{f: R \longrightarrow R\}$
D is a partial function because the domain of D consists of the differentiable functions only, i.e. functions f for which $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists

FINITE CALCULUS

Difference operator Δ

Let f be any function on real numbers R (may be partial) $f: R \longrightarrow R$
We define

$$
\Delta f(x)=f(x+1)-f(x)
$$

Δ transforms ANY function f into another function $g(x)=f(x+1)-f(x)$, so we have that

$$
\Delta: R^{R} \longrightarrow R^{R}
$$

Difference Operator Example

Let $f: R \longrightarrow R$ be given by a formula $f(x)=x^{m}$
We evaluate:

$$
D f(x)=m x^{m-1}
$$

Reminder: $\quad D\left(x^{m}\right)=m x^{m-1}$
What about Δ ???
Evaluate
$\Delta\left(x^{3}\right)=(x+1)^{3}-x^{3}=3 x^{2}+3 x+1, \quad D x^{3}=3 x^{2}$

$$
\Delta \neq D
$$

Difference Operator Question

Q: Is there a function f for which $\Delta f=D f$
Yes there is a "new power" of x, which transforms as nicely under Δ, as x^{m} does under D

Falling Factorial Power

Definition of Falling Factorial Power

Let $f: R \longrightarrow R$ be given by a formula

$$
f(x)=x^{\underline{m}}
$$

for $\quad x^{\underline{m}}=x(x-1)(x-2) \cdots(x-m+1) \quad$ and $\quad m>0$

Wa also define in a similar way a notion of a rising factorial power

Rising Factorial Power

Definition of Rising Factorial Power

Let $\quad f: R \longrightarrow R$ be given by a formula

$$
f(x)=x^{\bar{m}}
$$

for $\quad x^{\bar{m}}=x(x+1) \cdots(x+m-1) \quad$ and $\quad m>0$

Let now see what happens when the domain of f is restricted to the set of natural numbers N

Factorial Powers

Let now $f: N \longrightarrow N, \quad f(x)=x \underline{m}$
We evaluate

$$
n^{n}=n(n-1)(n-2) \cdots(n-n+1)=n!
$$

We evaluate

$$
1^{\bar{n}}=1 \cdot 2 \cdots(1+n-1)=n!
$$

We got

$$
n^{n}=n!\quad \text { and } \quad 1^{\bar{n}}=n!
$$

Factorial Powers

We define case $m=0$

$$
\begin{array}{|cc|}
\hline x^{0}=x^{\overline{0}}=1 & \text { PRODUCT OF NO FACTORS } 0!=1 \\
1^{\overline{0}}=0!=1 & 00=0!=1
\end{array}
$$

We have already proved:

$$
n!=n^{\underline{n}}=1^{n} \quad \text { for any } n \geq 0
$$

Factorial Powers

Let's now evaluate

$$
\Delta\left(x^{\underline{m}}\right)=(x+1)^{\underline{m}}-x^{\underline{m}}
$$

in order to PROVE the formula:

$$
\Delta\left(x^{\underline{m}}\right)=m x \underline{\underline{m}-1}
$$

It means that Δ on $x^{\underline{m}}$ "behaves" like D on x^{m} :

$$
D\left(x^{m}\right)=m x^{m-1}
$$

Factorial Powers

Evaluate

$$
\begin{aligned}
(x+1)^{\underline{m}} & =(x+1) x(x-1) \cdots(x+1-m+1) \\
& =(x+1) x(x-1) \cdots(x-m+2)
\end{aligned}
$$

Evaluate

$$
x \underline{m}=x(x-1) \cdots(x-m+2)(x-m+1)
$$

Factorial Powers

Evaluate

$$
\begin{aligned}
& \Delta\left(x^{\underline{m}}\right)=(x+1)^{\underline{m}}-x^{\underline{m}} \\
= & (x+1) x(x-1) \cdots(x-m+2)-x(x-1) \cdots(x-m+2)(x-m+1) \\
= & x(x-1) \cdots(x-m+2)((x+1)-(x-m+1)) \\
= & x(x-1) \cdots(x-m+2) \cdot m \\
= & m x^{\underline{m-1}}
\end{aligned}
$$

We proved:

$$
\Delta\left(x^{\underline{m}}\right)=m x^{\underline{m-1}}
$$

Hwk Problem 7 is about $x^{\bar{m}}$

Infinite Calculus: Integration

Reminder: differentiation operator D is

$$
D: R^{R} \rightarrow R^{R} \quad D f(x)=g(x)=f^{\prime}(x)
$$

D is partial function
Domain $D=$ all differentiable functions
D is not $1-1 ; \quad D(c)=0 \quad$ all $c \in R$
So inverse function to D does not exist
BUT we define a reverse process to DIFFERENTIATION that is called INTEGRATION
(1) We define a notion of a primitive function
(2) We use it to give a general definition of indefinite integral

Infinite Calculus: Integration

Definition

A function $F(x)=F$ such that $D F=D F(x)=F^{\prime}(x)=f(x)$ is called a primitive function of $f(x)$, or simply a primitive of f Shortly,
F is a primitive of f iff $D F=f$
F is a primitive of f iff f is obtained from F by differentiation

The process of finding primitive of f is called integration

Fundamental Theorem

Problem: given function f, find all primitive function of f (if exist)

Fundamental Theorem of differential and integral calculus
The difference of two primitives $F_{1}(x), F_{2}(x)$ of the same function $f(x)$ is a constant C, i.e.

$$
F_{1}(x)-F_{2}(x)=C
$$

for any F_{1}, F_{2} such that

$$
D F_{1}(x)=f(x), \quad D F_{2}(x)=f(x)
$$

Fundamental Theorem

The Fundamental Theorem says that
(1) From any primitive function $F(x)$ we obtain all the other in the form $F(x)+C$ (suitable C)
(2) For every value of the constant C, the function $F_{1}(x)=F(x)+C$ represents a PRIMITIVE of f

Indefinite Integral

Definition of Indefinite Integral as a general form of a primitive function of f
$\int f(x) d x=F(x)+C$

$$
C \in R
$$

where $F(x)$ is any primitive of f
i.e. $D F(x)=f(x) \quad F^{\prime}=f$ (for short)

Proof of Fundamental Theorem

Proof of the FUNDAMENTAL THEOREM of differential and Integral calculus has two parts
(2) We prove: if $F(x)$ is primitive to $f(x)$, so is $F(x)+C$; i.e. $D(F(x)+C)=f(x)$, where $D F(x)=f(x)$
(1) We prove: $F_{1}(x)-F_{2}(x)=C$ i.e. from any primitive $F(x)$ we obtain all others in the form $F(x)+C$
We first prove (2)

Proof of Fundamental Theorem

Proof of Fundamental Theorem part (2)
(2) Let $G(x)=F(x)+C$

$$
\begin{aligned}
D(F(x)+C) & =\lim _{h \rightarrow 0} \frac{(F(x+h)+C)-(F(x)+C)}{h} \\
& =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=F^{\prime}(x)=f(x)
\end{aligned}
$$

as $F(x)$ is a primitive of $f(x)$

Proof of Fundamental Theorem

(1) Consider $F_{1}(x)-F_{2}(x)=G(x)$
such that $F_{1}^{\prime}=f, \quad F_{2}^{\prime}=f$

We want to show that $G(x)=C \quad$ for all $x \in R$

We use the definition of the derivative to evaluate $G^{\prime}(x)=D G(x)$

Proof of Fundamental Theorem

$$
\begin{aligned}
D(G(x)) & =\lim _{h \rightarrow 0} \frac{\left(F_{1}(x+h)-F_{2}(x+h)\right)-\left(F_{1}(x)-F_{2}(x)\right)}{h} \\
& =\lim _{h \rightarrow 0}(\underbrace{\frac{F_{1}(x+h)-F_{1}(x)}{h}-\frac{F_{2}(x+h)-F_{2}(x)}{h}}) \\
& =\lim _{h \rightarrow 0} \frac{F_{1}(x+h)-F_{1}(x)}{h}-\lim _{h \rightarrow 0} \frac{F_{2}(x+h)-F_{2}(x)}{h} \\
& =f(x)-f(x)=0 \text { for all } x \in R
\end{aligned}
$$

Proof of Fundamental Theorem

We proved that
$F_{1}(x)-F_{2}(x)=G(x)$ and
$G^{\prime}(x)=0$ for all $x \in R$
But the function whose derivative is everywhere zero must have a graph whose tangent is everywhere parallel to
x-asis;
i.e. must be constant;
and therefore we have $G(x)=C$ for all $x \in R$
This is an intuitive, nor a formal proof.
The formal proof uses the Mean Value Theoremm

Proof of Fundamental Theorem

Formal proof

Apply the MEAN VALUE THEOREM to $G(x)$, i.e.

$$
G\left(x_{2}\right)-G\left(x_{1}\right)=\left(x_{2}-x_{1}\right) G^{\prime}(\xi) \quad x_{1}<\xi<x_{2}
$$

but $G^{\prime}(x)=0$ for all x, hence $G^{\prime}(\xi)=0$
and $G\left(x_{2}\right)-G\left(x_{1}\right)=0$, for any x_{1}, x_{2}
i.e. $G\left(x_{2}\right)=G\left(x_{1}\right)$ for all x_{1}, x_{2} i.e. $G(x)=C$

This ((1)+(2)) justifies the following
Definition: INDIFINITE INTEGRAL $\int f(x)=F(x)+C, \quad$ where $\quad D F(x)=F^{\prime}(x)=f(x)$

FINITE CALCULUS

Finite Calculus

Reminder: Difference Operator Δ

$$
\Delta: R^{R} \rightarrow R^{R}
$$

For any $f \in R^{R}$ we define:

$$
\Delta f(x)=f(x+1)-f(x)
$$

Δ is a total function on R^{R}
Remark : INVERSE to Δ does not exist! because
Δ is not 1-1 function

Finite Calculus

Example ; Δ is not 1-1 function
Take $f_{1}(x)=c_{1}, f_{2}(x)=c_{2}$ for $c_{1} \neq c_{2}$
We have that $f_{1}(x) \neq f_{2}(x)$ for all x, i.e. $f_{1} \neq f_{2}$
We evaluate

$$
\begin{gathered}
\Delta f_{1}(x)=f_{1}(x+1)-f_{1}(x)=c_{1}-c_{1}=0 \\
\Delta f_{2}(x)=f_{2}(x+1)-f_{2}(x)=c_{2}-c_{2}=0 \\
\Delta f_{1}=\Delta f_{2} \text { for } f_{1} \neq f_{2}
\end{gathered}
$$

We proved that Δ is not $1-1$ function

Finite Integration

Question:
Do we have a REVERSE operation to Δ similar to the one we had for D ?

Answer
YES!
We proceed as the case of Infinite Calculus

Definition

A function $F=F(x)$ is a finite primitive of $f=f(x)$
iff $\quad \Delta F(x)=f(x)$ for all $x \in R$
We write $\quad \Delta F=f$
The process of finding a finite primitive (FP) of a function $f=f(x)$ is called a finite integration

Fundamental Theorem

Problem:

Given a function $f=f(x)$, find all finite primitives of $f=f(x)$
Fundamental Theorem of Finite Calculus
The difference of two finite primitives $F_{1}(x), F_{2}(x)$ of the same function $f(x)$ is a function $C(x)$, such that $C(x+1)=C(x)$ for all $x \in R$, i.e.

$$
F_{1}(x)-F_{2}(x)=C(x)
$$

and

$$
C(x+1)=C(x) \text { for all } x \in R
$$

Fundamental Theorem

The Fundamental Theorem says that
(1) Given a finite primitive function $F(x)$ of $f(x)$ we obtain all others in the form $F(x)+C(x)$, where the function $C: R \longrightarrow R$ fulfills a condition

$$
C(x+1)=C(x) \text { for all } x \in R
$$

(2) For every function $C(x)$, such that

$$
C(x+1)=C(x) \text { for all } x \in R
$$

the function $F_{1}(x)=F(x)+C(x)$ is a finite primitive of $f(x)$

Proof of Fundamental Theorem

Proof

(1) Consider $F_{1}(x)-F_{2}(x)=C(x)$ such that $\Delta F_{1}=f, \Delta F_{2}=f$

We want to show that $C(x+1)=C(x)$, i.e.

$$
\Delta C(x)=C(x+1)-C(x)=0
$$

Evaluate

$$
\begin{aligned}
\Delta C(x) & =\Delta\left(F_{1}(x)-F_{2}(x)\right) \\
& =\left(F_{1}(x+1)-F_{2}(x+1)\right)-\left(F_{1}(x)-F_{2}(x)\right) \\
& =(\underbrace{F_{1}(x+1)-F_{1}(x)}_{\Delta F_{1}})-(\underbrace{F_{2}(x+1)-F_{2}(x)}_{\Delta F_{2}}) \\
& =f(x)-f(x)=0
\end{aligned}
$$

Proof of Fundamental Theorem

(2) Let $F_{1}(x)=F(x)+C(x)$ and

$$
\Delta F(x)=f(x), \quad C(x+1)=C(x)
$$

We prove that $F_{1}(x)$ is a finite primitive of f

$$
\begin{array}{rlc}
\Delta F_{1}(x) & =(F(x+1)+C(x+1))-(F(x)+C(x)) \quad\left(\Delta F_{1}=f\right) \\
& =F(x+1)-F(x)+0=\Delta F(x)=f(x) \quad \text { yes! }
\end{array}
$$

Indefinite Sum Definition

Definition of INDEFINITE SUM

 as a general form of a finite primitive of $f=f(x)$$$
\sum g(x) \delta(x)=f(x)+C(x)
$$

if and only if

$$
g(x)=\Delta f(x) \text { and } C(x+1)=C(x)
$$

for $g: R \longrightarrow R ; f: R \longrightarrow R, C: R \longrightarrow R$
Remark : in paticular case: we can put

$$
C(x)=C \quad \text { for all } x \in R
$$

as in the case of Indefinite Integral because

$$
C(x+1)=C=C(x)
$$

Example

EXAMPLE of a "CONSTANT" function $C=P(x)$ under Δ

$$
P(x)=\sin 2 \pi x \quad(\text { PERIODIC function })
$$

Evaluate

$$
P(x+1)=\sin (2 \pi(x+1))=\sin (2 \pi x+2 \pi)=P(x)
$$

We proved

$$
P(x)=P(x+1) \quad \text { for all } \quad x \in R
$$

Definite Integral and Definite Sum

Infinite Calculus: DEFINITE INTEGRAL

$$
\int_{a}^{b} g(x) d x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a) \quad \text { where } f^{\prime}(x)=g(x)
$$

DEFINITION Finite Calculus: DEFINITE SUM

$$
\sum_{a}^{b} g(x) \delta_{x}=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

where $\Delta f(x)=g(x)$

Definite Sum

We defined

$$
\begin{aligned}
& \sum_{a}^{b} g(x) \delta_{x}=\left.f(x)\right|_{a} ^{b}=f(b)-f(a) \\
& \quad \text { for } f(x) \text { such that } \\
& \quad g(x)=\Delta f(x) \quad g=\Delta f
\end{aligned}
$$

What is the MEANING of our new "INTEGRAL"

$$
\sum_{a}^{b} g(x) \delta_{x} ?
$$

Definite Sum

Reminder: $\quad \sum_{a}^{b} g(x) \delta_{x}=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)$ for

$$
g(x)=\Delta f(x)=f(x+1)-f(x)
$$

Let's consider a case: $b=a$

$$
\sum_{a}^{a} g(x) \delta_{x}=f(a)-f(a)=0
$$

TAKE now $b=a+1$

$$
\sum_{a}^{a+1} g(x) \delta_{x}=f(a+1)-f(a)=\Delta f(a)=g(a)
$$

Definite Sum

We proved that

$$
\begin{gathered}
\sum_{a}^{a} g(x) \delta_{x}=0 \\
\sum_{a}^{a+1} g(x) \delta_{x}=g(a)
\end{gathered}
$$

Evaluate

$$
\sum_{a}^{a+2} g(x) \delta_{x} \stackrel{\text { def }}{=} f(a+2)-f(a)
$$

where

$$
g(x)=f(x+1)-f(x)=\Delta f(x)
$$

Definite Sum

Consider

$$
\begin{aligned}
& \sum_{a}^{a+2} g(x) \delta_{x}-\sum_{a}^{a+1} g(x) \delta_{x} \\
= & f(a+2)-f(a)-(f(a+1)-f(a)) \quad \text { (by definition) } \\
= & f(a+2)-f(a)-f(a+1)+f(a) \\
= & f(a+2)-f(a+1)=g(a+1) \\
\sum_{a}^{a+2} g(x) \delta_{x}= & \sum_{a}^{a+1} g(x) \delta_{x}+g(a+1) \\
= & g(a)+g(a+1)
\end{aligned}
$$

Definite Sum

We proved

$$
\begin{aligned}
& \sum_{a}^{a+1} g(x) \delta_{x}=g(a) \\
& \sum_{a}^{a+2} g(x) \delta_{x}=g(a)+g(a+1)
\end{aligned}
$$

Evaluate

$$
\sum_{a}^{a+3} g(x) \delta_{x} \stackrel{\text { def }}{=} f(a+3)-f(a)
$$

Definite Sum

Compute

$$
\begin{aligned}
& \sum_{a}^{a+3} g(x) \delta_{x}-\sum_{a}^{a+2} g(x) \delta_{x} \\
= & f(a+3)-f(a)-(f(a+2)-f(a)) \quad \text { (by definition) } \\
= & f(a+3)-f(a+2)=g(a+2) \\
\sum_{a}^{a+3} g(x) \delta_{x}= & \sum_{a}^{a+2} g(x) \delta_{x}+g(a+2) \\
= & g(a)+g(a+1)+g(a+2)
\end{aligned}
$$

Definite Sum

GUESS (proof by math. induction over k)
$b \geq a$

$$
\sum_{a}^{a+k} g(x) \delta_{x}=g(a)+g(a+1)+\cdots+g(a+k-1)
$$

where $a+k=b$, and $a+k-1=b-1$

Definite Sum

For $b \geq a$

$$
\begin{aligned}
\underbrace{\sum_{a}^{b} g(x) \delta_{x}}_{\text {DEFINITE SUM }} & =\underbrace{\sum_{k=b}^{k=a} g(k)}_{\substack{\text { NORMAL SUM } \\
b-1 \\
\sum_{\text {NORMAL SUM }}}} \\
& =\underbrace{\sum_{\text {NORM }} g(k)}
\end{aligned}
$$

$\sum_{a}^{b} g(x) \delta_{x}=f(b)-f(a)$, where $\Delta f(x)=g(x)$

Definite Sum and Normal Sums

Relationship between DEFINITE and NORMAL sums We defined $g(x)=\Delta f(x)$

$$
\begin{aligned}
\sum_{a}^{b} g(x) \delta_{x} & \left.\stackrel{\text { def }}{=} f(x)\right|_{a} ^{b} \\
& =f(b)-f(a)
\end{aligned}
$$

WE PROVED:

$$
\sum_{a}^{b} g(x) \delta_{x}=\sum_{k=a}^{b-1} g(k)
$$

For $b \geq a$

Definite and Normal SumsTheorem

THEOREM

For $b \geq a$

$$
\begin{aligned}
\sum_{k=a}^{b-1} g(k) & =\sum_{a}^{b} g(x) \delta_{x} \\
& =\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
\end{aligned}
$$

We write it as

$$
\underbrace{\sum_{k=a}^{b-1} g(k)}_{\text {SUM }} \stackrel{\text { Thm }}{=} \sum_{a}^{b} g(x) \delta_{x}
$$

Reminder: $\quad g(x)=\Delta f(x)=f(x+1)-f(x)$

Definite and Normal SumsTheorem

When asked of evaluating a SUM, we can evaluate a "SUM INTEGRAL"

$$
\begin{aligned}
& \underbrace{\sum_{a}^{b} g(x) \delta_{x}}_{\text {INTEGRAL }}=\left.f(x)\right|_{a} ^{b}=f(b)-f(a) \\
& \text { where } \Delta f(x)=g(x)
\end{aligned}
$$

Very easy if you know how to integrate $\sum_{a}^{b} g(x) \delta_{x}$

Example

$$
\begin{array}{ll}
\int x^{m} d x=\frac{x^{m+1}}{m+1} & \text { INFINITE } \\
\sum x^{\underline{m}} d x=\frac{x^{m+1}}{m+1} & \text { FINITE }
\end{array}
$$

because

$$
\begin{aligned}
\Delta\left(\frac{x^{\underline{m+1}}}{m+1}\right) & =\frac{1}{m+1} \Delta\left(x^{\underline{m+1}}\right) \\
& =\frac{1}{m+1}(m+1) x^{\underline{m}}=x^{\underline{m}}
\end{aligned}
$$

where

$$
x^{\underline{m}}=x(x-1)(x-2) \cdots(x-m+1)
$$

Example

Evaluate

$$
\sum_{0 \leq k<n} k \underline{m}=0 \underline{m}+1 \underline{m}+2 \underline{m}+\cdots+(n-1)^{\underline{m}} \quad \text { BAD }
$$

$$
\underbrace{\sum_{k=0}^{n-1} k^{\underline{m}}}_{\text {SUM }} \stackrel{\text { Thm }}{=} \underbrace{\sum_{0}^{n} k^{\underline{m}} \delta_{k}}_{\text {INTEGRAL }}
$$

We know that $\quad \sum_{k=0}^{n-1} k^{\underline{m}} \delta_{k}=\left.\frac{k^{m+1}}{m+1}\right|_{0} ^{n}$

Example

We evaluate

$$
\begin{aligned}
& \sum_{k=0}^{n} k \stackrel{\underline{m}}{ } \quad \stackrel{\text { Thm }}{=} \underbrace{\sum_{0}^{(n+1)} k^{\underline{m}} \delta_{k}}_{\text {Integral }} \\
&=\sum_{0}^{n+1} k \frac{m}{2} \delta_{k}=\left.\frac{k^{m+1}}{m+1}\right|_{0} ^{n+1} \\
&=(n+1) \frac{m+1}{}-\frac{0 \underline{m+1}}{1} \\
&=(n+1) \frac{m+1}{}
\end{aligned}
$$

Answer

$$
\sum_{k=0}^{n} k^{\underline{m}}=(n+1) \underline{m+1}
$$

