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CHAPTER 2
SUMS

Part 4: Finite and Infinite Calculus (2) - Lecture 9b



Definite Integral and Definite Sum

Infinite Calculus: DEFINITE INTEGRAL

∫ b

a
g(x)dx = f (x)

∣∣∣b
a

= f (b)− f (a) where f ′(x) = g(x)

Finite Calculus: DEFINITE SUM

b

∑
a

g(x)δx = f (x)
∣∣∣b
a

= f (b)− f (a)

where ∆f (x) = g(x)



Definite Sum Properties

Definite Sum Properties
Take b < a and evaluate

(1) ∑
b
a g(x)δx = f (b)− f (a)

= −(f (b)− f (a))

= −∑
a
b g(x)δx

(2) ∑
b
a g(x)δx + ∑

c
b g(x)δx = ∑

c
a g(x)δx

For all a,b,c ∈ Z



Exercise

Exercise:

FIND the sum:
n−1

∑
k=0

km

Hint: use
b−1

∑
k=a

g(k)︸      ︷︷      ︸
SUM

Thm
= ∑

b
a g(x)δx

where g(x) = ∆f (x) = f (x + 1)− f (x)

∆xm = mxm−1

∑xm
δx =

xm+1

m + 1



Exercise

SOLUTION:

∑
n−1
k=0 km (thm)

= ∑
n
k=0 xmδx

= xm+1

m+1

∣∣n
0= nm+1

m+1

used: ∆
(xm+1

m+1

)
= 1

m+1∆xm+1 = m+1
m+1 ·x

m = xm

We proved

∑0≤k<n km = km+1

m+1

∣∣n
0= nm+1

m+1 n,m ≥ 0



Exercise

Exercise: Use ”integration” to evaluate
n−1

∑
k=0

k = ∑
0≤k<n

k

Observe that

k1 = k as xm = x(x−1)(x−2) · · ·(x−m + 1)

∑
n−1
k=0 k = ∑

n−1
k=0 k1 = ∑0≤k<n k1

Thm
= ∑

n
0 x1δx = x2

2

∣∣n
0

= n2

2 = n(n−1)
2

because n2 = n · · ·(n−2 + 1) = n(n−1) and hence

n−1

∑
k=0

k =
n(n−1)

2



Useful Fact

FACT 1 k2 = k2 + k1

Proof: xm = x(x−1) · · ·(x−m + 1)

k2 = k(k −2 + 1) = k(k −1)

k1 = k

k2 + k1 = k(k −1) + k = k(k −1 + 1) = k2



Exercise

Evaluate

n−1

∑
k=0

k2

Hint: use Thm and FACT1

∑
n−1
k=0 k2 F1

= ∑0≤k<n (k2 + k1) = ∑0≤k<n k2 + ∑0≤k<n k1

Thm
= ∑

n
0 x2δx + ∑

n
0 x1δx

= x3

3

∣∣n
0+x2

2

∣∣n
0= n3

3 + n2

2

= 1
3(n(n−1)(n−2)) + 1

2(n(n−1)) = 1
3n(n− 1

2)(n−1)

(1
3n(n−1)(n−2 + 3

2)



Exercise

FACT2 k3 = k3 + 3k2 + k1

Prove it as an exercise and use it to evaluate a not trivial sum:

n

∑
k=1

k3 = 13 + 23 + 33 + 43 + · · ·+ n3

∑
n
k=1 k3 F1

= ∑
n
k=1(k3 + 3k2 + k1)

= ∑
n+1
k=1 k3δk + 3∑

n+1
k=1 k2δk + ∑

n+1
k=1 k1δk

= k4

4 + 3 k3

3 + k2

2

∣∣n+1
1

∑
a≤k<b

k3 =
k4

4
+ 3

k3

3
+

k2

2

∣∣∣∣b
a



Simple Problem

PROVE

(x + y)2 = x2 + 2x1y1 + y2

x3 = x(x−1)(x−2)

x2 = x(x−1)

x1 = x

x0 = 1

x2 = x3

x−2

x1 = x2

x−1

x0 = x1

x



Negative Exponent Falling Powers

Definition of negative exponent falling powers

x−1 =
1

x + 1

x−2 =
1

(x + 1)(x + 2)

x−3 =
1

(x + 1)(x + 2)(x + 3)

General:

x−m =
1

(x + 1)(x + 2) · · ·(x + m)
m > 0



Problems

Prove:

xm+n = xm(x−m)n

Prove: for m < 0

∆xm = mxm−1



Example

Example:

∆x−2 =
1

(x + 2)(x + 3)
− 1

(x + 1)(x + 2)

=
(x + 1)− (x + 3)

(x + 1)(x + 2)(x + 3)

= −2x−3

Fact:

∑
b
a xm

δx =
xm+1

m + 1

∣∣∣b
a

all m ,−1

What about case m =−1?



Example

Case m =−1:

Infinite Integral∫ b
a x−1dx =

∫ b
a

1
x dx = ln|x |

∣∣b
a

We want to have a finite analog:
x−1 = 1

x+1 ∆f = f (x + 1)− f (x)

Take:

f (x) =
1
1

+
1
2

+ · · ·+ 1
x

=
x

∑
k=1

1
k

= Hx

∆f (x) =

(
1
1

+
1
2

+ · · ·+ 1
x

+
1

x + 1

)
−
(

1
1

+
1
2

+ · · ·+ 1
x

)
=

1
x + 1

= ∆Hx

We proved: ∆Hx =
1

x + 1



Example

Case m =−1

∑
b
a x−1

δx = ∑
b
a

1
x + 1

δx = Hx
∣∣b
a

We prove (Chapter 9) that for large x

Hx − lnx ≈ 0.577 +
1

2x

Hx ∼ lnx as do
∫ b

a and ∑
b
a



Falling Powers Theorem

Theorem: Sums of falling powers

∑
b
a xm

δx =


xm+1

m + 1

∣∣∣b
a

m ,−1

Hx
∣∣b
a m =−1

all m ∈ Z

and
∫ b

a
1
x dx = ln|x |

∣∣b
a is similar to ∑

b
a x−1 = Hx

∣∣b
a



More Similarities

More Similarities

We know (ex )′ = ex , i.e.

Dex = ex Df = f when f (x) = ex

Question

Can we have a function f that has a similar property for ∆?

i.e. a function f such that ∆f (x) = f (x)

∆f (x) = f (x + 1)− f (x) = f (x)

Answer: Any f such that: f (x + 1) = 2f (x) Recurrence!



Example

Example of solution:

f (x) = 2x f (x + 1)− f (x) = 2x+1−2x

= 2 ·2x −2x

= 2x = f (x)

We proved: ∆(2x ) = 2x (ex )′ = ex

Find a formula for ∆f , where f (x) = cx for c ∈ N+

∆(cx ) = cx+1−cx = c ·cx −cx

= cx (c−1)

We proved: ∆(cx ) = cx (c−1)



Difference

Difference:

∆(cx ) = (c−1)cx c ∈ N+ “derivative”

∑
b
a cx

δx =
cx

c−1

∣∣∣b
a

c , 1
“antiderivative”

anti-difference



Geometric Progression

We now prove:
Theorem: Geometric Progression

∑
a≤k<b

ck = ∑
b
a cx

δx

=
cx

c−1

∣∣∣b
a

=
cb−ca

c−1
c , 1

General Formula for Geometric Progression

∑
a≤k<b

ck =
cb−ca

c−1
c , 1

b−1

∑
k=a

ck =
cb−ca

c−1



Chain Rule

Infinite: “chain rule”

Df (g(x)) = Df ·Dg(x)

Finite: no such rule

Can’t relate ∆f (g(x)) to ∆g(x)



Integration by Parts

Infinite
D(uv) = uDv + vDu

Integration by parts∫
u dv = uv −

∫
v du

Can we have an analog for ∆?



Integration by Parts

Can we have

∆(uv) = u∆v + v∆u
and ∑u δv = uv −∑ v δu?

change here

Not exactly, but close!

Evaluate:
∆(u(x)v(x)) = u(x + 1)v(x + 1)−u(x)v(x)

= u(x + 1)v(x + 1)−u(x)v(x + 1) + u(x)v(x + 1)−u(x)v(x)

= u(x)v(x + 1)−u(x)v(x) + u(x + 1)v(x + 1)−u(x)v(x + 1)

= u(x)(v(x + 1)−v(x)) + v(x + 1)(u(x + 1)−u(x))

= u(x)∆v(x) + v(x + 1) ∆u(x)



Summation by Parts

We define a shift operator: Ev(x) = v(x + 1)

We proved ∆(uv) = u∆v + Ev∆u

Summation by parts

∑u δv = uv −∑Evδu

∑
b
a u δv = uv

∣∣b
a−∑

b
a Ev δu



Summation by Parts

Integration∫
xexdx = xex −

∫
1 ·exdx = ex (x−1) + C

Summation

∑x2x
δx = x2x −∑1 ·2x+1

δx = x2x −2x+1 + C(x)

for C(x) = C(x + 1)

Evaluate

u(x) = x , v(x) = 2x , Ev(x) = 2x+1

∆u(x) = 1, ∆v(x) = 2x

Fact: ∆(2x+1) = 2x+1



Summation by Parts

In particular, evaluate:
n

∑
k=0

k2k = 1 ·21 + 2 ·22 + · · ·+ n ·2n

n

∑
k=0

k2k = ∑
n+1
0 x2x

δx = (x2x −2x+1)
∣∣n+1
0

= ((n + 1)2n+1−2n+2)− (0 ·20−2)

= (n + 1)2n+1−2 ·2n+1 + 2

= (n + 1−2)2n+1 + 2 = (n−1)2n+1 + 2

n

∑
k=0

k2k = (n−1)2n+1 + 2



Summation by Parts

Use finite calculus to evaluate:

n−1

∑
k=0

kHk ”sum” by parts

Analog:∫
x lnx dx =

x2

2
lnx−

∫ x2

2
· 1
x

dx

=
x2

2
lnx−

∫ x
2

dx

=
x2

2
lnx− 1

2
· x

2

2

=
x2

2

(
lnx− 1

2

)



Summation by Parts

Use ∑u δv = uv −∑Ev δu

Ev(x) = v(x + 1)

∑
0≤x ,n

xHx δx = uv −∑Ev δu

∆v(x) = x = x1

v(x) =
x2

2
, v(x + 1) =

(x + 1)2

2
∆u(x) = ∆Hx = x−1

v(x) =
x2

2
u(x) = Hx

Ev(x) =
(x + 1)2

2
∆u(x) = x−1



Summation by Parts

n−1

∑
k=0

kHk = ∑
0≤x<n

xHx δx = ∑
n
0 xHx δx

=

(
x2

2
Hx −∑

(x + 1)2

2
·x−1

δx
)∣∣∣n

0



Summation by Parts

Evaluate:

(x + 1)2

2
·x−1 =

1
2

x(x + 1) · 1
x + 1

=
1
2

x

=
1
2

x1



Summation by Parts

n−1

∑
0

kHk = ∑
0≤x<n

xHx δx

=

(
x2

2
Hx −

1
2 ∑x1

δx
)∣∣∣n

0

=

(
x2

2
Hx −

1
2

x2

2

)∣∣∣n
0

=
x2

2

(
Hx −

1
2

)∣∣∣n
0

=
n2

2

(
Hn−

1
2

)



FC Formula

n−1

∑
0

kHk =
n2

2

(
Hn−

1
2

)


