cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 9b

CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 4: Finite and Infinite Calculus (2) - Lecture 9b

Definite Integral and Definite Sum

Infinite Calculus: \quad DEFINITE INTEGRAL

$$
\int_{a}^{b} g(x) d x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a) \text { where } f^{\prime}(x)=g(x)
$$

Finite Calculus: DEFINITE SUM

$$
\sum_{a}^{b} g(x) \delta_{x}=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

where $\Delta f(x)=g(x)$

Definite Sum Properties

Definite Sum Properties

Take $b<a$ and evaluate

$$
\text { (1) } \quad \begin{aligned}
\sum_{a}^{b} g(x) \delta_{x} & =f(b)-f(a) \\
& =-(f(b)-f(a)) \\
& =-\sum_{b}^{a} g(x) \delta_{x}
\end{aligned}
$$

(2) $\sum_{a}^{b} g(x) \delta_{x}+\sum_{b}^{c} g(x) \delta_{x}=\sum_{a}^{c} g(x) \delta_{x}$

For all $a, b, c \in Z$

Exercise

Exercise:

$$
\text { FIND the sum: } \sum_{k=0}^{n-1} k^{\underline{m}}
$$

Hint: use

$$
\underbrace{\sum_{k=a}^{b-1} g(k)}_{\text {SUM }} \stackrel{\text { Thm }}{=} \sum_{a}^{b} g(x) \delta_{x}
$$

where

$$
\begin{array}{r}
g(x)=\Delta f(x)=f(x+1)-f(x) \\
\Delta x^{\underline{m}}=m x^{\frac{m-1}{}} \\
\sum x^{\underline{m}} \delta_{x}=\frac{x^{\frac{m+1}{n}}}{m+1}
\end{array}
$$

Exercise

SOLUTION:

$$
\begin{gathered}
\sum_{k=0}^{n-1} k \stackrel{m}{\stackrel{(t h m}{=}} \quad \sum_{k=0}^{n} x^{\underline{m}} \delta_{x} \\
=\left.\quad \frac{x^{\frac{m+1}{m+1}}}{m+1}\right|_{0} ^{n}=\frac{n^{m+1}}{m+1} \\
\text { used: } \Delta\left(\frac{x^{\underline{m+1}}}{m+1}\right)=\frac{1}{m+1} \Delta x \frac{m+1}{}=\frac{m+1}{m+1} \cdot x \underline{m}=x \underline{m}
\end{gathered}
$$

We proved

$$
\sum_{0 \leq k<n} k \underline{m}=\left.\frac{k^{m+1}}{m+1}\right|_{0} ^{n}=\frac{n^{m+1}}{m+1} \quad n, m \geq 0
$$

Exercise

Exercise: Use "integration" to evaluate

$$
\sum_{k=0}^{n-1} k=\sum_{0 \leq k<n} k
$$

Observe that

$$
k^{1}=k \quad \text { as } \quad x^{\underline{m}}=x(x-1)(x-2) \cdots(x-m+1)
$$

$$
\begin{aligned}
\sum_{k=0}^{n-1} k & =\quad \sum_{k=0}^{n-1} k^{1}=\sum_{0 \leq k<n} k^{1} \\
& \stackrel{\text { Thm }}{=} \quad \sum_{0}^{n} x^{1} \delta_{x}=\left.\frac{x^{2}}{2}\right|_{0} ^{n} \\
& =\frac{n^{2}}{2}=\frac{n(n-1)}{2}
\end{aligned}
$$

because $n^{2}=n \cdots(n-2+1)=n(n-1)$ and hence

$$
\sum_{k=0}^{n-1} k=\frac{n(n-1)}{2}
$$

Useful Fact

FACT 1

$$
k^{2}=k^{2}+k^{1}
$$

Proof: $\quad x \underline{\underline{m}}=x(x-1) \cdots(x-m+1)$

$$
\begin{array}{ll}
k^{\underline{2}} & =k(k-2+1)=k(k-1) \\
k^{1} & =k \\
k^{\underline{2}}+k^{1} & =k(k-1)+k=k(k-1+1)=k^{2}
\end{array}
$$

Exercise

Evaluate

$$
\sum_{k=0}^{n-1} k^{2}
$$

Hint: use Thm and FACT1

$$
\begin{aligned}
\sum_{k=0}^{n-1} k^{2} & \stackrel{F 1}{=} \quad \sum_{0 \leq k<n}\left(k^{2}+k^{\underline{1}}\right)=\sum_{0 \leq k<n} k^{2}+\sum_{0 \leq k<n} k^{1} \\
& \stackrel{\text { Thm }}{=} \sum_{0}^{n} x^{2} \delta_{x}+\sum_{0}^{n} x^{1} \delta_{x} \\
= & \left.\frac{x^{3}}{3}\right|_{0} ^{n}+\left.\frac{x^{2}}{2}\right|_{0} ^{n}=\frac{n^{3}}{3}+\frac{n^{2}}{2} \\
= & \frac{1}{3}(n(n-1)(n-2))+\frac{1}{2}(n(n-1))=\frac{1}{3} n\left(n-\frac{1}{2}\right)(n-1) \\
& \\
& \quad\left(\frac{1}{3} n(n-1)\left(n-2+\frac{3}{2}\right)\right.
\end{aligned}
$$

Exercise

FACT2

$$
k^{3}=k^{3}+3 k^{2}+k^{1}
$$

Prove it as an exercise and use it to evaluate a not trivial sum:

$$
\begin{aligned}
& \sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3} \\
& \sum_{k=1}^{n} k^{3} \stackrel{F 1}{=} \sum_{k=1}^{n}\left(k^{3}+3 k^{2}+k^{\underline{1}}\right) \\
&=\sum_{k=1}^{n+1} k^{3} \delta_{k}+3 \sum_{k=1}^{n+1} k^{2} \delta_{k}+\sum_{k=1}^{n+1} k^{\underline{1}} \delta_{k} \\
&=\frac{k^{4}}{4}+3 \frac{k^{\frac{3}{3}}}{3}+\left.\frac{k^{2}}{2}\right|_{1} ^{n+1} \\
& \sum_{a \leq k<b} k^{3}=\frac{k^{4}}{4}+3 \frac{k^{\frac{3}{3}}}{3}+\left.\frac{k^{2}}{2}\right|_{a} ^{b}
\end{aligned}
$$

Simple Problem

PROVE

$$
(x+y)^{2}=x^{2}+2 x^{\underline{1}} y^{\underline{1}}+y^{\underline{2}}
$$

$$
\begin{aligned}
x^{3} & =x(x-1)(x-2) \\
x^{2} & =x(x-1) \\
x^{1} & =x \\
x^{\underline{0}} & =1
\end{aligned}
$$

$$
\begin{aligned}
x^{\underline{2}} & =\frac{x^{3}}{x-2} \\
x^{1} & =\frac{x^{2}}{x-1} \\
x^{0} & =\frac{x^{-1}}{x}
\end{aligned}
$$

Negative Exponent Falling Powers

Definition of negative exponent falling powers

$$
\begin{aligned}
& x^{-1}=\frac{1}{x+1} \\
& x^{-\underline{-2}}=\frac{1}{(x+1)(x+2)} \\
& x^{-\underline{3}}=\frac{1}{(x+1)(x+2)(x+3)}
\end{aligned}
$$

General:

$$
x \frac{1}{-m}=\frac{1}{(x+1)(x+2) \cdots(x+m)} \quad m>0
$$

Problems

Prove:

$$
x^{m+n}=x^{\underline{m}}(x-m)^{n}
$$

Prove: for $m<0$
$\Delta x^{\underline{m}}=m x^{\underline{m-1}}$

Example

Example:

$$
\begin{aligned}
\Delta x-2 & =\frac{1}{(x+2)(x+3)}-\frac{1}{(x+1)(x+2)} \\
& =\frac{(x+1)-(x+3)}{(x+1)(x+2)(x+3)} \\
& =-2 x-\frac{3}{}
\end{aligned}
$$

Fact:

$$
\sum_{a}^{b} x^{\underline{m}} \delta x=\left.\frac{x^{\frac{m+1}{}}}{m+1}\right|_{a} ^{b} \quad \text { all } m \neq-1
$$

What about case $m=-1$?

Example

Case $m=-1$:

Infinite Integral

$$
\int_{a}^{b} x^{-1} d x=\int_{a}^{b} \frac{1}{x} d x=\left.\ln |x|\right|_{a} ^{b}
$$

We want to have a finite analog:

$$
\left.x \underline{-1}=\frac{1}{x+1} \right\rvert\, \quad \Delta f=f(x+1)-f(x)
$$

Take:

$$
\begin{aligned}
f(x) & =\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{x}=\sum_{k=1}^{x} \frac{1}{k}=H_{x} \\
\Delta f(x) & =\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{x}\right) \\
& =\frac{1}{x+1}=\Delta H_{x}
\end{aligned}
$$

We proved: $\quad \Delta H_{x}=\frac{1}{x+1}$

Example

Case $m=-1$

$$
\sum_{a}^{b} x^{-1} \delta x=\sum_{a}^{b} \frac{1}{x+1} \delta x=\left.H_{x}\right|_{a} ^{b}
$$

We prove (Chapter 9) that for large x

$$
H_{x}-\ln x \approx 0.577+\frac{1}{2 x}
$$

$H_{x} \sim \ln x$ as do \int_{a}^{b} and \sum_{a}^{b}

Falling Powers Theorem

Theorem: Sums of falling powers

$$
\begin{gathered}
\sum_{a}^{b} x^{\underline{m}} \delta x= \begin{cases}\left.\frac{x^{\frac{m+1}{m}}}{m+1}\right|_{a} ^{b} & m \neq-1 \\
\left.H_{x}\right|_{a} ^{b} & m=-1\end{cases} \\
\text { all } m \in \mathbb{Z}
\end{gathered}
$$

and $\int_{a}^{b} \frac{1}{x} d x=\left.\ln |x|\right|_{a} ^{b}$ is similar to $\sum_{a}^{b} x-\frac{1}{-1}=\left.H_{x}\right|_{a} ^{b}$

More Similarities

More Similarities

We know $\quad\left(e^{x}\right)^{\prime}=e^{x}$, i.e.

$$
D e^{x}=e^{x} \quad D f=f \quad \text { when } f(x)=e^{x}
$$

Question
Can we have a function f that has a similar property for Δ ?
i.e. a function f such that $\Delta f(x)=f(x)$

$$
\Delta f(x)=f(x+1)-f(x)=f(x)
$$

Answer: Any f such that: $f(x+1)=2 f(x)$ Recurrence!

Example

Example of solution:

$$
f(x)=2^{x}
$$

$$
\begin{aligned}
f(x+1)-f(x) & =2^{x+1}-2^{x} \\
& =2 \cdot 2^{x}-2^{x} \\
& =2^{x}=f(x)
\end{aligned}
$$

We proved: $\quad \Delta\left(2^{x}\right)=2^{x} \quad\left(e^{x}\right)^{\prime}=e^{x}$
Find a formula for Δf, where $f(x)=c^{x}$ for $c \in N^{+}$

$$
\begin{aligned}
\Delta\left(c^{x}\right)=c^{x+1}-c^{x} & =c \cdot c^{x}-c^{x} \\
& =c^{x}(c-1)
\end{aligned}
$$

We proved: $\quad \Delta\left(c^{x}\right)=c^{x}(c-1)$

Difference

Difference:

$$
\begin{array}{ll}
\Delta\left(c^{x}\right)=(c-1) c^{x} & c \in N^{-} \\
\sum_{a}^{b} c^{x} \delta x=\left.\frac{c^{x}}{c-1}\right|_{a} ^{b} & c \neq 1
\end{array}
$$

"antiderivative" anti-difference

Geometric Progression

We now prove:
Theorem: Geometric Progression

$$
\begin{aligned}
\sum_{a \leq k<b} c^{k} & =\sum_{a}^{b} c^{x} \delta x \\
& =\left.\frac{c^{x}}{c-1}\right|_{a} ^{b}=\frac{c^{b}-c^{a}}{c-1} \quad c \neq 1
\end{aligned}
$$

General Formula for Geometric Progression

$$
\begin{aligned}
& \sum_{a \leq k<b} c^{k}=\frac{c^{b}-c^{a}}{c-1} \quad c \neq 1 \\
& \sum_{k=a}^{b-1} c^{k}=\frac{c^{b}-c^{a}}{c-1}
\end{aligned}
$$

Chain Rule

Infinite: "chain rule"

$$
D f(g(x))=D f \cdot D g(x)
$$

Finite: no such rule

Can't relate $\Delta f(g(x))$ to $\Delta g(x)$

Integration by Parts

Infinite

$$
D(u v)=u D v+v D u
$$

Integration by parts

$$
\int u d v=u v-\int v d u
$$

Can we have an analog for Δ ?

Integration by Parts

Can we have

$$
\text { and } \begin{aligned}
& \Delta(u v)=u \Delta v+v \Delta u \\
& \sum u \delta v=u v-\sum \boxed{\sum v} \delta u ? \\
& \text { change here }
\end{aligned}
$$

Not exactly, but close!
Evaluate:

$$
\begin{aligned}
\Delta(u(x) v(x)) & =u(x+1) v(x+1)-u(x) v(x) \\
& =u(x+1) v(x+1) \underline{-u(x) v(x+1)+u(x) v(x+1)}-u(x) v(x) \\
& =u(x) \underline{v(x+1)}-u(x) \underline{v(x)}+\underline{u(x+1)} v(x+1)-\underline{u(x)} v(x+1) \\
& =u(x) \underline{(x(x+1)-v(x))+v(x+1)(\underline{u(x+1)-u(x)})} \\
& =u(x) \Delta v(x)+\boxed{v(x+1)} \Delta u(x)
\end{aligned}
$$

Summation by Parts

We define a shift operator: $\quad E v(x)=v(x+1)$

$$
\text { We proved } \Delta(u v)=u \Delta v+E v \Delta u
$$

Summation by parts

$$
\sum u \delta v=u v-\sum E v \delta u
$$

$$
\sum_{a}^{b} u \delta v=\left.u v\right|_{a} ^{b}-\sum_{a}^{b} E v \delta u
$$

Summation by Parts

Integration

$$
\int x e^{x} d x=x e^{x}-\int 1 \cdot e^{x} d x=e^{x}(x-1)+C
$$

Summation

$$
\begin{aligned}
\sum x 2^{x} \delta x=x 2^{x}-\sum 1 \cdot 2^{x+1} \delta x= & x 2^{x}-2^{x+1}+C(x) \\
& \text { for } C(x)=C(x+1)
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
u(x)=x, & v(x)=2^{x}, \quad E v(x)=2^{x+1} \\
\Delta u(x)=1, & \Delta v(x)=2^{x}
\end{aligned}
$$

Fact: $\quad \Delta\left(2^{x+1}\right)=2^{x+1}$

Summation by Parts

In particular, evaluate:

$$
\sum_{k=0}^{n} k 2^{k}=1 \cdot 2^{1}+2 \cdot 2^{2}+\cdots+n \cdot 2^{n}
$$

$$
\begin{aligned}
\sum_{k=0}^{n} k 2^{k} & =\sum_{0}^{n+1} x 2^{x} \delta x=\left.\left(x 2^{x}-2^{x+1}\right)\right|_{0} ^{n+1} \\
& =\left((n+1) 2^{n+1}-2^{n+2}\right)-\left(0 \cdot 2^{0}-2\right) \\
& =(n+1) 2^{n+1}-2 \cdot 2^{n+1}+2 \\
& =(n+1-2) 2^{n+1}+2=(n-1) 2^{n+1}+2
\end{aligned}
$$

$$
\sum_{k=0}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

Summation by Parts

Use finite calculus to evaluate:

$$
\sum_{k=0}^{n-1} k H_{k} \quad \text { "sum" by parts }
$$

Analog:

$$
\begin{aligned}
\int x \ln x d x & =\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x \\
& =\frac{x^{2}}{2} \ln x-\int \frac{x}{2} d x \\
& =\frac{x^{2}}{2} \ln x-\frac{1}{2} \cdot \frac{x^{2}}{2} \\
& =\frac{x^{2}}{2}\left(\ln x-\frac{1}{2}\right)
\end{aligned}
$$

Summation by Parts

$$
\begin{array}{cc}
\text { Use } \begin{array}{c}
\sum u \delta v=u v-\sum E v \delta u \\
E v(x)=v(x+1) \\
\sum_{0 \leq x, n} x H_{x} \delta x=u v-\sum E v \delta u \\
\\
v(x)=\frac{x^{2}}{2}, \quad v(x+1)=\frac{(x+1)^{2}}{2} \\
\Delta u(x)=\Delta H_{x}=x \frac{-1}{2}
\end{array} & v(x)=\frac{x^{2}}{2} \\
\hline E v(x)=\frac{(x+1)^{2}}{2} & \Delta u(x)=x=H_{x} \\
\hline
\end{array}
$$

Summation by Parts

$$
\begin{aligned}
\begin{array}{|c}
\sum_{k=0}^{n-1} k H_{k}
\end{array} & =\sum_{0 \leq x<n} x H_{x} \delta x=\sum_{0}^{n} x H_{x} \delta x \\
& =\left(\frac{x^{2}}{2} H_{x}-\sum \frac{(x+1)^{2}}{2} \cdot x=-1\right. \\
& =\left.\right|_{0} ^{n}
\end{aligned}
$$

Summation by Parts

Evaluate:

$$
\begin{aligned}
\frac{(x+1)^{2}}{2} \cdot x \frac{-1}{2} & =\frac{1}{2} x(x+1) \cdot \frac{1}{x+1}=\frac{1}{2} x \\
& =\frac{1}{2} x^{1}
\end{aligned}
$$

Summation by Parts

$$
\begin{aligned}
\sum_{0}^{n-1} k H_{k} & =\sum_{0 \leq x<n} x H_{x} \delta x \\
& =\left.\left(\frac{x^{2}}{2} H_{x}-\frac{1}{2} \sum x^{\underline{1}} \delta x\right)\right|_{0} ^{n} \\
& =\left.\left(\frac{x^{2}}{2} H_{x}-\frac{1}{2} \frac{x^{2}}{2}\right)\right|_{0} ^{n} \\
& =\left.\frac{x^{2}}{2}\left(H_{x}-\frac{1}{2}\right)\right|_{0} ^{n}=\frac{n^{2}}{2}\left(H_{n}-\frac{1}{2}\right)
\end{aligned}
$$

FC Formula

$$
\sum_{0}^{n-1} k H_{k}=\frac{n^{2}}{2}\left(H_{n}-\frac{1}{2}\right)
$$

